6 research outputs found

    Data abstractions for decision tree induction

    Get PDF
    AbstractWhen descriptions of data values in a database are too concrete or too detailed, the computational complexity needed to discover useful knowledge from the database will be generally increased. Furthermore, discovered knowledge tends to become complicated. A notion of data abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more general database after the abstraction, from which we can quickly extract more abstract knowledge that is expected to be easier to understand. In general, however, since there exist several possible abstractions, we have to carefully select one according to which the original database is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.From this point of view, we propose in this paper a method of selecting an appropriate abstraction from possible ones, assuming that our task is to construct a decision tree from a relational database. Suppose that, for each attribute in a relational database, we have a class of possible abstractions for the attribute values. As an appropriate abstraction for each attribute, we prefer an abstraction such that, even after the abstraction, the distribution of target classes necessary to perform our classification task can be preserved within an acceptable error range given by user.By the selected abstractions, the original database can be transformed into a small generalized database written in abstract values. Therefore, it would be expected that, from the generalized database, we can construct a decision tree whose size is much smaller than one constructed from the original database. Furthermore, such a size reduction can be justified under some theoretical assumptions. The appropriateness of abstraction is precisely defined in terms of the standard information theory. Therefore, we call our abstraction framework Information Theoretical Abstraction.We show some experimental results obtained by a system ITA that is an implementation of our abstraction method. From those results, it is verified that our method is very effective in reducing the size of detected decision tree without making classification errors so worse

    Data abstractions for decision tree induction

    Get PDF
    AbstractWhen descriptions of data values in a database are too concrete or too detailed, the computational complexity needed to discover useful knowledge from the database will be generally increased. Furthermore, discovered knowledge tends to become complicated. A notion of data abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more general database after the abstraction, from which we can quickly extract more abstract knowledge that is expected to be easier to understand. In general, however, since there exist several possible abstractions, we have to carefully select one according to which the original database is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.From this point of view, we propose in this paper a method of selecting an appropriate abstraction from possible ones, assuming that our task is to construct a decision tree from a relational database. Suppose that, for each attribute in a relational database, we have a class of possible abstractions for the attribute values. As an appropriate abstraction for each attribute, we prefer an abstraction such that, even after the abstraction, the distribution of target classes necessary to perform our classification task can be preserved within an acceptable error range given by user.By the selected abstractions, the original database can be transformed into a small generalized database written in abstract values. Therefore, it would be expected that, from the generalized database, we can construct a decision tree whose size is much smaller than one constructed from the original database. Furthermore, such a size reduction can be justified under some theoretical assumptions. The appropriateness of abstraction is precisely defined in terms of the standard information theory. Therefore, we call our abstraction framework Information Theoretical Abstraction.We show some experimental results obtained by a system ITA that is an implementation of our abstraction method. From those results, it is verified that our method is very effective in reducing the size of detected decision tree without making classification errors so worse

    Sequential Classification by Exploring Levels of Abstraction

    Get PDF
    AbstractIn the paper we describe a sequential classification scheme that iteratively explores levels of abstraction in the description of examples. These levels of abstraction represent attribute values of increasing precision. Specifically, we assume attribute values constitute an ontology (i.e., attribute value ontology) reflecting a domain-specific background knowledge, where more general values subsumes more precise ones. While there are approaches that consider levels of abstraction during learning, the novelty of our proposal consists in exploring levels of abstraction when classifying new examples. The described scheme is essential when tests that increase precision of example description are associated with costs – such a situation is often encountered in medical diagnosis. Experimental evaluation of the proposed classification scheme combined with ontological Bayes classifier (i.e., a nÀıve Bayes classifier expanded to handle attribute value ontologies) demonstrates that the classification accuracy obtained at higher levels of abstraction (i.e., more general description of classified examples) converges very quickly to the classification accuracy for classified examples represented precisely. This finding indicates we should be able to reduce the number of tests and thus limit their cost without deterioration of the prediction accuracy

    Medical Knowledge Discovery Systems: Data Abstraction And Performance Measurement

    Get PDF
    Knowledge discovery systems can be traced back to their origin, artificial intelligence and expert systems, but use the modern technique of data mining for the knowledge discovery process. To that end, the technical community views data mining as one step in the knowledge discovery process, while the non-technical community seems to view it as encompassing all of the steps to knowledge discovery. In this exploratory study, we look at medical knowledge discovery systems (MKDSs) by first looking at three examples of expert systems to generate medical knowledge. We then expand on the use of data abstraction as a pre-processing step in the comprehensive task of medical knowledge discovery. Next, we look at how performance of a medical knowledge discovery system is measured. Finally, the conclusions point to a bright future for MKDSs, but an area that needs extensive development to reach its full potential

    Learning ontology aware classifiers

    Get PDF
    Many applications of data-driven knowledge discovery processes call for the exploration of data from multiple points of view that reflect different ontological commitments on the part of the learner. Of particular interest in this context are algorithms for learning classifiers from ontologies and data. Against this background, my dissertation research is aimed at the design and analysis of algorithms for construction of robust, compact, accurate and ontology aware classifiers. We have precisely formulated the problem of learning pattern classifiers from attribute value taxonomies (AVT) and partially specified data. We have designed and implemented efficient and theoretically well-founded AVT-based classifier learners. Based on a general strategy of hypothesis refinement to search in a generalized hypothesis space, our AVT-guided learning algorithm adopts a general learning framework that takes into account the tradeoff between the complexity and the accuracy of the predictive models, which enables us to learn a classifier that is both compact and accurate. We have also extended our approach to learning compact and accurate classifier from semantically heterogeneous data sources. We presented a principled way to reduce the problem of learning from semantically heterogeneous data to the problem of learning from distributed partially specified data by reconciling semantic heterogeneity using AVT mappings, and we described a sufficient statistics based solution

    Matching records in multiple databases using a hybridization of several technologies.

    Get PDF
    A major problem with integrating information from multiple databases is that the same data objects can exist in inconsistent data formats across databases and a variety of attribute variations, making it difficult to identify matching objects using exact string matching. In this research, a variety of models and methods have been developed and tested to alleviate this problem. A major motivation for this research is that the lack of efficient tools for patient record matching still exists for health care providers. This research is focused on the approximate matching of patient records with third party payer databases. This is a major need for all medical treatment facilities and hospitals that try to match patient treatment records with records of insurance companies, Medicare, Medicaid and the veteran\u27s administration. Therefore, the main objectives of this research effort are to provide an approximate matching framework that can draw upon multiple input service databases, construct an identity, and match to third party payers with the highest possible accuracy in object identification and minimal user interactions. This research describes the object identification system framework that has been developed from a hybridization of several technologies, which compares the object\u27s shared attributes in order to identify matching object. Methodologies and techniques from other fields, such as information retrieval, text correction, and data mining, are integrated to develop a framework to address the patient record matching problem. This research defines the quality of a match in multiple databases by using quality metrics, such as Precision, Recall, and F-measure etc, which are commonly used in Information Retrieval. The performance of resulting decision models are evaluated through extensive experiments and found to perform very well. The matching quality performance metrics, such as precision, recall, F-measure, and accuracy, are over 99%, ROC index are over 99.50% and mismatching rates are less than 0.18% for each model generated based on different data sets. This research also includes a discussion of the problems in patient records matching; an overview of relevant literature for the record matching problem and extensive experimental evaluation of the methodologies, such as string similarity functions and machine learning that are utilized. Finally, potential improvements and extensions to this work are also presented
    corecore