5,411 research outputs found

    Mixed Linear Layouts of Planar Graphs

    Full text link
    A kk-stack (respectively, kk-queue) layout of a graph consists of a total order of the vertices, and a partition of the edges into kk sets of non-crossing (non-nested) edges with respect to the vertex ordering. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 11-stack 11-queue layout in which every edge is assigned to a stack or to a queue that use a common vertex ordering. We disprove this conjecture by providing a planar graph that does not have such a mixed layout. In addition, we study mixed layouts of graph subdivisions, and show that every planar graph has a mixed subdivision with one division vertex per edge.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    A parent-centered radial layout algorithm for interactive graph visualization and animation

    Get PDF
    We have developed (1) a graph visualization system that allows users to explore graphs by viewing them as a succession of spanning trees selected interactively, (2) a radial graph layout algorithm, and (3) an animation algorithm that generates meaningful visualizations and smooth transitions between graphs while minimizing edge crossings during transitions and in static layouts. Our system is similar to the radial layout system of Yee et al. (2001), but differs primarily in that each node is positioned on a coordinate system centered on its own parent rather than on a single coordinate system for all nodes. Our system is thus easy to define recursively and lends itself to parallelization. It also guarantees that layouts have many nice properties, such as: it guarantees certain edges never cross during an animation. We compared the layouts and transitions produced by our algorithms to those produced by Yee et al. Results from several experiments indicate that our system produces fewer edge crossings during transitions between graph drawings, and that the transitions more often involve changes in local scaling rather than structure. These findings suggest the system has promise as an interactive graph exploration tool in a variety of settings
    corecore