
Theoretical Computer Science 292 (2003) 387–416
www.elsevier.com/locate/tcs

Data abstractions for decision tree induction

Yoshimitsu Kudoh∗, Makoto Haraguchi, Yoshiaki Okubo
Division of Electronics and Information Engineering, Hokkaido University, N 13 W 8,

Sapporo 060-8628, Japan

Abstract

When descriptions of data values in a database are too concrete or too detailed, the compu-
tational complexity needed to discover useful knowledge from the database will be generally
increased. Furthermore, discovered knowledge tends to become complicated. A notion of data
abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more
general database after the abstraction, from which we can quickly extract more abstract knowl-
edge that is expected to be easier to understand. In general, however, since there exist several
possible abstractions, we have to carefully select one according to which the original database
is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.

From this point of view, we propose in this paper a method of selecting an appropriate
abstraction from possible ones, assuming that our task is to construct a decision tree from a
relational database. Suppose that, for each attribute in a relational database, we have a class of
possible abstractions for the attribute values. As an appropriate abstraction for each attribute,
we prefer an abstraction such that, even after the abstraction, the distribution of target classes
necessary to perform our classi7cation task can be preserved within an acceptable error range
given by user.

By the selected abstractions, the original database can be transformed into a small generalized
database written in abstract values. Therefore, it would be expected that, from the generalized
database, we can construct a decision tree whose size is much smaller than one constructed from
the original database. Furthermore, such a size reduction can be justi7ed under some theoret-
ical assumptions. The appropriateness of abstraction is precisely de7ned in terms of the stan-
dard information theory. Therefore, we call our abstraction framework Information Theoretical
Abstraction.

We show some experimental results obtained by a system ITA that is an implementation
of our abstraction method. From those results, it is veri7ed that our method is very e:ective
in reducing the size of detected decision tree without making classi7cation errors so worse.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Data mining; Machine learning; Abstraction; Classi7cation

∗ Corresponding author.
E-mail addresses: kudo@db-ei.eng.hokudai.ac.jp (Y. Kudoh), makoto@db-ei.eng.hokudai.ac.jp

(M. Haraguchi), yoshiaki@db-ei.eng.hokudai.ac.jp (Y. Okubo).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00178 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82620385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


388 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

1. Introduction

Since the late 1980s, studies on Knowledge Discovery in Databases (KDD) have
been paid much attentions. BrieCy speaking, a KDD process can be divided into four
subprocesses [5,4]: (1) Data selection, (2) Data cleaning and pre-processing, (3) Data
mining and (4) Interpretation and evaluation. The third process, data mining, is espe-
cially considered as a central one for extracting useful knowledge from large databases
very eFciently. Therefore, many KDD studies have concentrated on developing various
methods for the task. However, it is also well known that they often detect meaningless
rules that do not meet a user’s intention.
One reason seems to lie in a fact that some data irrelevant to the user’s intention

still remains in the database on which mining processes are carried out. In this case,
the second process, data cleaning and pre-processing, must be useful to exclude the
irrelevant data.
As another reason why meaningless rules are often detected, we can consider that

data values in the database might be too concrete or too detailed. In order to detect
useful knowledge from such a database, some computation with high complexity would
be required in general. Furthermore, the detected knowledge would not be easy to
understand because of its too detailed description.
To overcome the former problem of extracting meaningless rules by the inCuence

of irrelevant data, the literatures [1,5] have proposed to use a database query language
like SQL to specify a part of database with which the mining process is concerned.
However, such an SQL approach is too strict because a user must specify (identify)
which part of database is relevant to his=her mining problem beforehand.
On the other hand, for the latter problem of granularity, data abstraction is con-

sidered to be useful. As one of this kind of strategies, a generalization of database
under a given concept hierarchy has been proposed in the method of Attribute-Oriented
Induction [6] implemented in DBMiner [7], to generalize a database and to prevent
KDD processes from extracting meaningless knowledge. In the generalization approach,
however, a user or a system administrator is required to have good domain knowledge
to provide just one appropriate concept hierarchy before mining processes. It would be
a hard task for users who are not expert in the domain.
From these perspectives, we consider that the following functions are necessary to

obtain meaningful knowledge from databases:
• To predict user’s intention by fewer queries and to focus on the important relation-
ships or structures among data.
• To automatically select a data abstraction that is adapted for the target which the
user wants to discover and to generalize databases by the selected data abstraction.

In this paper, we are especially concerned with the second problem on automatic se-
lection of abstractions. Here the generalization of a database means an act of replacing
the data values in the original database with more abstract values. It should be noted
here that some distinguishable data in the original database might be identi7ed by the
generalization. Such a generalization directly reCects the accuracy of extracted knowl-
edge from the generalized database. If some signi7cant di:erences among data values
are missed by the generalization, then we would lose a chance to 7nd signi7cant rules



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 389

from the generalized database. Therefore, it is very much important to perform an
appropriate generalization according to the user’s intention.
Although there may exist various ways to de7ne the concise notion of the user’s

intention, we assume in this paper that a user intends to have a more understandable
decision tree [20] whose accuracy is high. More precisely speaking, given target classes,
the understandability and the accuracy are measured by the number of nodes in the
decision tree and by its error rate with respect to the target class, respectively. In order
to perform a generalization as to such a criterion about the user’s intention, we have
to carefully select an appropriate abstraction under which the error rate of the decision
tree is not increased and the size of the tree is reduced. The decision tree detected
from the generalized database according to such appropriate abstractions will become
more compact and have the classi7cation ability approximately equivalent to one before
generalization.
Although the 7nal goal is to present a method for automatically generating such a

good generalization, it is generally understood as a hard task to synthesize a general-
ization hierarchy from scratch, as known in the 7elds of natural language processing
and information retrieval.
Therefore, this paper tries to solve a problem of selecting an appropriate hierarchy

among possible ones. More concretely, we consider the possible hierarchies as layered
hierarchies each of which is de7ned as a grouping of attribute values in the original
database, and propose a method for selecting an appropriate grouping (abstraction) from
such ones. In this paper, therefore, the problem of generalizing database is regarded as
the problem of selecting abstraction of attribute values.
Given a relational database, assume, for each attribute in the database, that we have

a class of possible groupings (abstractions) of the values. For given target classes
(attribute), if the class distribution can be preserved as much as possible even after
generalizing a database according to the abstraction, the abstraction is preferred and
selected as an appropriate one. In other words, if some attribute values share almost
the same or a similar class distribution, they are considered not to have any signi7cant
di:erence about the class. This implies that we do not need to distinguish them for
our classi7cation task. Therefore, these values can be abstracted into a single abstract
value. On the other hand, if they have distinguishable class distributions, the di:erence
would be signi7cant to perform the classi7cation in terms of attribute values. Hence,
the di:erence should be regarded after any abstraction.
The classi7cation process under some attribute yields branches whose number is

equal to the number of values of the attribute. By generalizing the original database
according to an appropriate abstraction, many attribute values are identi7ed as the same
abstract one. This means that the number of branches for the generalized database is
less than one for the original database when we classify each database under the
same attribute. For example, in case of a database shown in Fig. 1, attributes values
US, Canada, Thailand, Japan, : : : of an attribute native country is abstracted
into abstract concepts North America, Asia, : : : . It is obvious that the number of
branches corresponding to North America, Asia, ... is less than an original one
before generalization. Therefore, it is expected that the size of decision tree can be
reduced by the abstraction.



390 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

native_country

U.S. JapanThailandCanada

native_country

...

Original decision tree Abstract decision tree

...North_America Asia

The number of branches of an original decision tree The number of branches of an abstract decision tree

Database Generalized database

native_country
Asia

JapanThailand
...

...

North_America

U.S. Canada
...

...U.S.
Canada

Japan
Thailand

......

...

native_country ......
North_America

Asia...Generalization according to abstractions

 

Class of possible groupings (abstractions)

Fig. 1. A reduction of the number of branches.

Our appropriateness of abstraction is precisely de7ned in terms of information the-
ory (e.g. [2]). Therefore, our abstraction framework is called Information Theoretical
Abstraction (ITA). More concretely, in order to measure the similarity among class
distributions, we adopt the notions of mutual information and split information pro-
posed in C4.5 [20]. In a word, if the class distributions before abstraction are very
close and are similar with respect to some metric, the distribution after abstraction,
which is the mean of those original distributions, is also close to them. The amount
of information about classes is therefore approximately preserved before and after the
abstraction. In addition, even if we have some counter distribution not close to some
cluster of similar distributions, such an exceptional one can be disregarded provided
its probability is low. Consequently, we can say that our abstraction method tries to
comprehend a global rule by integrating the distributions in the cluster so as to preserve
the amount of information at least approximately, ignoring some exception.
We show some experimental results obtained by a system ITA that is an implemen-

tation of our abstraction method. Fig. 2 illustrates an overview of ITA system. Given
a relational database, a target class (attribute) and a class of possible abstractions, ITA
7rst selects an appropriate abstraction for each attribute from the possible ones. Then
the system generalizes the original database according to the selected abstractions. The
generalized database is given to C4.5 to construct an abstract decision tree.
The abstract tree is compared to the decision tree constructed from the original

database in points of the size and error rate. The results show that the size of abstract
tree is much smaller than the other and the error rate is still approximately equal to
the original one.
This paper is organized as follows. In the next section, we gives preliminaries.

Section 3 introduces some terminologies used throughout this paper, and analyzes some
relationships between the appropriateness of abstractions and the mutual information.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 391

  A class of possible abstractions  

Relational database

Generalized database

Abstract decision tree

native_country...
...

...

...

...

...

vote

Asia

Japan Thailand ...

North_America

U.S. Canada ...

native_country... ...
...

...

...

...

U.S.

Canada
Japan

Thailand

...

...

...

...

... U.S.

...

...

... ...

...

...
North_America

Asia

native_country

North_America Asia ...

Class : salary  =  >50K
Class : salary  =  <=50K ... ...

  Generalization  

  Constructing  
  a decision tree  

3
2

Fig. 2. Overview of ITA.

Section 4 discuss the notion of clusters of similar distributions, and explain why our
abstraction strategy contributes to the size reduction of decision trees without making
their precision worse. In Section 5, we present an algorithm for generalizing a database
under selected appropriate abstractions. Section 6 shows some experimental results on
census database in US Census Bureau and discusses them. In Section 7, we conclude
this paper with a summary and important future works.

2. Preliminaries

The type of data to which we try to apply our notion of data abstractions is speci7ed
by a relation schema R(A1; : : : ; Am), where Ai is an attribute with its domain dom(Ai), a
non-empty set of attribute values, and R is a relation name. An instance of R(A1; : : : ; Am)
is a relation R⊆dom(A1)× · · ·×dom(Am), where we identify a relation with its name
for our notational convenience. R is called an instance relation of the schema. Each
element t ∈R is a tupple (v1; : : : ; vm) whose jth component is called an Aj-value of t,
and is denoted by t[Aj]. Thus, t=(v1; : : : ; vm)= (t[A1]; : : : ; t[Am]).
In addition to these attributes A1; : : : ; Am, we assume just one target attribute C whose

value is called a class. So, the expression t[C] = c means that the tupple t has a class c
as its C-value. Our data mining task for this type of data is to 7nd several conditions
in terms of attributes A1; : : : ; Am for discriminating or for characterizing the classes
in C. Moreover, we suppose a family of data mining algorithms using posterior class
distributions, e.g. ID3 and C4.5. The probability space used by these systems is (R;Pr),



392 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

where the probability is given by a uniform distribution.

Pr(tupple t) = 1=the number of tupples in R:

Then, each attribute Aj and the target one C as well are regarded as random variables.

Pr(X = x) = Pr({t ∈R | t[X ] = x})

=
the number of tupples in R whose X -value is x

the number of tupples in R
:

When it is clear from the context, the expression Pr(X = x) is often denoted by
Pr(x). Moreover, a distribution is represented by a probability vector (p1; : : : ; pn) with
06pi61 and

∑n
j=1 pj =1. The property about classes c1; : : : ; cn captured by an at-

tribute value a∈dom(Aj) is represented by a conditional distribution

(Pr(C = c1|Aj = a); : : : ;Pr(C = cn|Aj = a))

given Aj-value a, and is also called a posterior class distribution.

3. Data abstraction

In this section, we introduce our notion of data abstractions, discuss their information
loss, and 7nally present our fundamental criterion to select the best abstraction called
an appropriate abstraction. Let us start with de7ning the data abstractions.

3.1. De:nition of data abstractions

Suppose that we have n classes c1; : : : ; cn and a relation R with its attributes A1; : : : ;
Am.

De�nition 3.1 (Data Abstraction). (1) A data abstraction ’A for an attribute A in {A1;
: : : ; Am} is de7ned as a partition {g1; : : : g‘} of dom(A), where gj ⊆dom(A), gi ∩ gj
=� whenever i 
= j, and dom(A)=

⋃‘
j=1 gj. gj is called a group of A-values.

(2) A data abstraction ’ for attributes A1; : : : ; Am is de7ned as a tupple (’A1 ; : : : ; ’Am),
where ’Aj is a data abstraction for the attribute Aj.
(3) Given a data abstraction ’=(’A1 ; : : : ; ’Am) and a relation R with the same

attributes A1; : : : ; Am, we form a generalized relation ’(R) which has its attributes
A1; : : : ; Am with their domains dom(Aj)=’Aj . Thus, each group g∈’Aj is regarded as
an abstract attribute value of Aj. Moreover, a tupple t=(a1; : : : ; am)∈R is called an
instance (tupple) of an abstract tupple Mt=(g1; : : : ; gm) if aj ∈ gj holds for any j. Con-
versely, for a given t=(a1; : : : ; am)∈R, t is said to be abstracted to Mt=(g1; : : : ; gm)
with aj ∈ gj ∈’Aj , where Mt is uniquely determined as there exists just one gj ∈’Aj such
that aj ∈ gj. Then, ’(R) is de7ned as a set of abstract tupples Mt such that there exists
at least one instance tupple in R. In other words, ’(R) consists of abstract tupples to



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 393

X Y MX MY vote

a 25 gab over 10 2
c 15 gcde over 10 1
d 4 gcde under 10 1
b 35

Fig. 3. Relations before and after data abstraction.

which some t ∈R is abstracted.

’(R) = {(g1; : : : ; gm) | there exists (a1; : : : ; am) ∈ R such that aj ∈ gj ∈ ’j}:

To calculate the probability of abstract tupples, we use the following function.

vote(Mt) = the number of instance tupples of Mt:

We here illustrate the generalization of a relation by a simple example. Suppose that
we have a relation with two attributes X and Y , shown at the left of Fig. 3, and a data
abstraction (’X ; ’Y ), where ’X = {gab = {a; b}; gcde = {c; d; e}}, and ’Y = {under 10
= {x | x¡10}, just 10= {10}, over 10= {x | 10¡x}}. For instance, the expression gab

= {a; b} means that {a; b} is a group and gab is its name. In what follows, we do
not distinguish any group from its name. Then we see the generalized relation at the
right of Fig. 3. For example, (a; 25) is abstracted to (gab; over 10), as a∈ gab and
25∈ over 10.
An abstract attribute Aj corresponding to Aj can be also considered as a random

variable. In fact, for a group g∈’Aj ,

Pr(Aj = g) = Pr({t ∈ R | t is abstracted to Mt whose Aj-value is g}):

Then, the following fact is often used, as it asserts a fundamental relationship among
attributes before and after our data abstraction.

Proposition 3.1. For a group g∈’Aj =dom(Aj), the event speci:ed by Aj = g is just
a disjoint union of all events given by Aj = a for a∈ g. Hence, Pr(Aj = g)=

∑
a∈g

Pr(Aj = a).

This is simply because

{t ∈ R | t is abstracted to Mt whose Aj-value is g}

= {t ∈ R | t[Aj] = some a ∈ g} = ⋃
a∈g
{t ∈ R | t[Aj] = a}; a disjoint union:



394 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

3.2. Abstract class distributions

Needless to say, there may exist a lot of possible data abstractions, so the major
problem is to present a criterion for selecting the best one according to which the
generalization of relations should be carried out. As several attributes are generally
interrelated each other, the best abstraction for one attribute may be dependent on
another attribute. However, in this paper, we choose the best one independent of another
attribute, and actually present a criterion to select the best data abstraction ’A for each
attribute A. In what follows, we thus concentrate on an attribute A arbitrarily chosen
from {A1; : : : ; Am} and its abstraction ’A. Even when the interrelation among attributes
should be taken into account, we can provide a revised criterion which we brieCy
discuss in the last section.
Our criterion is concerned with how a class distribution given by

(Pr(C = c1|A = a); : : : ;Pr(C = cn|A = a))

is changed after data abstractions. We consider that the abstraction with the smaller
changes is better.
The class distribution after a data abstraction ’A, which is called an abstract class

distribution, is obtained by extending the conditioning by a single A-value to the
conditioning by a set of A-values. Here, the conditioning is speci7ed by a group
gj = {aj1 ; : : : ; ajnj }∈’A, and means information that A-value is some aji in that group

gj. From Proposition 3.1, this statement is equivalent to MA= gj. So the conditioning is
denoted as MA= gj.

De�nition 3.2 (Abstract Class Distribution). Given a group g in a data abstraction ’A

for an attribute A, the distribution

C MA=g = (Pr(C = c1| MA = g); : : : ;Pr(C = cn| MA = g))

= (Pr(C = c1|A ∈ g); : : : ;Pr(C = cn|A ∈ g))

is called an abstract (class) distribution given MA= g.

Based on Bayes’ theorem, such an abstract distribution can be represented as a linear
combination of original distributions, as shown by the following formula transforma-
tions:

Pr(C = cj | MA = g) =
Pr({t ∈ R | t[C] = cj} ∩

⋃
a∈g {t ∈ R | t[A] = a})

Pr(
⋃

a∈g {t ∈ R | t[A] = a})

=

∑
a∈g Pr(C = cj; A = a)∑

a∈g Pr(A = a)

=

∑
a∈g Pr(A = a)Pr(C = cj|A = a)∑

a∈g Pr(A = a)



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 395

=
∑
a∈g

�a Pr(C = cj|A = a);

where �a =
Pr(A = a)∑
a∈g Pr(A = a)

: (3.1)

Since the equation holds for any cj, we have the following fact.

Proposition 3.2. For any attribute A, a data abstraction ’A for A and g∈’A,

C MA=g =
∑
a∈g

�aCA=a; where 06 �a = Pr(A = a| MA = g)6 1 and
∑
a∈g

�a = 1:

Thus, a data abstraction ’A consisting of k groups g1; : : : ; gk , forms k abstract
distributions C MA= g1 ; : : : ; C MA= gk , each of which is a mean of class distributions in
{CA= a | a∈ gj}.
As a simple example, ’nc= {{Japan, Thailand|; : : :}, {US, Canada; : : :}; : : :} is

a possible data abstraction for native country attribute abbreviated as nc. The 7rst
group {Japan, Thailand; : : :} means Asian countries, and the second group denotes
North American countries. So, when we consider salary attribute as a class attribute,
then salarync=Asia is an abstract distribution which is the expectation of salary
distributions of Asian countries salarync=Japan, salarync=Thailand and so on,
where the weight is

Pr(nc = Japan|nc = Asia)

=
the number of tupples whose nc-value is Japan

the number of tupples whose nc-value is some Asian country

for example. We similarly have another salary distribution, salarync = North
America, of north American countries.

3.3. Information loss due to data abstractions

In this section, we analyze some relationships between the appropriateness of our
data abstractions and their information loss measured by mutual information.
As we have just observed, an abstract distribution C MA=g is a mean of original class

distributions CA=a such that a∈ g. Hence, some information or properties possessed by
the individual distributions CA=a may be lost in the abstract distribution. In the worst
case, for example, two distributions of two classes CA=a1 = (1; 0) and CA=a2 = (0; 1)
are abstracted to their average C MA={a1 ; a2} =(0:5; 0:5), provided Pr(A= a1)=Pr(A= a2).
The 7rst two show that if A= aj then C = cj with the probability 1, while the abstract
distribution is uniform and has no characteristics about the classes. Thus, the actual
information about classes has disappeared in the abstraction.
To measure the amount of information loss, we use Shannon’s mutual information

and discuss what information is actually preserved in our data abstraction when the
amount of information loss is small. It should be noted here that, in the case of ID3
and C4.5, the mutual information measures a kind of information gain for attribute
selections, while in this paper, it does information loss for abstraction selections.



396 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

More precisely, we compute the subtraction of mutual information before and after
the data abstraction.
The mutual information I(C;A) before abstraction: For a given relation R with

attributes {A1; : : : ; Am}, an attribute A∈{A1; : : : ; Am} and a target attribute C,

I(C;A) = H (C)− H (C|A);

H (C) =
∑

c∈dom(C)
L(Pr(C = c)); where L(x) =

{−x log2 x if 0 ¡ x61
0 if x = 0

;

H (C|A) = ∑
a∈dom(A)

H (C|A = a);

H (C|A = a) =
∑

c∈dom(C)
L(Pr(C = c|A = a)):

From the de7nition, we have an equation,

I(C;A) =
∑

a∈dom(A)
Pr(A = a)(H (C)− H (C|A = a)); (3.2)

meaning that I(C;A) is the expectation of reduction of entropy observing A-values.
The mutual information I(C; MA) after abstraction: The relation R with its attributes

A1; : : : ; Am is generalized to ’(R) with its attributes A1; : : : ; Am, where dom(Aj)=’Aj .
Hence, the mutual information after the abstraction is

I(C; MA) =
∑

g∈’A

Pr( MA = g)(H (C)− H (C| MA = g)): (3.3)

The information loss due to ’A: According to the information theory (see [2], for
instance), the following inequalities hold.

H (C|A)6 H (C| MA) and I(C;A)¿ I(C; MA):

Hence we can de7ne the information loss due to ’A given by

e(’A) = I(C;A)− I(C; MA) = H (C| MA)− H (C|A):

More precisely,

e(’A) =H (C| MA)− H (C|A)
=
∑

g∈’A

Pr( MA = g)H (C| MA = g)− ∑
a∈dom(A)

Pr(A = a)H (C|A = a)

=
∑

g∈’A

Pr( MA = g)H (C| MA = g)− ∑
g∈’A

∑
a∈g

Pr(A = a)H (C|A = a)

=
∑

g∈’A

(
Pr( MA = g)H (C| MA = g)−∑

a∈g
Pr(A = a)H (C|A = a)

)



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 397

=
∑

g∈’A

Pr( MA = g)

(
H (C| MA = g)−∑

a∈g

Pr(A = a)
Pr( MA = g)

H (C|A = a)

)

(use �a in (3:1))

=
∑

g∈’A

Pr( MA = g)

(
H (C| MA = g)−∑

a∈g
�aH (C|A = a)

)
(
let e(g;’A) = H (C| MA = g)−∑

a∈g
�aH (C|A = a)

)

=
∑

g∈’A

Pr( MA = g)e(g;’A):

e(g;’A) is the loss of information due to the group g in ’A. So the whole loss e(’A)
of ’A is the summation of the loss e(g;’A) for g.

e(g;’A) =H (C| MA = g)−∑
a∈g

�aH (C|A = a)

=
∑

c∈dom(C)
L(Pr(C = c| MA = g))

− ∑
a∈g

�a
∑

c∈dom(C)
L(Pr(C = c|A = a))

=
∑

c∈dom(C)

(
L(Pr(C = c| MA = g))−∑

a∈g
�aL(Pr(C = c|A = a))

)

=
∑

c∈dom(C)

(
L

(∑
a∈g

�a Pr(C = c|A = a)

)
−∑

a∈g
�aL(Pr(C = c|A = a))

)

(again from Eq: (3:1))

=
∑

c∈dom(C)
e(c; g;’A) (we de7ne e(c; g;’A) as

L

(∑
a∈g

�a Pr(C = c|A = a)

)
−∑

a∈g
�aL(Pr(C = c|A = a)): (3.4)

Thus, e(g;’A) is the summation of e(c; g;’A), the di:erence between the L-value of
the mean of Pr(c|a) and the mean of L-value of Pr(c|a).
Here it should be noted that H (C| MA= g)6

∑
a∈g �aH (C|A= a). Firstly, H (C|Y =y)

is the entropy of distribution D=(Pr(C = c1|Y =y); : : : ;Pr(C = cn|Y =y)), which is
also denoted by H (D). By this notation, we have H (C| MA= g)=H (C MA= g) and H (C|A
= a)=H (CA= a). Finally, it is an well known property of the entropy function that

H

(
k∑

j=1
(jDj

)
¿

k∑
j=1

(jH (Dj) (3.5)



398 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

Pr(C | A =      ) Pr(C | A =      )

Pr(C | A  =     )

Pr(C | A =       ) Pr(C | A =       )

Selecting an appropriate 
data abstraction

A...
...
...
...
...
...
...
... ... ...

Relational database Computing a similarity 
among class distributions

Appropriate abstraction Inappropriate abstraction

0.3 0.2

0.25

0.7 0.8

0.75

= 0.5 1 - = 0.5 = 0.5 1 - = 0.5

0.3

0.7 0.7

0.3

0.5 0.5

Abstract level

Concrete level

C

a1

a1

a2

a2

a3

a4

a1 a2

g 12

a1 a3

g 13

g 12 Pr(C | A =      )g 13

a1 a2 a1 a3

c1

c2

c1

c1

c2

c2

c1 c2

c1 c2 c1 c2 c1 c2 c1 c2

c1 c2

Fig. 4. An appropriate abstraction and an inappropriate one.

for any distribution Dj and a probability vector ((1; : : : ; (k). We therefore have H (C| MA=
g)¿

∑
a∈g �aH (C|A= a).

To evaluate the loss e(g;’A) and to establish the basic relationship between the ap-
proximation of distributions and the information loss, we need the following de7nition
and proposition.

De�nition 3.3. (1) For two distributions Dj =(pj
1; : : : ; p

j
n)(j=1; 2), the metric between

D1 and D2 is given by

|D1 − D2| = max
16k6n

|p1
k − p2

k |: (3.6)

Moreover, D1 and D2 are said )-similar, denoted by D1∼) D2, if |D1 − D2|¡).
(2) The diameter of class distributions C= {C1; : : : ; C‘} is de7ned as maxi; j |Ci−Cj|,

and is denoted by diam(C).

The following is a direct consequence of the de7nition, since C MA=g is a mean of
CA=a in {CA=a | a∈ g}.

Proposition 3.3. (1) For any D1; D2 ∈C; D1 and D2 are diam(C)-similar.
(2) If diam({CA=a | a∈ g})¡), then C MA=g is )-similar to any CA=a in {CA=a | a∈ g}.

Our 7rst selection principle, illustrated by Fig. 4, is based on this simple proposition.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 399

Preservingness of distributions: Select a data abstraction ’=(’A1 ; : : : ; ’Am) such that,
for every g∈’Aj , any two distributions in {CA=a | a∈ g} to be abstracted to an abstract
distribution C MA=g are )-similar with a small ). Then distribution C MA=g after the abstrac-
tion is also similar to any distribution in {CA=a | a∈ g} within the same error ). As a
result, the properties or characteristics about classes captured by the distributions are
approximately preserved and are not lost in the abstraction.
To guarantee the 7rst principle, we use the measure of information loss according

to Proposition 3.4.

Proposition 3.4. There exists a continuous function h()) de:ned on [0; 1] such that
(1) h()1)¡h()2) whenever )1¡)2,
(2) h())→ 0 as )→ 0, and
(3) e(g;’A)6h(diam({Ca | a∈ g})).

Proof. Let )=diam({Ca | a∈ g}). Then, for an arbitrary chosen class c∈dom(C), we
7rst evaluate e(c; g;’A). Let d1 = mina∈g Pr(c|a), d2 = maxa∈g Pr(c|a) and represent
each Pr(c|a) by (ad1 + (1− (a)d2 where 06(a61.
Since L(x)= − x log2 x is a concave function, we have

L
(∑

a
�aPr(c|a)

)
¿
∑
a

�aL(Pr(c|a)) (3.7)

and

L(Pr(c|a))¿ (aL(d1) + (1− (a)L(d2):

Hence

∑
a

�aL(Pr(c|a))¿
∑
a

�a((aL(d1) + (1− (a)L(d2))

¿
(∑

a
�a(a

)
L(d1) +

(∑
a

�a(1− (a)
)

L(d2)

=
(∑

a
�a(a

)
L(d1) +

(
1−∑

a
�a(a

)
L(d2): (3.8)

Similarly, we have
∑

a �a Pr(c|a)= (
∑

a �a(a)d1 + (1−∑a �a(a)d2.
Hence, from (3.7) and (3.8), we have

e(c; g;’A)

6 L
((∑

a
�a(a

)
d1 +

(
1−∑

a
�a(a

)
d2

)
−
(∑

a
�a(a

)
L(d1)

−
(
1−∑

a
�a(a

)
L(d2):

6 max
06(61

(L((d1 + (1− ()d2)− (L(d1)− (1− ()L(d2))



400 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

Fig. 5. Evaluation of the information loss e(c; g;’A).

6 max
|d1−d2|6)
06d16d261

max
06(61

(L((d1 + (1− ()d2)

− (L(d1)− (1− ()L(d2)): (3.9)

Let F()) be the rightmost formula of the inequality (3.9). Now de7ne the function h
by

h()) = nF());

where n is the cardinality of C. Then, it is clear from the de7nition that h satis7es the
requirements.

The proposition asserts that, as the distributions {CA=a | a∈ g} to be abstracted to
C MA=g are )-similar with a smaller error ), the information loss e(g;’A) is bounded
by a lower upperbound and is therefore smaller. Thus, our actual selection principle
proposed in this paper can be simply stated as follows (see Fig. 5).
Minimum information loss: Choose a data abstraction whose information loss is the

minimum among a class of possible abstractions.
As we see in the next section, the principle of minimizing the information loss covers

the preservingness of distributions in the 7rst criterion, allowing some exceptional
distributions whose probability is low. A family of distributions with such an exception
will be analyzed by a notion of clusters (De7nition 4.2 in the next section).
A data abstraction actually chosen by this selection criterion depends on what space

of possible abstractions we examine. The most general space is the lattice of all par-
titions except the trivial one, {{a} | a∈dom(A)}, whose information loss is always 0.
As the lattice size is exponential, we will present in Section 6 its subspace and an
algorithm running in it so that 7nding the best abstraction is computationally tractable.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 401

Although the algorithm uses additional parameters and heuristics to improve its perfor-
mance, the major factor to choose data abstractions is the minimization of information
loss.

4. Clusters of distributions

As we have mentioned in Section 2, our data mining task is to characterize classes
c1; : : : ; cn in terms attributes {A1; : : : ; Am}. For this purpose, we suppose decision trees,
as in ID3 and C4.5, and compares them at the two levels, concrete and abstract ones. As
the decision trees consist of paths describing conditions for classifying those classes,
we analyze in this section the quality of abstract paths in an abstract decision tree.
Particularly, we evaluate the classi7cation accuracy of paths by the entropy of distribu-
tions associated with them. An abstract path represents a family of instance paths at a
concrete level, so its entropy is generally higher than the expectation of entropy of the
concrete level distributions. However, we show that, if the abstract path has a highly
weighted cluster of its instance distributions at the concrete level, the abstract path has
its entropy which is closer to the entropy at the concrete level. So the accuracy is
almost preserved in the abstraction.

De�nition 4.1. Suppose a relation R with attributes {A1; : : : ; Am} and an abstraction
’=(’A1 ; : : : ; ’Am).
A (concrete level) path p is a sequence (Ai1 = ai1 ; : : : ; Aik = aik ) of expressions of
the form A= a such that a∈dom(A) and A∈{A1; : : : ; Am}. k is called the length
of p. Similarly, an abstract path is de7ned as a sequence Mp=(Ai1 = gi1 ; : : : ; Aik =
gik ), where gij ∈’Aij

=dom(Aij). When a concrete level path p=(Ai1 = ai1 ; : : : ; Aik

= aik ) satis7es aij ∈ gij for any j, then we say that p is an instance of Mp or that p
is abstracted to Mp w.r.t. ’. inst’( Mp) denotes the set of all instances of Mp.

The concatination p · (X = x) of a path p=(Xi1 = xi1 ; : : : ; Xik = xik ) and an expression
(X = x) is also a path (Xi1 = xi1 ; : : : ; Xik = xik ; X = x). Moreover, we allow the empty
path, �, with its length 0.

A (concrete level) decision tree is inductively de7ned as a set of paths as follows:
(DT1) The set {�} is a decision tree with root node only.
(DT2) Suppose that DT is a decision tree, and consider a path p∈DT and an

attribute A not appearing in p. Then DT ∪{p · (A= a) | a∈dom(A)} is a decision
tree.
An abstract decision tree is similarly de7ned using abstract attributes and their
values.

A path p=(Ai1 = ai1 ; : : : ; Aik = aik ) denotes an event
⋂

j {t ∈R | t[Aij ] = aij}. Similarly,
an abstract path Mp=(Ai1 = gi1 ; : : : ; Aik = gik ) means an event

{t ∈ R | t[Aij ] ∈ gij for any j} = ⋃
aij∈gij
16j6k

{t ∈ R | t[Aij ] = aij for any j};



402 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

so we have

Pr( Mp) =
∑

p∈inst’( Mp)
Pr(p);

where inst’( Mp) is de7ned as the set of all instance paths of Mp. This is an extension of
Proposition 3.1.
For a path p=(Ai1 = ai1 ; : : : ; Aik = aik ), a class distribution after observing Aij -value

aij is given by

Cp = (Pr(C = c1|p); : : : ;Pr(C = cn|p)):
Similarly, the abstract class distribution C Mp, is de7ned as a distribution

C Mp = (Pr(C = c1| Mp); : : : ;Pr(C = cn| Mp)):
Then, C Mp can be also represented as a linear combination of Cp, using Bayes’ Theorem
again as in Proposition 3.2.

C Mp =
∑

p∈inst’( Mp)
�pCp; where 06 �p =

Pr(p)
Pr( Mp)

6 1; and
∑

p∈inst’( Mp)
�p = 1:

The following inequality is a direct consequence of (3.5) and the above representation.

H (C Mp)¿
∑

p∈inst’( Mp)
�pH (Cp): (4.1)

The entropy of paths thus increases after data abstractions in general. The inequality
(4.1) holds, even when we choose a good abstraction ’=(’A1 ; : : : ; ’Am) with a small in-
formation loss for each data abstraction ’Aj . For example, suppose that we have two data
abstractions ’A = {: : : ; gA = {a1; a2; : : : ; a20}; : : : :} and ’B = {: : : ; gB ={b1; b2; b3;
: : : ; b100}; : : :} such that each group consists of attribute values whose distributions are
)-similar with a small ). So, for any i; j, CA= ai is )-similar to CA= aj , and CB= bi is also
)-similar to CB= bj . In this case, the abstract path, Mp=( MA= gA; MB= gB), corresponds to
2000 instance paths pij =(A= ai; B= bj) with their distributions Cpij for 16i620 and
16j6100. However, the class distributions Cpij given the paths A= ai; B= bj may
not be similar in general. As a result, their mean, C Mp, is Cattened, and H (C Mp) becomes
higher. On the other hand, suppose that the distributions Cpij are )′-similar for 1900
combinations of i; j and a small error )′ as well. Then C Mp is the linear combination of
such similar distributions Cpij with the weight 1900

2000 and the remaining distributions with
the weight 100

2000 , provided each instance path has the equal probability. C Mp is closer to
the mean of 1900 similar distributions and the remaining ones can be ignored as excep-
tional ones. Thus, the similarity of distributions is almost preserved in the abstraction,
and H (C Mp) is closer to the mean of those at concrete level. This observation leads us
to the following de7nition of clusters, highly weighted families of similar distributions.
The notion is illustrated in Fig. 6.

De�nition 4.2. ((-; )) cluster of abstract path Mp) Given an abstract path Mp=(Ai1 = gi1 ;
: : : ; Aik = gik ) and -; )¿0, a (-; )) cluster of Mp is a family of instance paths M⊆ inst’



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 403

A = a1 A = a2 A = a3 ..... A = a20 A = g   ={a  , a  , ..., a   }A 1 2 20

B = b1

B = b2

B = b100.... B = b1

B = b2

B = b100.... B = g   ={b  , b  , ..., b     }B 1 2 100

’The class distributions are     -similar.

1900 / 2000 100 / 2000

an abstract path p2000 instance paths

Cp

Ci j

Fig. 6. A cluster of similar distributions.

( Mp) such that

diam({Cp |p ∈M}) ¡ ) and �M =

∑
p∈M Pr(p)

Pr( Mp)
¿ 1− -:

We call �M the cluster probability. In addition, a cluster of distributions CD(M) is
de7ned as {Cp |p∈M}.

The representation of C Mp in terms of its instances Cp is furthermore transformed to
a combination of distributions in CD(M) and the remaining ones in {Cp |p∈Mc},
where Mc = inst’( Mp)−M.

C Mp =
∑

p∈inst’( Mp)
�pCp = �M

∑
p∈M

�p

�M
Cp + (1− �M)

∑
p∈Mc

�p

1− �M
Cp

= �M
∑

p∈M

Pr(p)∑
p∈M Pr(p)

Cp + (1− �M)
∑

p∈Mc

Pr(p)∑
p∈Mc Pr(p)

Cp

= �M
∑

p∈M

wM(p)Cp + (1− �M)
∑

p∈Mc
wMc(p)Cp;

where wX(p)=Pr(p)=
∑

p∈X Pr(p), the conditional probability of path p given a set
of paths X.∑

p∈M wM(p)Cp is just the mean of Cp in the cluster CD(M). Then, there exists
a continuous function g such that

06H

( ∑
p∈M

wM(p)Cp

)
− ∑

p∈M

wM(p)H (Cp)



404 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

=
∑

c∈dom(C)
L

( ∑
p∈M

wM(p) Pr(c|p)
)
− ∑

p∈M

wM(p)
∑

c∈dom(C)
L(c|p): (4.2)

6 g()); where g())→ 0 as )→ 0: (4.3)

In fact, the formula (4.2) and (3.4) are just the same by corresponding a; �a and g in
(3.4) to p;wM(p) and M in (4.2), respectively. Hence, we can similarly construct the
function g, as in Proposition 3.4.
Moreover, for a variable x with its range [0; 1],

lim
x→1−0

H

(
x
∑

p∈M

wM(p)Cp + (1− x)
∑

p∈Mc
wMc(p)Cp

)

= H

( ∑
p∈M

wM(p)Cp

)
:

So, for any 01¿0, there exists -(01)¿0 such that

∣∣∣∣∣H
(
x
∑

p∈M

wM(p)Cp + (1− x)
∑

p∈Mc
wMc(p)Cp

)
− H

( ∑
p∈M

wM(p)Cp

)∣∣∣∣∣
¡ 01

whenever x¿1− -(01). Thus,

if �M ¿ 1− -(01) then

∣∣∣∣∣H (C Mp)− H

( ∑
p∈M

wM(p)Cp

)∣∣∣∣∣¡ 01: (4.4)

Thus, from the inequalities (4.3) and (4.4), an evaluation of the entropy of abstract
distribution in terms of entropy of its instance distributions is obtained.

Proposition 4.1. Suppose that we have a (-(01); )) cluster M of an abstract path Mp
satisfying the condition of (4.4). Then H (C Mp)¡01+g())+

∑
p∈M wM(p)H (Cp) holds.

If the cluster probability �M is higher, then we can take more tight 01. More-
over, if the diameter ) of instance distributions CD(M) is smaller, g()) is also a
small number because of (4.3). Therefore, in such a case, H (C Mp) is closer to the
mean

∑
p∈M wM(p)H (Cp), independent of the entropy of remaining distributions in

{Cp |p∈Mc}.
In addition, if every distribution in CD(M) has a low entropy, say H (Cp)¡0, then∑
p∈M wM(p)H (Cp)¡0. Therefore, H (C Mp)¡01 + g()) + 0. So, H (C Mp) is expected to

be closer to 0, as both ) and 1− �M are smaller.
From these observations, we can claim a suFcient condition for our data abstraction

to work well.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 405

There exist many abstract paths for which there exist their clusters such that
(1) the cluster probability �M is suFciently high,
(2) the diameter diam(CD(M)) of instance distributions is suFciently small, and
(3) the entropy of each instance distribution Cp ∈CD(M) is low.
As the precision is expected to be achieved at such an abstract path, we need not expand
it to obtain a longer path with its higher precision. On the other hand, there may exists
an instance path in inst’( Mp) −M whose probability is less than 1 − �M and whose
entropy is not suFciently low. The abstract path ignores such a minor and exceptional
instance, while we must expand such an instance path at concrete level to have a longer
path within the required precision. Consequently, just one abstract path Mp corresponds
to the paths in M plus such extended paths whose pre7xes are in inst’( Mp)−M. This
is a general reason why our data abstraction contributes to the reduction of the number
of paths (nodes) in a decision tree without loosing its precision. In the next section,
we see how many numbers of clusters are actually formed according to our selection
criterion.

5. Information theoretical abstraction

We present here an algorithm based on our ITA method.

5.1. Two parameters: a split information and a change ratio

In Section 3, we proposed to adopt the mutual information as a measure to decide
whether the class distributions before abstraction are almost the same (that is, similar)
or not. More concretely speaking, we consider that a data abstraction ’A with higher
I(C; MA) is more preferable. However, if two or more preferable data abstractions for
an attribute A (e.g. ’A;  A; : : :) exist, we cannot decide an appropriate data abstraction
from them according to the measure which is the mutual information. So, in the al-
gorithm, we use the entropy H ( MA) of the attribute MA, called a split information, to
compare two or more preferable data abstractions and adopt an information gain ratio
[20] I(C; MA)=H ( MA) as a selection measure of an appropriate data abstraction. The split
information is given by Eq. (5.14).

H (A) =
∑

a∈dom(A)
L(Pr(A = a)); where L(x) =

{−x log2 x if 0 ¡ x 6 1
0 if x = 0

For example, let us consider two preferable data abstractions ’A and  A for an at-
tribute A. In this example, an attribute A after applying ’A is denoted by MA’A and
an attribute A after applying  A is denoted by MA A . According to the entropy the-
ory, H (A)¿H ( MA’A)¿H ( MA A) holds, provided that ’A is a re7nement of  A (that is,
’A≺  A.). Hence, dividing I(C; MA’A) by H ( MA’A), an information gain ratio I(C; MA’A)=
H ( MA’A) tends to favor a data abstraction ’A that identi7es more numbers of attribute
values with an abstract value. Under such a data abstraction ’A, we will obtain a sim-
pler generalized database than others. This will help the decision tree to perform their



406 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

classi7cation tasks. This is the reason why we adopt the information gain ratio, just as
in the case of C4.5 [20].

The algorithm further introduces more a new value, change ratio, that is de7ned
as the ratio of the information gain ratio after abstraction to one before abstraction.
Intuitively speaking, a lower value of the change ratio implies that the class distributions
before abstraction cannot be preserved well by the data abstraction. Therefore, if the
value of change ratio for the data abstraction is lower than a threshold given by a user,
our system rejects the data abstraction.

5.2. Algorithm

Let R=(A1; : : : ; Am) be a relation. For each attribute Ai, assume that we have a class
of possible data abstractions for Ai, PosAbs(Ai). The task of our ITA algorithm is to
select an appropriate data abstraction ’Ai from PosAbs(Ai) and to generalize R according
to the selected data abstractions ’= {’Ai | 16i6m}. Our algorithm is summarized in
Fig. 7.

6. Experiments on a census database

We have made some experiments using our ITA system implemented in Visual C++
on PC=AT. This section shows the experimental results and discusses its usefulness.
In our experiments, we try discovering meaningful knowledge from a Census Data-

base in US Census Bureau found in UCI repository [18]. The database consists of
32561 tupples each of which has values for 15 attributes including age, marital status,
hours per week, salary, etc. Apart from this database (it is referred to as training
data), a small database consisting of 15 060 tupples is prepared in order to check use-
fulness of discovered knowledge (it is referred to as test data). A class of possible
abstractions for each attribute is constructed based on a machine-readable dictionary
WordNet [16] and is given to our system. This reason is that if we directly extract
possible groups from large numbers of attribute values of an attribute, the extraction
causes a combinatorial explosion of attribute values. WordNet has numerous concept
hierarchies in various contexts. The concept hierarchies are classi7ed into several se-
mantic categories. It should be noted that there exist many multiple inheritances in the
hierarchy.
The way to construct hierarchies (i.e. data abstractions) used in ITA system is illus-

trated in Fig. 8. ITA extracts many primitive views (i.e. groups) 7rstly from WordNet.
A primitive view is de7ned as a mapping pv : A→{a′} which abstracts many attribute
values a1; : : : ; a‘ of an attribute A into one abstract concept a′. That is, the primi-
tive view has one abstract concept and many concrete values (i.e. attribute values),
and is extracted from WordNet on each semantic category. Secondly, ITA composes
primitive views to generate possible data abstractions. A data abstraction is de7ned as
composite views that are composed by primitive views. ITA 7nally receives these data
abstractions.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 407

INPUT(R=(A1; : : : ; Am): a relational database
C: a target attribute (i.e. attribute At) in R,
PosAbs(Ai): a class of possible data abstractions for Ai (i 
= t),
Vlower: a lower bound of change ratio)

for Ai in R (i 
= t) do
begin
compute gain ratio(C; Ai).
’←∅
max gain ratio← 0
for ’j

Ai
∈PosAbs(Ai) do

begin
compute gain ratio(C; ’j

Ai
(Ai)),

where ’j
Ai
(Ai) is an attribute after applying ’j

Ai
.

if max gain ratio6gain ratio(C; ’j
Ai
(Ai)) then

begin
max gain ratio← gain ratio(C; ’j

Ai
(Ai))

’Ai←’j
Ai

Ai←’j
Ai
(Ai)

end
end

compute change ratio(C; Ai)= gain ratio(C; Ai)=gain ratio(C; Ai)
if Vlower6change ratioAi

(C; Ai) then
begin

’←’∪{’Ai}.
end

end
transform R into ’(R) under ’.
add a special attribute vote to a relational schema (A1; : : : ; Am)
and build a schema R∗ =(A1; : : : ; Am; vote), where dom(vote)=N.
R∗←{(a1; : : : ; am; 1) | (a1; : : : ; am)∈’(R)}.
for ti; tj ∈R∗ such that they are identical except their vote values do

begin
R∗←R∗ − {ti}
vote(tj)← vote(ti) + vote(tj)

end
Output(R∗: a generalized database of R

according to appropriate data abstractions)

Fig. 7. ITA algorithm.

6.1. Construction of a decision tree from the generalized database

Our ITA system can appropriately generalize the given original database according
to a given class of possible data abstractions for each attribute. Since the descriptions



408 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

a b c

~a

a b c

c a
~
b

a b

~a

b c

~
b

c a

~c

a

a

b

b

c

c

Primitive views (i.e. groups)

Composite views (i.e. data abstractions)

pv1 pv2 pv3 pv4 pv5 pv6

a b c

~cb

pv3 pv4* pv1 pv5 pv2 pv6*
(=       ) (=        )

Composing 
        primitive views

 1 2

*

 WordNet 

Extracting primitive views from concept 
hierarchies on each semantic category

Selecting an appropriate abstractionITA

(=        ) 3

Fig. 8. A composition of primitive views.

of such a generalized database are not too complicated, we can expect to obtain an
abstract decision tree from the generalized database that is more compact than an
original decision tree obtained from the original database. For the census database, we
compare the abstract decision tree with the original decision tree in terms of the size
and the error rate.
Basically according to the algorithm shown in Fig. 7, the generalized database is

obtained by substituting attribute values with the corresponding abstract concept in the
class of possible abstractions. The generalized database is given to C4.5 in order to
obtain a decision tree that is referred to as the abstract decision tree by “ITA+C4.5”.
We construct various abstract decision trees by varying the threshold of the change
ratio, and compare these abstract decision trees with the original one obtained from
the original census database by C4.5. The test data is used to evaluate the accuracy of
them. The experimental results are shown in Figs. 9–11.
Fig. 12 furthermore shows a part of the constructed abstract decision tree. Various

data abstractions are applied to each value of node. For example, Bachelor and Master
are abstracted into university. An abstract path

Mp= {Marrital status = married civ spouse; Education = university;

Age = young; Occupation = skilled worker}

corresponds to 120 (= 2× 30× 2) concrete paths (i.e. instance paths) at concrete
level. From this, we expect an application of data abstractions to reduce the size
of a decision tree e:ectively when many instance paths of the abstract path corre-
spond to paths in an original decision tree which is constructed from a database before
generalization.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 409

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.5 1 1.5 2 2.5 3 3.5 4

S
iz

e

Change ratio

C4.5 (Before pruning)
ITA + C4.5 (Before pruning)

C4.5 (After pruning)
ITA + C4.5 (After pruning)

Fig. 9. The size of the decision tree.

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

E
rr

or
 r

at
e

Change ratio

C4.5 (Before pruning)
ITA + C4.5 (Before pruning)

C4.5 (After pruning)
ITA + C4.5 (After pruning)

Fig. 10. The error rate for training data.

6.1.1. Decision tree before pruning
We examine here the decision trees before pruning. Fig. 9 shows that the size of

the abstract decision tree constructed by ITA+C4.5 is smaller than the original one.
Furthermore, the size of the original decision tree within the threshold 0:00 to 1:10 is



410 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0 0.5 1 1.5 2 2.5 3 3.5 4

E
rr

or
 r

at
e

Change ratio

C4.5 (Before pruning)
ITA + C4.5 (Before pruning)

C4.5 (After pruning)
ITA + C4.5 (After pruning)

Fig. 11. The error rate for test data.

Marrital_status = married_civ_spouse
Education = university

Age = young
Occupation = skilled_worker : class   >50K

... ... ... ...

Abstract decision tree

university

Bachelor Master

young

0 1 2 3 29.....

.....

skilled_worker

Craft_repair Tech_support

Data abstractions

Fig. 12. A part of an abstract decision tree.

reduced dramatically as compared with reduction of the size of the original one after
pruning. Fig. 10 shows that the original decision tree is better than the abstract one as
to the error rate for training data. Conversely, concerning the error rate for test data,
the abstract decision tree is better than the original one, as shown in Fig. 11. One
reason for this is that the original decision tree may include many redundant nodes
which do not contribute to classifying test data, because the original decision tree can
classify training data in detail. Hence, we consider that many redundant nodes in the



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 411

original decision tree are not important for classi7cation task and are removed by the
generalization.

6.1.2. Decision tree after pruning
In this section, we investigate the decision trees after pruning. In all range of the

threshold, the size of each abstract decision tree constructed by ITA+C4.5 is smaller
than the original one constructed by C4.5, as shown in Fig. 9. Especially, the size
of the abstract decision tree within the threshold 0:00 to 1:10 is quite small. From
this, redundant nodes which still remain in the abstract decision tree before pruning
are eliminated by pruning. Fig. 10 shows that the decision tree constructed by C4.5
is better than the abstract one constructed by ITA+C4.5 in terms of the error rate
for the original database (i.e. training data). However, we cannot 7nd any remarkable
di:erence between two error rates for the test data, as shown in Fig. 11. Furthermore,
it is considered that the original decision tree would be too speci7c (over-7t) to the
original database (i.e. training data). On the other hand, the error rate of the abstract
decision tree is almost equal for both the training data and the test data. Hence, it
is considered that ITA is very useful to decrease the size of decision tree and still
preserve the classi7cation accuracy.

6.2. Observations of a cluster of similar class distributions

Moreover, we observe a cluster of similar class distributions on each abstract path of
the abstract decision tree before pruning. The number of the abstract paths that satisfy
preservingness of similarity among the class distributions is shown in Fig. 13. The
number of all abstract paths is 2158. Meanings of the terms used in Fig. 13 are as
follows. If the number of instances (i.e. tupples) which are classi7ed into one abstract
path is not less than the threshold given by a user, we call such an abstract path a
“valid path”. The threshold is called “The threshold of valid path”. An abstract path
that forms a cluster of similar class distributions on instance paths of it is called a
“cluster path”. In our experiment, we observe cluster paths in a set of valid paths.
More concretely, ITA system 7rstly receives two thresholds. One threshold ) is an
acceptable error of the similarity among class distributions, and another threshold � is
a cluster probability. Secondly ITA system counts the number of cluster paths which
meets the following condition using two thresholds. In cluster paths, an acceptable
error of the similarity preservingness is ) or less and the cluster probability is � or
more. Finally, we vary two thresholds ) and � and repeat the above processes. When
the number of instances which are classi7ed into one abstract path is not less than 2,
30 and 150 (i.e. a threshold of the valid path is not less than 2, 30 and 150), the
experimental results are shown in Fig. 13(a), (b) and (c), respectively.
Furthermore, we calculates the average of the number of instance paths which form

the cluster, when the threshold of the valid path is 2, 30 and 150 instances. Figs. 14–16
show the results of the calculations (i.e. the number of instance paths per one abstract
path).



412 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

0.20

0.25

0.30

0.35

0.40

0.60 0.65 0.70 0.75 0.80 0.85

The number of cluster paths (depth: 1 / depth: 2 / depth: 3)

The number of paths : 2158
The number of valid paths : 1245

The threshold of the valid path : 2 (instances)

707 (586 / 120 / 1) 707 (586 / 120 / 1) 706 (585 / 120 / 1) 706 (585 / 120 / 1) 704 (584 / 119 / 1) 701 (581 / 119 / 1)  

(a) 

740 (612 / 127 / 1) 740 (612 / 127 / 1) 738 (610 / 127 / 1) 738 (610 / 127 / 1) 736 (609 / 126 / 1) 727 (632 / 123 / 1)

764 (632 / 131 / 1) 764 (632 / 131 / 1) 762 (630 / 131 / 1) 758 (628 / 129 / 1) 758 (628 / 129 / 1) 746 (620 / 125 / 1)

792 (653 / 138 / 1) 792 (653 / 138 / 1) 788 (649 / 138 / 1) 788 (649 / 138 / 1) 778 (641 / 136 / 1) 750 (624 / 125 / 1)

841 (684 / 156 / 1) 841 (684 / 156 / 1) 837 (680 / 156 / 1) 835 (679 / 155 / 1) 813 (663 / 149 / 1) 758 (629 / 128 / 1)

The number of paths : 2158
The number of valid paths : 157

The threshold of the valid path : 30 (instances)(b) 

0.20

0.25

0.30

0.35

0.40

0.60 0.65 0.70 0.75 0.80 0.85

The number of cluster paths (depth: 1 / depth: 2)

66 (54 / 12) 66 (54 / 12) 65 (54 / 11) 65 (54 / 11) 64 (54 / 10) 62 (52 / 10)

73 (59 / 14) 73 (59 / 14) 72 (59 / 13) 72 (59 / 13) 72 (59 / 13) 67 (55 / 12)

79 (61 / 18) 79 (61 / 18) 78 (61 / 17) 78 (61 / 17) 77 (61 / 16) 74 (59 / 15)

82 (63 / 19) 82 (63 / 19) 81 (63 / 18) 81 (63 / 18) 79 (62 / 17) 75 (60 / 15)

95 (65 / 30) 95 (65 / 30) 94 (65 / 29) 92 (65 / 27) 87 (63 / 24) 77 (60 / 17)

The number of paths : 2158
The number of valid paths : 36

The threshold of the valid path : 150 (instances)(c) 

0.20

0.25

0.30

0.35

0.40

0.60 0.65 0.70 0.75 0.80 0.85

The number of cluster paths (depth: 1 / depth: 2)

15 (14 / 1)

16 (14 / 2)

17 (14 / 3)

17 (14 / 3)

19 (14 / 5)

15 (14 / 1) 15 (14 / 1) 15 (14 / 1) 15 (14 / 1) 13 (12 / 1)

16 (14 / 2) 16 (14 / 2) 16 (14 / 2) 16 (14 / 2) 14 (13 / 1)

17 (14 / 3) 17 (14 / 3) 17 (14 / 3) 16 (14 / 2) 16 (14 / 2)

17 (14 / 3) 17 (14 / 3) 17 (14 / 3) 16 (14 / 2) 16 (14 / 2)

19 (14 / 5) 19 (14 / 5) 19 (14 / 5) 18 (14 / 4) 16 (14 / 2)

Fig. 13. The cluster of similar class distributions.

6.2.1. The number of cluster paths
When 2 or more instances are classi7ed into one abstract path, the number of the

valid path is 1245 and the number of the cluster paths in a set of the valid paths is
shown in Fig. 13a. About 60 percent of the valid paths are cluster paths ()=0:2–0.3
and �=0:6–0.85). As a matter of course, the number of the cluster paths tends to
decrease when ) changes from 0:40 to 0:20 and � changes from 0:60 to 0:85 (i.e.
a condition which satis7es the cluster of similar class distributions is severe). Three
values in parentheses are the number of cluster paths at each depth (i.e. 1, 2 and 3) of
an abstract path from a root node to a leaf node. If the depth is 4 or more, cluster paths
do not exist. From this observation, the cluster of similarity class distributions is formed
on the short abstract path, because ITA performs only one application of data abstraction
for the whole database. That is, ITA guarantees the similarity preservingness of the class
distributions at the root node but does not generally guarantee the preservingness at
other nodes.



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 413

The threshold of the valid path : 2 (instances)

0.2
0.25

0.3
0.35

0.4 0.55
0.6

0.65
0.7

0.75
0.8

0.85

6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8
8.2

Instance paths per one abstract path

Fig. 14. The threshold of the valid path: 2 (instances).

In Fig. 13b, the number of the valid paths is 157 and it is 7:28 percent (=157=2158)
of whole paths. The clusters are formed at a depth 1 and 2. In case of )=0:2, the
cluster paths are nearly 40 percent of the valid paths.
Fig. 13c shows that the number of valid paths is 36 when 150 or more instances are

classi7ed into one abstract path. It is 1:67 percent of all abstract paths. On condition
that )=0:20 and �=0:85 (i.e. most severe condition), the number of cluster paths is
13 and it accounts for about 36 percent of the valid paths, and class distributions in
the cluster on each cluster path are extremely similar.
From above observations, the cluster paths account for 40–50 percent of the abstract

paths in the abstract decision tree.

6.2.2. The number of instance paths per one abstract path
Fig. 14 shows that the average of instance paths per one abstract path is about 7.

The average is less than the other results shown in Fig. 15 and Fig. 16. One reason
is that there are many abstract paths corresponding only to 2 instances paths since the
abstract path which classi7es 2 or more instances is regard as the valid path.
When 30 or more instances are classi7ed into one abstract path, the average of the

number of the corresponding instance paths is about 40 (Fig. 15).
Furthermore, when more than 150 instances are classi7ed into one abstract path, in

Fig. 16, the average is 83:31 ()=0:2 and �=0:85). From this result, many instance
paths of the abstract path can form the cluster. That is, in these cases, the cluster path
corresponds to many instance paths.
Consequently, we con7rm that the abstract path consists of many corresponding paths

when the abstract path which classi7es many instances forms the cluster of similar class
distribution. We also observe that the size of the decision tree decreases since such
paths often exist in the original decision tree constructed by C4.5.



414 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

The threshold of the valid path : 30 (instances)

0.2
0.25

0.3
0.35

0.4 0.55
0.6

0.65
0.7

0.75
0.8

0.85

39.5
40

40.5
41

41.5
42

42.5
43

43.5

Instance paths per one abstract path

Fig. 15. The threshold of the valid path: 30 (instances).

The threshold of the valid path : 150 (instances)

0.2
0.25

0.3
0.35

0.4 0.55
0.6

0.65
0.7

0.75
0.8

0.85

81
82
83
84
85
86
87
88
89
90
91

Instance paths per one abstract path

Fig. 16. The threshold of the valid path: 150 (instances).

7. Concluding remarks

In this paper, we proposed a generalization method, called Information Theoreti-
cal Abstraction, in which an appropriate abstraction among possible ones is selected
according to the information theoretical measure.
Our analysis presents some e:ective cases in which our ITA can work well from

a theoretical point of view. Furthermore, such e:ective cases have actually been ob-
served through our experimentation. More concretely, we have observed an e:ective



Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416 415

case in which the similarity preservingness holds for a cluster of distributions of a
very low entropy with a very high probability under a short conditioning. However,
it would be expected that satisfying similarity preservingness would increasingly be
harder when our decision tree must have longer paths in order to accurately classify
data. The current ITA, unfortunately, would not be useful in such a case because ITA
in this paper has to simultaneously select an appropriate abstraction for each attribute
before constructing decision tree. This means that the current ITA selects abstractions
without taking account of any conditioning by selected attributes during constructing a
decision tree. In order to cope with the problem, we can propose to select appropriate
abstractions at each expansion step of nodes. That is, ITA iteratively 7nds appropriate
abstractions satisfying the similarity preservingness at each expansion step, taking con-
ditioning so far into account. We have roughly formulated such a method and made
a preliminary experimentation [12]. Although the current formulation has not been an
exact realization of the method yet, our preliminary experimental results show that iter-
atively 7nding abstractions seems to be useful even in case for decision tree with longer
paths. We are currently further studying the new abstraction method from theoretical
and experimental points of view.

References

[1] P. Adriaans, D. Zantinge, Data Mining, Addison-Wesley, Reading, MA, Longman, New York, 1996.
[2] S. Arimoto, Probability, Information, Entropy, Morikita Shuppan, 1980 (in Japanese).
[3] K. Cherkauer, J. Shavlik, Growing simpler decision trees to facilitate knowledge discovery, Proc. 2nd

Internat. Conf. on Knowledge Discovery and Data Mining, 1996, pp. 315–318.
[4] U.N. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge discovery: an overview,

in: U.N. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge
Discovery and Data Mining, AAAI=MIT Press, Cambridge, MA, 1996, pp. 1–33.

[5] U.N. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge Discovery
and Data Mining, AAAI=MIT Press, Cambridge, MA, 1996.

[6] J. Han, Y. Cai, N. Cercone, Knowledge discovery in databases: an attribute-oriented approach, Proc. of
VLDB’92, Canada, 1992, pp. 547–559.

[7] J. Han, Y. Fu, Attribute-oriented induction in data mining, in: U.N. Fayyad, G. Piatetsky-Shapiro, P.
Smyth, R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, AAAI=MIT Press,
Cambridge, MA, 1996, pp. 399–421.

[8] M. Holsheimer, M. Kersten, Architectural support for data mining, CWI Technical Report CS-R9429,
Amsterdam, The Netherlands, 1994.

[9] Y. Kudoh, M. Haraguchi, An appropriate abstraction for an attribute-oriented induction, Proc. 2nd
Internat. Conf. on Discovery Science, Lecture Notes in Arti7cial Intelligence, Vol. 1721, 1999, pp.
43–55.

[10] Y. Kudoh, M. Haraguchi, Data mining by generalizing database based on an appropriate abstraction, J.
Japanese Soc. Artif. Intell. 15 (4) (2000) 638–648 (in Japanese).

[11] Y. Kudoh, M. Haraguchi, An appropriate abstraction for constructing a compact decision tree, Proc. 3rd
Internat. Conf. on Discovery Science, Lecture Notes in Arti7cial Intelligence, 2000, pp. 295–298.

[12] Y. Kudoh, M. Haraguchi, Detecting a compact decision tree based on an appropriate abstraction, Proc.
2nd Internat. Conf. on Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer
Science, Springer, Berlin, 2000, pp. 60–70.

[13] K. Matsumoto, C. Morita, H. Tsukimoto, Generalized rule discovery in databases by 7nding similarities,
SIG-J-9401-15, Japanese Society for Arti7cial Intelligence, 1994, pp. 111–118 (in Japanese).

[14] R.S. Michalski, I. Bratko, M. Kubat (Eds.), Machine Learning and Data Mining: Methods and
Applications, Wiley, London, 1997.



416 Y. Kudoh et al. / Theoretical Computer Science 292 (2003) 387–416

[15] R.S. Michalski, K.A. Kaufman, Data mining and knowledge discovery: a review of issues and a
multistrategy approach, in: R.S. Michalski, I. Bratko, M. Kubat (Eds.), Machine Learning and Data
Mining: Methods and Applications, Wiley, London, 1997, pp. 71–112.

[16] G.A. Miller, Nouns in WordNet: a lexical inheritance system, Internat. J. Lexicography 3(4) (1990)
245–264. ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps.

[17] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller, Introduction to WordNet: an on-line lexical
database, Internat. J. Lexicography 3 (4) (1990) 235–244.

[18] P.M. Murphy, D.W. Aha, UCI Repository of machine learning databases, http://www.ics.uci.edu/
mlearn/MLRepository.html.

[19] D.A. Plaisted, Theorem proving with abstraction, Artif. Intell. 16 (1981) 47–108.
[20] J.R. Quinlan, C4.5—Programs for Machine Learning, Morgan Kaufmann, Los Altos, CA, 1993.
[21] J.D. Tenenberg, Abstracting 7rst-order theories, in: D.P. Benjamin (Ed.), Change of Representation and

Inductive Bias, Kluwer Academic Publisher, Dordrecht, 1989, pp. 67–79.
[22] J.D. Tenenberg, Abstraction in planning, in: J.F. Allen, et al., (Eds.), Reasoning about Plan, Morgan

Kaufmann, San Mateo, CA, 1991, pp. 213–283.

ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps
http://www.ics.uci.edu/mlearn/MLRepository.html
mailto:mlearn/MLRepository.html

	Data abstractions for decision tree induction
	Introduction
	Preliminaries
	Data abstraction
	Definition of data abstractions
	Abstract class distributions
	Information loss due to data abstractions

	Clusters of distributions
	Information theoretical abstraction
	Two parameters: a split information and a change ratio
	Algorithm

	Experiments on a census database
	Construction of a decision tree from the generalized database
	Decision tree before pruning
	Decision tree after pruning

	Observations of a cluster of similar class distributions
	The number of cluster paths
	The number of instance paths per one abstract path


	Concluding remarks
	References


