21,391 research outputs found

    Convolutional Kernel Networks

    Get PDF
    An important goal in visual recognition is to devise image representations that are invariant to particular transformations. In this paper, we address this goal with a new type of convolutional neural network (CNN) whose invariance is encoded by a reproducing kernel. Unlike traditional approaches where neural networks are learned either to represent data or for solving a classification task, our network learns to approximate the kernel feature map on training data. Such an approach enjoys several benefits over classical ones. First, by teaching CNNs to be invariant, we obtain simple network architectures that achieve a similar accuracy to more complex ones, while being easy to train and robust to overfitting. Second, we bridge a gap between the neural network literature and kernels, which are natural tools to model invariance. We evaluate our methodology on visual recognition tasks where CNNs have proven to perform well, e.g., digit recognition with the MNIST dataset, and the more challenging CIFAR-10 and STL-10 datasets, where our accuracy is competitive with the state of the art.Comment: appears in Advances in Neural Information Processing Systems (NIPS), Dec 2014, Montreal, Canada, http://nips.c

    MuxViz: A Tool for Multilayer Analysis and Visualization of Networks

    Full text link
    Multilayer relationships among entities and information about entities must be accompanied by the means to analyze, visualize, and obtain insights from such data. We present open-source software (muxViz) that contains a collection of algorithms for the analysis of multilayer networks, which are an important way to represent a large variety of complex systems throughout science and engineering. We demonstrate the ability of muxViz to analyze and interactively visualize multilayer data using empirical genetic, neuronal, and transportation networks. Our software is available at https://github.com/manlius/muxViz.Comment: 18 pages, 10 figures (text of the accepted manuscript

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage

    Bayesian nonparametric sparse VAR models

    Get PDF
    High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.Comment: Forthcoming in "Journal of Econometrics" ---- Revised Version of the paper "Bayesian nonparametric Seemingly Unrelated Regression Models" ---- Supplementary Material available on reques
    • …
    corecore