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a b s t r a c t

High dimensional vector autoregressive (VAR) models require a large number of parame-
ters to be estimated and may suffer of inferential problems. We propose a new Bayesian
nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can
improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes
overparametrization and overfitting issues by clustering the VAR coefficients into groups
and by shrinking the coefficients of each group toward a common location. Clustering
and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction
of causal networks from time series, since they account for some stylized facts in real-
world networks, which are sparsity, communities structures and heterogeneity in the
edges intensity. In order to fully capture the richness of the data and to achieve a better
understanding of financial and macroeconomic risk, it is therefore crucial that the model
used to extract network accounts for these stylized facts.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, high dimensional models and large datasets have increased their importance in economics (e.g., see
Scott and Varian, 2014) and finance. In macroeconomics, some authors investigate the use of large datasets (between 10
and 170 series) to improve forecasts (e.g., see Banbura et al., 2010; Stock and Watson, 2012; Koop, 2013; Carriero et al.,
2015; McCracken and Ng, 2016; Kaufmann and Schumacher, 2017), while in finance, large datasets (between 10 and
200 series) have been used to analyse financial crises, contagion effects and their impact on the real economy (e.g., see
Brownlees and Engle, 2016; Barigozzi and Brownlees, 2018).1 Moreover, the level of interaction, or connectedness,
between financial institutions represents a powerful tool in monitoring financial stability (e.g., see Diebold and Yilmaz,
2015; Scott, 2016), whereas measuring interdependence in business cycles and in financial markets (Diebold and Yilmaz,
2014; Demirer et al., 2018) is essential in pursuing economic stability. Making inference on dependence structures in large
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sets of time series and representing them as graphs (or networks) becomes a relevant and challenging issue in financial
and macroeconomic risk measurement (e.g., see Billio et al., 2012; Diebold and Yilmaz, 2015, 2016; Bianchi et al., 2018).

For forecasting economic variables and analysing their dynamic properties and causal structure, vector autoregressive
(VAR) models have been widely used. In order to avoid overparametrization and overfitting issues, Bayesian inference
and suitable classes of prior distributions have been successfully used for VARs (e.g., see Litterman, 1986; Doan et al.,
1984; Sims and Zha, 1998) and for panel VARs (Canova and Ciccarelli, 2004).2 Nevertheless, these prior distributions
may be not effective when dealing with very large VAR models. Thus, new prior distributions have been proposed to
deal with zero restrictions in VAR parameters. George et al. (2008) introduce Stochastic Search Variable Selection (SSVS)
based on spike-and-slab prior distribution. SSVS has been extended in many directions (e.g., see Korobilis, 2013; Koop and
Korobilis, 2016; Korobilis, 2016). Wang (2010), Ahelgebey et al. (2016a,b) propose graphical VAR relying on graphical prior
distributions. Gefang (2014) proposes Bayesian Lasso based on doubly adaptive elastic-net prior. We thus propose a new
Bayesian nonparametric (BNP) prior distributions for VARs, which can improve both estimation efficiency and prediction
accuracy, thanks to the combination of two types of restrictions, called clustering and shrinking effects.

Our BNP Lasso prior distribution (BNP-Lasso) groups the VAR coefficients into clusters and shrinks the coefficients
within a cluster toward a common location. The shrinking effects are due to the Lasso-type distribution at the first stage
of the hierarchy. The Bayesian Lasso prior allows for reformulating the Bayesian VAR model as a penalized regression (see
Park and Casella, 2008) and is now a standard choice for inducing sparsity. This assumption and our inference procedure
can be easily modified to combine clustering effects with alternative shrinkage procedures such as adaptive Lasso (Huber
and Feldkircher, 2017) and adaptive elastic-net (Gefang, 2014).

The clustering effects of our approach are due to a Dirichlet process (DP) hyperprior at the second stage, which induces
a random partition of the parameter space. The attractive property of DP is that the number of clusters can be inferred
without being specified in advance as it happens in finite mixture modelling. A similar approach for finite mixture models
would be model averaging or model selection for the number of components, but it can be nontrivial to design efficient
MCMC samplers (e.g. Richardson and Green (1997)). Meanwhile, for DP there are relatively simple and flexible samplers
for posterior approximation (e.g. Kalli et al. (2011)). The DP prior is standard in BNP, but the assumption could be
replaced by more flexible clustering-inducing priors, such as the Pitman–Yor process prior (Pitman and Yor, 1997). In
the presentation of the model we introduce two further assumptions, namely a prior partition of the parameter space
and the use of conditionally independent and DP priors on each subspace. We envisage two advantages in using this
specification strategy: from a modelling perspective, it adds flexibility to the model since it allows for different degrees
of prior information in the blocks of parameters; from a computational perspective, it allows for breaking the posterior
simulation procedure into several steps overcoming the difficulties to deal with high dimensional parameter vectors. These
assumptions are not essential for the clustering and shrinking effects to appear, since the effects are given by the two-stage
structure of the hyper-prior and do not depend on the blocking strategy. Moreover, the independent DP assumptions can
be easily removed to allow for dependent clustering features as in beta-dependent Pitman–Yor prior (Bassetti et al., 2014;
Griffin and Steel, 2011). We leave these issues for future research.

Up to our knowledge, our paper is the first to provide sparse Bayesian nonparametric VAR models, and the proposed
prior distribution is general as it easily extends to other model classes, such as SUR models. In this sense, we contribute
to the literature on Bayesian nonparametrics (Ferguson (1973) and Lo (1984)) and its applications to time series (e.g., see
Hirano, 2002; Taddy and Kottas, 2009; Jensen and Maheu, 2010; Griffin and Steel, 2011; Di Lucca et al., 2013; Bassetti
et al., 2014; Nieto-Barajas and Quintana, 2016; Griffin and Kalli, 2018). See also Hjort et al. (2010) for a review. We
substantially improve Hirano (2002), Bassetti et al. (2014) and Griffin and Kalli (2018) by allowing for sparsity in their
nonparametric dynamic models and we extend MacLehose and Dunson (2010) by proposing vectors of dependent sparse
Dirichlet process priors. As regards to the posterior approximation, we develop a MCMC algorithm building on the slice
sampler introduced by Walker (2007), Kalli et al. (2011) and Hatjispyros et al. (2011) for vectors of dependent random
measures.

We also contribute to the literature on the analysis of economic and financial fluctuations through the lens of
networks (e.g., see Acemoglu et al., 2012, 2015) and the measures of risk connectedness (e.g., see Billio et al., 2012; Diebold
and Yilmaz, 2014; Demirer et al., 2018). Our BNP-Lasso VAR model is particularly well suited for extracting causal networks
from time series, since it allows for some features detected in many real-world networks, that are sparsity, communities or
blocks, and edge heterogeneity. For the first time, we extract causal networks with clustering effects in the edge intensity.
We use the posterior random partition induced by our BNP-Lasso prior to cluster the edge intensities into groups, which
allows for multilayer network representation (Kivelä et al., 2014) and thus for a better analysis of the network topology
and consequently of financial and macroeconomic connectedness. In the last years, there is an emerging literature based
on BNP for network analysis (see, e.g. Caron and Fox, 2017, and reference therein). Moreover, as evidenced in many papers
from the network literature, edge clustering is even more important to achieve a better description of the connectivity.
Our BNP-Lasso VAR allows for extracting edge clustering in a well founded inference context.

We find empirical evidence of strong heterogeneity across network edges and centrality heterogeneity of nodes
depending on their edge intensity levels. Finally, we also perform a comparison of our Bayesian nonparametric model
with alternative shrinkage approaches and give evidence of the best forecasting performance of our proposed prior.

2 See Karlsson (2013) for a comprehensive review.
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The paper is organized as follows. Section 2 introduces our sparse Bayesian VAR model. Section 3 presents posterior
approximation and network extraction methods. In Section 4, we present the applications to business cycle and realized
volatility datasets. Section 5 concludes.

2. A sparse Bayesian VAR model

2.1. VAR models

Let N be the number of units (e.g. countries, regions or micro studies) in a panel dataset and yi,t = (yi,1t , . . . , yi,mt )′
a vector of m variables available for the ith unit, with i = 1, . . . ,N . A panel VAR is defined as the system of regression
equations:

yi,t = bi +

N∑
j=1

p∑
l=1

Bijlyj,t−l + εi,t , t = 1, . . . , T and i = 1, . . . ,N, (1)

where bi = (bi,1, . . . , bi,m)′ the vector of constant terms and Bijl the (m × m) matrix of unit- and lag-specific coefficients.
We assume that εi,t = (εi,1t , . . . , εi,mt )′, are i.i.d. for t = 1, . . . , T , with Gaussian distribution Nm(0,Σi) and that
Cov(εi,t , εj,t ) = Σij. Eq. (1) can be written in the more compact form as

yi,t = Bixt + εi,t , i = 1, . . . ,N, (2)

where Bi = (bi, Bi,11, . . . , Bi,1p, . . . , Bi,N1, . . . , Bi,Np) is a (m× (1+Nmp)) matrix of coefficients and xt = (1, x1,t , . . . , xN,t )′
is the vector of lagged variables with xi,t = (yi,t−1, . . . , yi,t−p) for i = 1, . . . ,N .

The system of equations in (2) can be written in the SUR regression form:

yt =
(
INm ⊗ x′

t

)
β + εt , (3)

where β = vec(B), B = (B′

1, . . . , B
′

N ), ε′
t = (ε′

1t , . . . , ε
′

Nt ), ⊗ is the Kronecker product and vec(·) the column-wise
vectorization operator that stacks the columns of a matrix into a column vector (Magnus and Neudecker, 1999, pp. 31–32).

2.2. A BNP-Lasso prior assumption

The number of coefficients in (3) is n = Nm(1+Nmp), which can be large for high dimensional panel of time series. In
order to avoid overparameterization, unstable predictions and overfitting problem, we follow a hierarchical specification
strategy for the prior distributions (e.g., Canova and Ciccarelli (2004), Kaufmann (2010), Bassetti et al. (2014)). Some
classes of hierarchical prior distributions are used to incorporate interdependences across groups of parameters with
various degrees of information pooling (see Karlsson, 2013, for a review). Other classes of priors (e.g., MacLehose and
Dunson (2010), Wang (2010), Bianchi et al. (2018)) are used to induce sparsity. Our new class of hierarchical priors for
the VAR coefficients β combines sparsity and information pooling within groups of coefficients.

We assume that β can be exogenously partitioned in M blocks, βi = (βi1, . . . , βini ), i = 1, . . . ,M . In our empirical
applications, blocks correspond to the VAR coefficients at different lags. This assumption is not essential to appear in
our prior for the sparsity and information pooling. Nevertheless, we envisage two advantages in using this specification
strategy. From a modelling perspective, it adds flexibility to the model since it allows for different degrees of prior
information in the blocks of parameters. For example, lag-specific shrinking effects as in a Minnesota type prior, or
country-specific shrinking effects in panel VAR model can be easily introduced in our framework. From a computational
perspective, it allows for breaking the posterior simulation procedure into several steps overcoming the difficulties of
dealing with high dimensional parameter vectors.

For each block, we introduce shrinking effects by using a Bayesian-Lasso prior fi(βi) =
∏ni

j=1 NG(βij|µ, γ , τ ), where:

NG(β|µ, γ , τ ) =

∫
+∞

0
N (β|µ, λ)Ga(λ|γ , τ/2)dλ, (4)

is the normal–gamma distribution with µ, γ and τ , the location, shape and scale parameter, respectively (see Appendix A).
The normal–gamma distribution induces shrinkage toward the prior mean of µ. In Bayesian Lasso (Park and Casella, 2008),
µ is set equal to zero. We extend the Lasso model by allowing for multiple location, shape and scale parameter such that:
fi(βi) =

∏ni
j=1 NG(βij|µ

∗

ij, γ
∗

ij , τ
∗

ij ), and reduce curse of dimensionality and overfitting by employing a Dirichlet process (DP)
as a prior for the normal–gamma parameters. More specifically, let θ∗

= (µ∗, γ ∗, τ ∗) be the normal–gamma parameter
vector, our BNP-Lasso prior for θ∗ and βi is

βij
ind
∼ NG(βij|θ

∗

ij), and θ∗

ij|Qi
i.i.d.
∼ Qi, (5)

with j = 1, . . . , ni, where Qi is a random measure.
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Following the strategy in Müller et al. (2004), Pennell and Dunson (2006), Hatjispyros et al. (2011), we assume Qi is a
convex combination of a common P0 and a block-specific Pi random measure, that is

Q1(dθ1) = π1P0(dθ1) + (1 − π1)P1(dθ1), (6)
...

QM (dθM ) = πMP0(dθM ) + (1 − πM )PM (dθM ).

The random measure P0 favours sparsity by shrinking coefficients toward zero, as in standard Bayesian Lasso, i.e.

P0(dθ) ∼ δ{(0,γ0,τ0)}(d(µ, γ , τ )), with (γ0, τ0) ∼ GS(γ0, τ0|ν0, p0, s0, n0), (7)

where δ{θ∗
}(θ) denotes the Dirac measure indicating that the random vector θ has a degenerate distribution with mass at

the location θ∗, and GS(γ , τ |ν, p, s, n) is a Gamma scale-shape distribution with parameters ν, p, s and n (see Appendix A).
The random measure, Pi, i > 0, is a DP prior (DPP), which induces a random partition of the parameter space and a

parameter clustering effect (see, Hirano (2002), Griffin and Steel (2011), Bassetti et al. (2014)), and shrinks coefficients
toward multiple non-zero locations, i.e.

Pi(dθ)
i.i.d.
∼ DPP(α̃,H), with H ∼ N (µ|c, d) · GS(γ , τ |ν1, p1, s1, n1), (8)

where α̃ and H are the DPP concentration parameter and base measure, respectively. See Appendix A for a definition of
DPP. For the mixing parameter πi, we assume a Beta distribution, πi

i.i.d.
∼ Be(πi|1, αi).

The amount of shrinkage in P0 and Pi is determined by the hyperparameters of GS(ν, p, s, n). In our empirical
application, we assume the hyperparameter values v0 = 30, s0 = 1/30, p0 = 0.5 and n0 = 18 for the sparse component
and v1 = 3, s1 = 1/3, p1 = 0.5 and n1 = 10 for the DPP component and αi = 1 for the mixing parameter, as in MacLehose
and Dunson (2010).

For the variance–covariance matrix Σ , we assume a graphical prior distribution as in Carvalho et al. (2007) and Wang
(2010), where the zero restrictions on the covariances are induced by a graph G, that is by an ordered pair of sets (NG, EG),
where NG is a vertex set and EG an edge set. Conditionally to a specified graph G, we assume a Hyper Inverse Wishart
prior distribution for Σ , that is:

Σ ∼ HIWG(b, L), (9)

where b and L are the degrees of freedom and scale hyperparameters, respectively. See Appendix A for further details on
Hyper Inverse Wishart distributions.

The prior over the graph structure is defined as a product of Bernoulli distributions with parameter ψ , which is the
probability of having an edge. That is, a m-node graph G = (NG, EG), has a prior probability:

p(G) ∝

∏
i,j

ψ eij (1 − ψ)(1−eij) = ψ |EG|(1 − ψ)κ−|EG|, (10)

with eij = 1 if (i, j) ∈ EG, where |NG| and |EG| are the cardinalities of the vertex and edge sets, respectively, κ =
(
|NG|

2

)
the

maximum number of edges. To induce sparsity we choose ψ = 2/(p − 1) which would provide a prior mode at p edges.
In summary, our hierarchical prior in Eq. (5)–(10) is represented through the Directed Acyclic Graph (DAG) in Fig. 1.

Shadow and empty circles indicate the observable and non-observable random variables, respectively. The directed arrows
show the causal dependence structure of the model. The left panel shows the priors for βi and Σ , which are the first stage
of the hierarchy. The second stage (right panel) involves the sparse dependent DP prior for the shrinking parameters µ,
γ and τ .

Our prior has the infinite mixture representation with a countably infinite number of clusters, which is one of the
appealing feature of BNP:

fi(βi|Qi) =

∞∑
k=0

w̌ikNG(βi|θ̌ik), (11)

where

w̌ik =

{
πi, k = 0,
(1 − πi)wik, k > 0, θ̌ik =

{
(0, γ0, τ0), k = 0,
(µik, γik, τik), k > 0.

See Appendix B for a proof. This representation shows that our prior not only shrinks coefficients to zero as in Bayesian
Lasso (Park and Casella, 2008) or Elastic-net (Zou and Hastie, 2005), but also induces a probabilistic clustering effect in
the parameter set as in other Bayesian nonparametric models (Hirano, 2002) and Bassetti et al. (2014).

Our prior places no bounds on the number of mixture components and can fit arbitrary complex distribution.
Nevertheless, since the mixture weights, wik’s, decrease exponentially quickly only a small number of clusters will be used
to model the data a priori. The prior number of clusters is a random variable with distribution driven by the concentration
parameter α̃. In our applications, we set α̃ = 1.
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Fig. 1. DAG of the Bayesian nonparametric model for inference on VARs. It exhibits the hierarchical structure of priors and hyperparameters. The
directed arrows show the causal dependence structure of the model. Left panel is related to the first stage of the hierarchy and right panel to the
second stage.

3. Posterior inference

3.1. Sampling method

Since the posterior distribution is not tractable, Bayesian estimator cannot be obtained analytically. In this paper, we
rely on simulation based inference methods, and develop a Gibbs sampler algorithm for approximating the posterior
distribution. For the sake of simplicity and without loss of generality, we shall describe the sampling strategy for the
two-block case, i.e. M = 2.

In order to develop a more efficient MCMC procedure, we follow a data augmentation approach. For each block i = 1, 2,
we introduce two sets of allocation variables, ξij, dij, j = 1, . . . , ni, a set of stick-breaking variables, vij, j = 1, 2, . . . and a
set of slice variables, uij, j = 1, . . . , ni. The allocation variable, ξij, selects the sparse component P0, when ξij is equal to zero
and the non-sparse component Pi, when it is equal to one. The second allocation variable, dij, selects the component of the
Dirichlet mixture Pi to which each single coefficient βij is allocated to. The sequence of stick-breaking variables defines
the mixture weights, whereas the slice variable, uij, allows us to deal with the infinite number of mixture components by
identifying a finite number of stick-breaking variables to be sampled and an upper bound for the allocation variables dij.

We demarginalize the Normal–Gamma distribution by introducing a latent variable λij for each βij and obtain the joint
posterior distribution

f (Θ,Σ,Λ,U,D, V ,Ξ |Y ) ∝

T∏
t=1

(2π |Σ |)−1/2 exp
(

−
1
2

(
yt − X ′

tβ
)′
Σ−1 (yt − X ′

tβ
))

·

n1∏
j=1

f1(β1j, λ1j, u1j, d1j, ξ1j)
n2∏
j=1

f2(β2j, λ2j, u2j, d2j, ξ2j) · (12)∏
k>1

Be(v1k|1, α)Be(v2k|1, α)HIWG(b, L)GS(γ0, τ0|ν0, p0, s0, n0)·∏
k>1

N (µ1k|c, d)GS(γ1k, τ1k|ν1, p1, s1, n1)N (µ2k|c, d)GS(γ2k, τ2k|ν1, p1, s1, n1),

where U = {uij : j = 1, 2, . . . , ni and i = 1, 2} and V = {vij : j = 1, 2, . . . and i = 1, 2} are the collections of slice
variables and stick-breaking components, respectively; D = {dij : j = 1, 2, . . . , ni and i = 1, 2} and Ξ = {ξij : j =

1, 2, . . . , ni and i = 1, 2} are the allocation variables; Θ = {(µ0, γ0, τ0), (µik, γik, τik) : i = 1, 2 and k = 1, 2, . . . } are the
atoms; π = (π1, π2) are the block-specific probabilities of shrinking coefficients to zero and

fi(βij, λij, uij, dij, ξij) =
(
I(uij < w̃dij )N (βij|0, λij)Ga(λij|γ0, τ0/2)

)1−ξij
·(

I(uij < widij )N (βij|µidij , λij)Ga(λij|γidij , τidij/2)
)ξij π1−ξij

i (1 − πi)ξij . (13)

See Appendix B for a derivation.
We obtain random samples from the posterior distributions by Gibbs sampling. The Gibbs sampler iterates over the

following steps using the conditional independence between variables as described in Appendix C:
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1. The slice and stick-breaking variables U and V are updated given [Θ,β,Σ,G,Λ,D,Ξ , π, Y ];
2. The latent scale variables Λ are updated given [Θ,β,Σ,G,U, V ,D,Ξ , π, Y ];
3. The parameters of the Normal–Gamma distribution Θ are updated given [β,Σ,G,Λ,U, V ,D,Ξ , π, Y ];
4. The coefficients β of the VAR model are updated given [Θ,Σ,G,Λ,U, V ,D,Ξ , π, Y ];
5. The matrix of variance–covariance Σ is updated given [Θ,β,G,Λ,U, V ,D,Ξ , π, Y ];
6. The graph G is updated given [Θ,β,Σ,Λ,U, V ,D,Ξ , π, Y ];
7. The allocation variables D and Ξ are updated given [Θ,β,Σ,G,Λ,U, V , π, Y ];
8. The probability, π , of shrinking-to-zero the coefficient is updated given [Θ,β,Σ,G,Λ,U, V ,D,Ξ , Y ].

3.2. Network extraction

Pairwise Granger causality has been used to extract linkages and networks describing relationships between variables
of interest, e.g. financial and macroeconomic linkages (Billio et al., 2012; Barigozzi and Brownlees, 2018). The pairwise
approach does not consider conditioning on relevant covariates thus generating spurious causality effects. The conditional
Granger approach includes relevant covariates, however the large number of variables relative to the number of data
points can lead to overparametrization and consequently to inefficiency in gauging the causal relationships (e.g., see
Ahelgebey et al., 2016a,b). Our BNP-Lasso can be used to extract the network while reducing overfitting and curse of
dimensionality problems. Also, it allows to define edge-coloured graphs, which account for various stylized facts recently
investigated in financial networks, such as the presence of communities, hubs and linkage heterogeneity.

For sake of simplicity, we consider one lag, one block of coefficients and one unit, i.e. M = 1, N = 1 and p = 1. We
denote with G = (V , E) the directed graph with vertex set V = {1, . . . ,m} and edge set E ⊂ V × V . A directed edge from
i to j is the ordered set {i, j} ∈ E with i, j ∈ V . The adjacency matrix A associated with G has (j, i)th element

aj,i =

{
1 if {i, j} ∈ E,
0 otherwise.

See Newman (2010) for an introduction to graph theory and network analysis and Jackson (2008) for an economic
perspective on networks.

A weighted graph is defined by the ordered triplet G = (V , E, C), where C is the weight matrix with (j, i)th element
ci,j representing the weight associated to the edge {i, j}. When ci,j belongs to a countable set, then G = (V , E, C) is called
edge coloured graph.

In time series graphs, causal networks encode the conditional independence structure of a multivariate process (Eichler,
2013). An edge {i, j} ∈ E exists if and only if the VAR coefficient Bji of the variable yi,t−1 in the equation of yj,t is not null.
An advantage in using BNP-Lasso VAR is that the inference procedure provides edge probabilities, edge weights and edge
partition as a natural output and graph uncertainty can be easily included in network analysis.

More specifically, we assume an edge from i to j exists, i.e. {i, j} ∈ E, if ξ̂1,g(i,j) = 0, where ξ̂1,g(i,j) is the Maximum
a Posterior (MAP) estimator of ξ1,g(i,j). The posterior clustering of the VAR coefficients allows us to define an edge
coloured graph G = (V , E, C). Following a standard procedure in BNP (e.g., see Bassetti et al., 2014), we use the MCMC
draws of the allocation variables d1i and d1j to approximate the posterior probabilities of joint classification of an edge
φij = P(d1i = d1j|Y , ξ1i = 0, ξ1j = 0),

φ̂ij =
1
H

H∑
h=1

δdh1i
(dh1j) (14)

and to find the posterior partition D̂, which minimizes the sum of squared deviations from the joint classification
probabilities, i.e.

D̂ = argmin
D∈{D1,...,DH }

m̃∑
i=1

m̃∑
j=1

(
δdh1i

(dh1j) − φ̂ij

)2
. (15)

The number of distinct elements K̂ in the partition D̂ provides an estimate of the number of edge intensity levels (colours).
The weight cji indicating the intensity of the edge {i, j} can be computed by using the location atom posterior mean, µ̂∗

kl,

cji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ̂∗

11 if d̂1,g(i,j) = 1 and ξ̂g(i,j),l = 0,
...

...

µ̂∗

1K̂
if d̂1,g(i,j) = K̂ and ξ̂1,g(i,j) = 0,

0 if ξ̂1,g(i,j) = 1.

(16)

Panel (a) in Fig. 2 provides an example of weighted network representation for a VAR(1) with m = 4 variables and K̂ = 2
intensity levels.
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Fig. 2. Weighted graphs with K̂ = 2 intensity levels: µ̂∗

1 = 0.1 (blue edges) and µ̂∗

2 = 0.3 (red edges). In each graph the node vi represents the
variable i in the 4-dimensional VAR(1), a clockwise-oriented edge from node j to node i represents a non-null coefficient for the variable yj,t−1 in
the ith equation of the VAR. Panel (a): weighted graph G = (V , E, C) (top) with vertex set V = {v1, v2, v3, v4}, edge set E = {e1, e2, e3, e4}, where
e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v3, v1}, e6 = {v4, v2}, e7 = {v4, v3} and the adjacency matrix A (middle) and the
weights matrix C (bottom). Panel (b): the subgraph G1 = (V , E1) with E1 = {e1, e6, e7} induced by edges of intensity level µ̂∗

1 = 0.3. Panel (c): the
subgraph G2 = (V , E2) with E2 = {e2, e3, e4, e5} induced by edges with intensity µ̂∗

2 = 0.3. Panel (d): graph with two communities (red V1 = {v1, v2}

and blue V2 = {v3, v4}). Panel (e): graph with a hub (node v1). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

A better understanding of the nodes centrality and of the risk connectedness can be achieved by exploiting the
information in the edge weights (e.g., see Bianchi et al., 2018). One can view the number of edges as more important
than the weights, so that the presence of many edges with any weight might be considered more important than the
total sum of edge weights. However, edges with large weights might be considered to have a much greater impact than
edges with only small weights (e.g., see Opsahl et al., 2010). BNP-Lasso VAR can be used to better analyse the contribution
of the weights to nodes centrality. The posterior partition of the edges (VAR coefficients) into a finite number of groups
allows us to represent G = (V , E, C) as a K̂ -multilayer graph G = (V , {Ek}K̂k=1, {Ck}

K̂
k=1), where the kth layer is the sub-graph

Gk = (V , Ek), with the set Ek = {{i, j} ∈ E; cij = µ̂∗

k} of all edges with intensity µ̂∗

k (see Kivelä et al. (2014)). Panels (b) and
(c) of Fig. 2 provide an example with two layers.

Node centrality and network connectivity can be now analysed exploiting the multilayer representation. The out-
degree, ω+

i , and weighted out-degree (Opsahl et al., 2010), σ+

i , of the node i can be decomposed along the K̂ layers

ω+

i =

m∑
j=1

aji =

K̂∑
k=1

ω+

i,k, where ω+

i,k =

m∑
j=1

ajiI(cij = µ̂∗

k), (17)

σ+

i =

m∑
j=1

cji =

K̂∑
k=1

σ+

i,k =

K̂∑
k=1

µ̂∗

kω
+

i,k, where σ+

i,k =

m∑
j=1

cjiI(cij = µ̂∗

k). (18)

Similarly, it is possible to decompose the vertex in-degree and total-degree measures. These decompositions are useful
in quantifying the contribution of each node to the system-wide connectedness. In our financial and macroeconomic
applications, we find that nodes with large out-degree become less relevant when edge intensity is considered. To
exemplify, node v1 has the largest out-degree, ω+

1 = 3, in Panel (a), Fig. 2, but is not central in the layer G1 (Panel
(b)). In this layer node v1 has out-degree ω+

1,2 = 1 whereas node v4 has the largest out-degree ω+

4,2 = 2. Following the
weighted degree measure, node v4 is central in G and in G1 with out-degree, σ+

4 = 0.6 and σ+

4,1 = 0.6, respectively, but
it is not central in G2, where its degree is σ+

4,2 = 0.
The connectivity analysis presented above relies on the number of direct connections among nodes. In order to gain

a broader idea of the network connectivity patterns, indirect connections need to be considered. The notion of path sij
between two vertices i and j, called endvertices, accounts for the indirect connections between them. A path sij is defined
by ordered sequences of distinct vertices V (sij) = {v0, v1, . . . , vl} and edges E(sij) = {e1, . . . , el} ⊂ V , with e1 = (v0, v1),
el = {vl−1, vl}, and v0 = i and vl = j. The number of edges |E(sij)|= l in a path is called path length.

The distance between two nodes i and j is defined as the length of the shortest path, i.e. d(i, j) = min{|E(sij)|, s.t. sij
is a path between i and j}. It can be used to define the d-step ego network of a node i ∈ E, that is a sub-graph of G
induced by i and all nodes with distance less than d from i, V (i) = {j ∈ E, s.t. d(i, j) ≤ d} and E(i) = {{i, j} ∈ E, s.t. i, j ∈
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V (i)} ∪ {{j, i} ∈ E, s.t. i, j ∈ V (i)}. In our empirical applications, ego-networks will be used to show the heterogeneity in
the linkages strength of a given node.

The distance is a local connectivity measure, which does not account for the whole interconnected topology, thus we
consider the average path length (APL), that is a global connectivity measure defined as

APL(G) =
1

m(m − 1)

m∑
i=1

m∑
j=1

d(i, j). (19)

A low APL may indicate a random graph structure of either Erdös–Rényi type or Watts–Strogatz type (see Newman (2010)).
APL assumes shocks follow the shortest possible path, but economic shocks are in general unlikely to be restricted to
follow specific paths and are also likely to have feedback effects.

A measure which accounts for all possible paths connecting two nodes is the eigenvector centrality (modified
Bonacich’s beta centrality, see Bianchi et al. (2018))

h(G) =

(
Im −

1
(m − 1)2

AA′

)−1 (
Im −

1
(m − 1)

A
)

ι, with ι = (1, . . . , 1)′. (20)

If a VAR of order p > 1 is used, then not only direct effects from yi,t−p to yj,t should be considered as in Granger causality,
but also indirect causal effects from yi,t−p to yj,t through yk,t−l, 1 < l < p, as in Sims causality (Eichler, 2013). Moreover,
VAR shocks can be correlated and their identification can be challenging in high dimension. In order to solve all these
issues, Diebold and Yilmaz (2014) propose a global connectivity measure, which relies on a generalized identification
framework and on the H-step ahead forecast error variance

Θ(G) =

m∑
i,j=1,i̸=j

H−1∑
h=0

(
e′

iΦhΣej
)2

mσjjci
, H = 1, 2, . . . , (21)

where ci is a normalizing constant and Φh satisfies the recursion Φh = B1Φh−1 + B2Φh−2 + · · · + BpΦh−p with Φ0 = Im
and Φh = Om for h < 0. The second and the third term of the decomposition

(
e′

iΦhΣej
)2

=

(
h−1∑
l=1

e′

iBlΦh−lΣej

)2

+ 2

(
h−1∑
l=1

e′

iBlΦh−lΣej

)(
e′

iBhΣej
)
+
(
e′

iBhΣej
)2 (22)

provide the contribution of the h-lag connectivity structure to the global measure. See Appendix B for a derivation. The
presence of nodes with large out-degree in the hth lag graph can impact significantly on the system-wide connectedness.
Both global measures will be used in combination with multilayer decomposition of the coloured graph.

Finally, other two useful notions are the ones of community and hub. Assume the vertex set V is partitioned in
a sequence of disjoint subsets V1, . . . , VK , then an element Vk of the partition is called community. An example of
community structured graph is in Panel (d) of Fig. 2. By construction, the partition of the nodes induces an edges partition
(e.g., communities V1 and V2 in Panel (d)). Since our BNP-Lasso prior allows for any type of partition of the edge set,
then typical community structures appearing in stochastic block models and modular graphs (see Newman, 2010) can be
extracted with our model. Panel (e) of Fig. 2 provides an example of hub, that is a node with a larger number of edges in
comparison with other nodes in the graph. Node v1 is an hub in the graph of Panel (e), since it has out-degree 3 whereas
the other nodes have null out-degree.

3.3. Simulation experiments

We study the goodness of fit of our model and, following the standard practice in BNP analysis (e.g., see Griffin and
Steel (2006), Griffin and Steel (2011), Griffin and Kalli (2018)), we simulate data from a parametric model, which is in the
family of the likelihood of our model. We consider a VAR(1) model

yt = Byt−1 + εt , εt
i.i.d.
∼ Nm(0,Σ) t = 1, . . . , 100,

where the matrix B represents the collection of pairwise relationships between the time series in the panel (i.e., countries
or institutions). A non-zero coefficient indicates there is a linkage between two nodes in the network.

We consider three dimension settings for yt (m = 20 (small), m = 40 (medium) and m = 80 (large)) and different
parameter settings. For each setting, we conduct 50 experiments, generating 50 independent datasets and estimating our
BNP-Lasso VAR model. In all the experiments, we have chosen the hyperparameters as in Section 2.2, and set the degree of
freedom parameter, b0 = 3 and the scale matrix, L = In. We iterate 5000 times the Gibbs sampler described in Section 3,
and after discarding a burn-in sample and applying thinning, we use the MCMC samples of Ξ to estimate the network
adjacency matrix and the samples of D to estimate the number of colours and classify the edge intensity. We provide in
Fig. 3 the typical causality network estimated in four experiments. See Supplementary Material for further results.

As one can see from Fig. 3, two experimental settings have been considered for B, which reflect two typical network
configurations detected in many empirical studies. The first setting represents a system which is robust to random
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Fig. 3. Weighted network estimated in four Monte Carlo experiments, for different model dimensions m = 20 (panel (a)), m = 40 (panel (b)) and
m = 80, with block entries (panel (c)) and with random entries (panel (d)). Blue edges mean negative weights and red ones represent positive
weights, while the edges are clockwise-oriented. In each graph the nodes represent the n variables of the VAR model, and a clockwise-oriented
edge from node j to node i represents a non-null coefficient for the variable yj,t−1 in the ith equation of the VAR. Blue edges represent negative
coefficients, while red edges represent positive coefficients. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

failures, but vulnerable to targeted attacks. We consider many nodes (financial institutions) with low degree, and a small
number of nodes, known as hubs (e.g. Barabási and Albert, 1999; Acemoglu et al., 2012), or systemically important
institutions (e.g. Billio et al., 2012; Battiston et al., 2012), with a number of linkages that exceeds the average. The
presence of hubs characterizes periods of high systemic risk and when the default of the largest institution (hubs) can
lead to the breakdown of the whole system. Hubs have been detected in the S&P100 return networks (e.g., Bianchi
et al., 2018) and in EuroStoxx-600 realized volatility networks (e.g., Ahelgebey et al., 2016b). Also, we assume nodes
cluster into groups internally densely connected with no connections among them. This feature is known as community
structure, or modularity (Newman, 2006; Leicht and Newman, 2008) and has been detected not only in financial-
return networks, but also in bank-firm (Bargigli and Gallegati, 2013), regional banks (Puliga et al., 2016) and inter-bank
market (De Souza et al., 2016), networks. The presence of communities structure is a relevant feature, since it can prevent
the spread of contagion to the whole system. The setting described corresponds to a block-diagonal matrix B with (4×4)
blocks Bj (j = 1, . . . ,m/4) on the main diagonal representing the communities, and i.i.d. elements within each block,
blk,j ∼ U(−1.4, 1.4), l, k = 1, . . . , 4. The matrix B is checked for the weak stationarity condition of the VAR.

The second setting represents a stable financial or economic condition, which reflects in a network with few
connections, randomly distributed across node pairs. This network configuration has been observed during periods of
low systemic risk. More specifically, we consider a random matrix B of dimension (80 × 80), select randomly 150
elements and draw their values from the uniform U(−1.4, 1.4). The remaining 6250 elements are set to zero. The matrix
generated is then checked for weak stationarity. In addition to the two settings previously described, we consider a VAR(4)
parametrized on the posterior mean of the macroeconomic application presented in Section 4. The network configuration
at each lag, given in Fig. 5, exhibits edge heterogeneity and hubs.

The burn-in period and the thinning rate have been chosen following a graphical dissection of the posterior progressive
averages and the standard convergence MCMC diagnostics. Table 1 shows the diagnostics averaged over 50 independent
experiments.

Since in a data augmentation framework, the mixing of the MCMC may depend on the autocorrelation in both
parameter and latent variable samples, we focus on λij, uij and βij. The diagnostic for λij, after removing 500 burn-in
iterations, indicates the chain has converged. The inefficiency factor and the autocorrelation at lag 10 on the original
sample suggest high levels of dependence in the sample, which can be mitigated by thinning the chains. We keep only
every 5th sample and obtain substantial reduction of sample autocorrelation. See Supplementary Material for further
details.
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Table 1
Geweke (CD) and Kolmogorov–Smirnov (KS) convergence test; inefficiency factor (INEFF)
and autocorrelation (ACF) computed at lag 10 for the L2 norm of λij for each experiments
on the whole (before) and thinned (after) MCMC samples. All quantities are averages over
50 independent experiments.

CD KS INEFF ACF(10)

before after before after

m = 20 −0.629 0.3667 13.5092 7.0346 0.1724 0.0188
m = 40 −1.197 0.002 21.3259 8.5001 0.3366 0.1334
m = 80 block −1.354 0.5806 20.1303 9.6897 0.3147 0.1229
m = 80 random 2.451 0.0158 17.6933 5.8095 0.267 0.0185

Fig. 4. Boxplot of Mean Square Deviation (MSD) of the estimated VAR coefficients from their true values based on 50 independent Monte Carlo
exercises for our Bayesian nonparametric model (BNP), Elastic-net (EN), Bayesian Lasso (BLA) and Stochastic Search Variable Selection (SSVS). On
each box, the central mark indicates the median, while the bottom and top edges of the box are the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme points and the outliers are plotted using ◦.

We compare our prior (BNP) with the Bayesian Lasso (B-Lasso, Park and Casella (2008)), the Elastic-net (EN, Zou
and Hastie (2005)) and Stochastic Search Variable Selection (SSVS) of George et al. (2008). For the SSVS, we assume
the default hyperparameters values τ 21 = 0.0001, τ 22 = 4 and π = 0.5. Following Korobilis (2016), we use the Mean
Square Deviation (MSD) for measuring the performance of the four different priors. See Supplementary Material for a
more detailed description. For each parameter setting we generate 50 independent datasets and estimate the models
under comparison. Fig. 4 shows the quartiles and median of the MSD statistics based on 50 Monte Carlo experiments
by means of box plots. In all settings, it is likely that the BNP-Lasso works better compared to other shrinkage methods
in recovering the true VAR coefficients since the interquartile ranges (i.e. the boxes) do not overlap. However, one can
better appreciate a superior relative performance of the BNP-Lasso when model dimension increases (from m = 20 (left)
to m = 80 (right)).

In our simulation results, the BNP-Lasso shrinking effect is a midway between SSVS and Bayesian Lasso. It is smaller
with respect to B-Lasso and Elastic-Net and comparable to SSVS when the true βij is nonnull and it is larger than SSVS
when βij = 0. The reduction in MSD is largely a result of decreased bias. The BNP-Lasso clustering effect tends to identify
the correct coefficient clustering reducing the bias. In the Supplementary Material, the comparison in other settings (Fig.
S.8-S.11) confirms our findings. Moreover, Fig. S.12 shows that all shrinkage methods are over-performing the Minnesota
prior, thus confirming the results given in Korobilis and Pettenuzzo (2019) for a VAR of dimension m = 20. Our findings
extend their results to higher dimensions (m = 40 and m = 80) and to other shrinkage methods (BNP-Lasso, Elastic-Net).
Also, we find that the performance of the Minnesota prior deteriorates when the model dimension increases.

4. Empirical applications

4.1. Measuring business cycle connectedness

Following the literature on international business cycles we consider a multi-country macroeconomic dataset (e.g., see
Kose et al., 2003; Francis et al., 2017; Kaufmann and Schumacher, 2017) and extract a network of linkages between the
cycles of the OECD countries, by applying BNP-Lasso VAR.

We consider the quarterly GDP growth rate (logarithmic first differences) from 1961:Q1 to 2015:Q2, for a total of
T = 215 observations. Due to missing values in some series, we choose a subset of high industrialized countries: Rest of
the World (Australia, Canada, Japan, Mexico, South Africa, Turkey, United States) and Europe (Austria, Belgium, Denmark,
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Fig. 5. Weighted Granger networks for the GDP growth rates of 25 OECD countries for the sample period 1961Q1 to 2015Q2. We consider different
lags: (a) t − 1, (b) t − 2, (c) t − 3, (d) t − 4. Node size indicates node degree, blue edges represent negative weights and red ones positive weights.
At the lag l, clockwise-oriented edge from node j to node i represents a non-null coefficient for the variable yj,t−l in the ith equation of the VAR.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Finland, France, Germany, Greece, Ireland, Iceland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, United Kingdom).

The posterior probability of a macroeconomic linkage is 0.13, which provides evidence of sparsity in the network and
indicates that a small proportion of linkages is responsible for connectedness in business cycle risk. The posterior number
of clusters and the co-clustering matrix (see Supplementary Material) reveals the existence of three levels of linkage
intensity, customarily called ‘‘negative’’, ‘‘positive’’ and ‘‘strong positive’’. Fig. 5 draws the coloured networks at different
time lags with negative (blue) and positive (red) weights. In a multilayer graph, each intensity level (or edge colour)
identifies the set of nodes and edges belonging to a specific layer. The network connectivity and nodes centrality can be
investigated either at the global level, or for each single layer.

The network topology analysis in Table 2 reveals a significant connectivity (graph density and average degree) and
complexity (average path length) at all lags. Consequently, each lag-specific network contributes to the build up of the
global connectedness as shown in Eq. (22). It becomes important to study the dynamical structure of the directional
connectedness received from other countries (in-degree) or transmitted to other countries (out-degree). The multilayer
analysis (coloured edges in Fig. 5 and Table 2) will be used to identify the countries, who mostly contribute at each lag
to the system-wide connectedness (Diebold and Yilmaz, 2014).

At the first two lags, core European countries (Austria, Belgium, Finland, France, Germany, Netherlands) are mainly re-
ceivers, whereas the periphery European countries (Greece, Ireland, Italy, Portugal, Spain) transmit the highest percentage
of shocks. In the other lags, core countries receive and transmit a high percentage of shocks.

Decomposing the degree by the intensity levels (see Eq. (17)), we see that the average degree at the first lag (2.92)
is mainly driven by positive and strong positive edge intensities (2.64). The 88% of the linkages provides a positive
contribution to the connectedness and originates from Japan (the central country) and European countries. The most
central country in the blue layer is the Netherlands, those negative linkages could contribute to reduce the total
connectedness.

At the second lag, the red and blue layers have similar average degree. Austria is central in the overall network
exhibiting both negative and positive linkages. Nevertheless, if one considers only positive linkages, the central country
is Greece.

At the third and the fourth lag, negative linkages prevail over positives. European countries have positive linkage
strength within them, thus contributing to a marginal increase of the total connectedness. A reduction of connectedness
comes from the negative linkages within rest-of-the-world countries and between them and European countries.
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Table 2
Statistics for single layers networks of the GDP growth networks of 25 OECD countries
for the sample period 1961Q1 to 2015Q2. The sub-graphs (layers) are induced by positive
(red) and negative (blue) edge intensity. The average path length represents the average
graph-distance between all pairs of nodes. Connected nodes have graph distance 1.

Links Avg degree Density Avg path length

t − 1 73 2.92 0.122 3.423
t − 1 blue 7 0.28 0.012 1.143
t − 1 red 66 2.64 0.11 2.587

t − 2 45 1.80 0.075 3.211
t − 2 blue 22 0.88 0.037 2.634
t − 2 red 23 0.92 0.038 2.033

t − 3 41 1.64 0.069 2.479
t − 3 blue 25 1.00 0.042 2.268
t − 3 red 16 0.64 0.027 1.667

t − 4 52 2.08 0.086 2.718
t − 4 blue 32 1.28 0.053 1.435
t − 4 red 20 0.80 0.033 1.791

In order to validate our model, we study its forecasting abilities. In the comparison in Supplementary Material, we find
that BNP-Lasso on this specific dataset over-performs Elastic-Net (EN), Bayesian Lasso (B-Lasso) and SSVS. These findings
suggest that the BNP-Lasso is useful not only for a better understanding of the connectedness but could also be employed
for forecasting purposes in macroeconomics (e.g. McCracken and Ng, 2016). Since forecasting is behind the scope of the
paper, we leave it for further research.

4.2. Risk connectedness in European financial markets

Based on the literature on risk connectedness among financial institutions and markets (see Hautsch et al. (2015)
and Diebold and Yilmaz (2014)), we construct daily realized volatilities using intraday high–low-close price indexes of 118
institutions of the Euro Stoxx 600 obtained from Datastream, from January 3, 2005 to September 19, 2014. The dataset
consists of 42 banks, 31 financial services, 31 insurance companies and 22 real estates from Austria, Belgium, Finland,
France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain. As in Ahelgebey et al. (2016b), we
build the realized volatility as RVt = 0.5 (logHt − log Lt)2 − (2 log 2 − 1) (log Ct − log Ct−1)

2, where Ht , Lt and Ct denote
the high, low and closing price of a given stock on day t , respectively and consider a VAR(1) model.

There is a strong evidence of sparsity with a probability of 0.16 of edge existence (Fig. 6). Based on the posterior number
of clusters, we identify five levels of linkage strengths, customarily called ’’negative’’ (blue), ’’weak positive’’ (green),
’’positive’’ (orange) and ’’strong positive’’ (red). Negative linkages imply some institutions react with a volatility decrease
to positive volatility shocks, thus reducing systemic risk. Top-left plot in Fig. 6 shows the coloured realized-volatility
network. The node size increases with the node eigenvector centrality, which is evaluated on the overall network without
accounting for the linkage intensity. We find that insurance companies and banks (e.g., AGEAS and Bank of Ireland) are
central and present different type of linkages (e.g., see AGEAS two-step ego network in the bottom plot). Also, a community
structure can be detected with some small communities of same countries banks, such as the one related to the Italy
(Monte dei Paschi and other Popular Banks) and Greece (Alpha Bank, National Bank of Greece, Bank of Piraeus).

Evaluating the node eigenvector centrality in the subgraphs of positive and strong positive linkages, we found that
also real estates sector is central (e.g. Immofiz, top-right plot). Our approach thus helps in better understanding the role
of financial institutions in the build-up of the systemic risk, revealing different aspects of their activity and in particular
for insurance and real estate industries.

5. Conclusions

This paper introduces a novel Bayesian nonparametric Lasso prior (BNP-Lasso) for VAR models, which combines
Dirichlet process and Bayesian Lasso priors. The two-stage hierarchical prior allows for clustering the VAR coefficients and
for shrinking them either toward zero or random locations, thus inducing sparsity in the VAR coefficients. The simulation
studies illustrate the good performance of our model in high dimension settings, compared to some existing priors, such
as the Stochastic Search Variable Selection, Elastic-net and simple Bayesian Lasso.

The BNP-Lasso VAR is well suited for extracting networks which account for some stylized facts observed in financial
and macroeconomic networks such as community structures and linkage heterogeneity. The linkages partition can be
easily obtained with the BNP-Lasso framework and the extraction of a coloured network allows for analysing the centrality
of the nodes in the intensity-specific subgraphs.

In the macroeconomic (financial) application, our BNP-Lasso VAR helps in understanding the centrality of countries
(institutions) and their role in the build-up of risk. In all applications, there is evidence of network sparsity and of different
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Fig. 6. Weighted financial networks of realized volatility for 118 financial institutions (nodes) of the EuroStoxx 600 from January 3, 2005 to September
19, 2014. We show the pairwise directed edges extracted with BNP-Lasso VAR(1). Edge colours indicate five levels of linkage strengths: ’’negative’’
(blue), ’’weak positive’’ (green), ’’positive’’ (orange) and ’’strong positive’’ (red). The edges are clockwise-oriented and the node size is based on the
node degree centrality (top-left) or eigenvector centrality (top-right). Bottom: AGEAS two-step ego network. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

levels of linkage intensity, meaning that few linkages could be responsible for the connectedness. We show evidence that
some nodes are central when the intensity level is considered, even if they are not central in the network. Also, few nodes
possess linkages with different intensities whereas most of the nodes have only one type of linkages.

Appendix A. Further details on prior specification

A.1. Normal–Gamma distribution

A normal–gamma random variable X ∼ NG(µ, γ , τ ) has probability density function

f (x|µ, γ , τ ) =
τ

2γ+1
4 |x − µ|

γ−
1
2

2γ−
1
2
√
πΓ (γ )

K
γ−

1
2
(
√
τ |x − µ|),

where Kγ (·) represents the modified Bessel function of the second kind with index γ , µ ∈ R is the location parameter,
γ > 0 is the shape parameter and τ > 0 is the scale parameter. The normal–gamma distribution has the double
exponential distribution as a special case for γ = 1 and can be represented as a scale mixture of normals,

NG(x|µ, γ , τ ) =

∫
+∞

0
N (x|µ, λ)Ga(λ|γ , τ/2)dλ, (A.1)

where Ga(·|a, b) denotes a gamma distribution with mean a/b and variance a/b2.

A.2. Gamma scale-shape distribution

A Gamma scale-shape random vector (X, Y ) ∼ GS(ν, p, s, n) has pdf

g(x, y|ν, p, s, n) ∝ τ νx−1px−1 exp{−sy}
1

Γ (x)n
, (A.2)
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Fig. A.1. Probability density function, g(x), for sparse (dashed line) and non-sparse (solid line) case, respectively.

with parameters ν > 0, p > 0, s > 0 and n > 0 (see Miller (1980)). The pdf in Eq. (A.2) factorizes as g(x, y) = g(y|x)g(x),
where

g(y|x) =
g(x, y)
g(x)

=
τ νx−1e−sy

Γ (νx)
sνx

that is a density of a Ga(νx, s), and

g(x) =

∫
∞

0
g(x, y)dy = C

Γ (νx)
Γ (x)n

px−1

sνx

is the marginal density with normalizing constant C such that
∫

∞

0 g(x)dx = 1. We show in Fig. A.1 the density function,
g(x), for the two parameter settings used in the empirical application: v = 30, s = 1/30, p = 0.5 and n = 18 (dashed
line) and v = 3, s = 1/3, p = 0.5 and n = 10 (solid line).

A.3. Hyper-inverse Wishart distribution

A Hyper-inverse Wishart random variable Σ ∼ HIWG(b, L) has pdf

p(Σ) =

∏
P∈P

p(ΣP )

(∏
S∈S

p(ΣS)

)−1

,

where S = {S1, . . . , SnS } and P = {P1, . . . , PnP } are the set of separators and of prime components, respectively, of the
graph G. In particular, b is the degree of freedom, L is the scale matrix and

p(ΣP ) ∝ |ΣP |
−(b+2Card(P))/2exp

{
−

1
2
tr(Σ−1

P LP )
}
,

with LP the positive-definite symmetric diagonal block of L corresponding to ΣP .

A.4. Dirichlet process prior

The Dirichlet Process, DP(α̃,H), can be defined by using the stick-breaking representation (Sethuraman, 1994) given
by:

Pi(·) =

∞∑
j=1

wijδ{θij}(·), i = 1, . . . ,M.

Following the definition of the dependent stick-breaking processes (see MacEachern (1999, 2001)), the atoms θij are i.i.d.

sequences of random elements with probability distribution H (θij
i.i.d.
∼ H); and the weights wij are determined through

the stick-breaking construction, for j = 1, wi1 = vi1 and for j > 1

wij = vij

j−1∏
k=1

(1 − vik), i = 1, . . . ,M

with vj = (v1j, . . . , vMj) independent random variables taking values in [0, 1]M distributed as a Be(1, α̃) such that∑
j≥1wij = 1 almost surely for every i.
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Appendix B. Proof of the results in the paper

Proof of result in Eq. (11). Let K (βi|θi) be the joint density kernel of the sequence βij
ind
∼ NG(βij|θ

∗

ij), j = 1, . . . , ni and

θ∗

ij|Qi
i.i.d.
∼ Qi, the atoms of the random probability measure Qi. Let fi(βi|Qi) be the random probability density function

obtained by integrating out the random measure Qi (Lo, 1984):

fi(βi|Qi) =

∫
K (βi|θi)Qi(dθi). (B.1)

Using the definition of Qi as a convex combination of a sparse component and a DPP in Eq. (B.1), we obtain

fi(βi|Qi) = πi

∫
K (βi|θi)P0(dθi) + (1 − πi)

∫
K (βi|θi)Pi(dθi) (B.2)

We use the stick-breaking representation of the DPP (Appendix A) and get

fi(βi|Qi) = πi

∫
NG(βi|µ, γ, τ)P0(d(µ, γ, τ)) + (1 − πi)

∫
NG(βi|µ, γ, τ)Pi(d(µ, γ, τ))

= πiNG(βi|0, γ0, τ0) + (1 − πi)
∞∑
k=1

wikNG(βi|µik, γik, τik) (B.3)

By defining,

w̌ik =

{
πi, k = 0,
(1 − πi)wik, k > 0, θ̌ik =

{
(0, γ0, τ0), k = 0,
(µik, γik, τik), k > 0.

we have the infinite mixture representation

fi(βi|Qi) =

∞∑
k=0

w̌ikNG(βi|θ̌ik). □

Proof of result in Eq. (13). We introduce a set of slice latent variables, uij, j = 1, . . . , ni, which allows us to represent
the full conditional of βij as follows,

fi(βij, uij|(µi, γi, τi), wi) = πi

∞∑
k=0

I(uij < w̃ik)NG(βij|(0, γik, τik))+

+ (1 − πi)
∞∑
k=1

I(uij < wik)NG(βij|µik, γik, τik)

= πiI(uij < w̃0)NG(βij|(0, γ0, τ0)) + (1 − πi)
∞∑
k=1

I(uij < wik)NG(βij|µik, γik, τik),

where w̃ik = w̃0 = 1 if k = 0 and w̃ik = 0 for k > 0 and, for simplicity of notations, we denote (0, γi0, τi0) = (0, γ0, τ0).
The slice variables allow us to represent the infinite mixture as a finite mixture conditionally on a random number of

components. More specifically, define the set

Awi (uij) = {k : uij < wik}, j = 1, . . . , ni,

then it can be proved that the cardinality of Awi is almost surely finite. Posterior draws for uij are easily obtained by slice
sampling.

The conditional joint pdf for βij and uij, fi(βij, uij|(µi, γi, τi), wi), is equal to

πiI(uij < w̃0)NG(βij|0, γ0, τ0) + (1 − πi)
∑

k∈Awi (uij)

NG(βij|µik, γik, τik).

We iterate the data augmentation principle and for each fi we introduce two allocation variables ξij and dij, associated
with the sparse and non-sparse components, respectively, of the random measure Qi. The joint pdf is

fi(βij, uij, dij, ξij) =
(
πiI(uij < w̃dij )NG(βij|0, γ0, τ0)

)1−ξij
·(

(1 − πi)I(uij < wldij )NG(βij|µidij , γidij , τidij )
)ξij .
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From (4), we de-marginalize the Normal–Gamma distribution by introducing a latent variable λij for each βij and conclude
that the joint distribution is

fi(βij, λij, uij, dij, ξij) =
(
I(uij < w̃dij )N (βij|0, λij)Ga(λij|γ0, τ0/2)

)1−ξij
·(

I(uij < widij )N (βij|µidij , λij)Ga(λij|γidij , τidij/2)
)ξij π1−ξij

i (1 − πi)ξij . □

Proof of result in Eq. (22). For h ≤ p, Φh satisfies Φh = Rh + Bh, where Rh =
∑h−1

l=1 BlΦh−l. By the properties of the
Hadamard product ◦, it follows(

e′

iΦhΣej
)2

= e′

i

(
((Rh + Bh)Σ) ◦ ((Rh + Bh)Σ)

)
ej = e′

i ((RhΣ) ◦ (RhΣ)) ej
+ e′

i ((RhΣ) ◦ (BhΣ)) ej + e′

i ((BhΣ) ◦ (RhΣ)) ej + e′

i ((BhΣ) ◦ (BhΣ)) ej
=
(
e′

i (RhΣ) ej
)2

+ 2
(
e′

iRhΣej
) (

e′

iBhΣej
)
+
(
e′

iBhΣej
)2

□

Appendix C. Gibbs sampling details

We introduce for k ≥ 1 the set of indexes of the coefficients allocated to the kth mixture component, Dik = {j ∈

1, . . . , ni : dij = k, ξij = 1} and the set of the non-empty mixture components, D∗
= {k|∪iDik ̸= 0}. The number of stick-

breaking components is denoted by D∗
= maxi{maxj∈{1,...,ni} dij}. As noted by Kalli et al. (2011), the sampling of infinitely

many elements of Θ and V is not necessarily, since only the elements in the full conditional distributions of (D,Ξ ) are
needed and the maximum number is N∗

= maxi{N∗

i }, where N∗

i is the smallest integer such that
∑N∗

i
k=1wik > 1 − u∗

i ,
where u∗

i = min1≤j≤ni{uij}.

Update the stick-breaking and slice variables V and U
We treat V as three blocks: V ∗

= {Vk : k ∈ D∗
}, V ∗∗

= (vkD∗+1, . . . vkN∗ ) and V ∗∗∗
= {Vk : k > N∗

}. In order to sample
(U, V ), a further blocking is used:

(i) Sampling from the full conditional of V ∗, by using

f (vij|. . . ) ∝ Be

⎛⎝1 +

ni∑
j=1

I(dij = d, ξij = 1), α +

ni∑
j=1

I(dij > d, ξij = 1)

⎞⎠ .
for k ≤ D∗. The elements of (V ∗∗, V ∗∗∗) are sampled from the prior Be(1, α).

(ii) Sampling from full conditional posterior distribution of U

f (uij|. . . ) ∝

{
I(uij < w1dij )

ξij if ξij = 1,
I(uij < 1)1−ξij if ξij = 0,

Update the mixing parameters λ
Regarding the mixing parameters λij, the full conditional posterior distribution is

f (λij|. . . ) ∝ λ
Cij−1
ij exp

{
−

1
2

[
Aijλij +

Bij

λij

]}
∝ GiG(Aij, Bij, Cij),

where GiG denotes a Generalized Inverse Gaussian with Aij > 0, Bij > 0 and Cij ∈ R

Aij =
[
(1 − ξij)τ0 + ξijτidij

]
, Bij =

[
(1 − ξij)β2

ij + ξij(βij − µidij )
2] ,

Cij =

[
(1 − ξij)γ0 + γidijξij −

1
2

]
.

The matrix Λi = diag{λi} has the elements of λi = (λi1, . . . , λini )
′ on the diagonal.

Update the atoms Θ
We consider the sparse and the non-sparse case. In the sparse case, the full conditional distribution of µ0 is f (µ0|. . . ) =

δ{0}(µ0) and the full conditional distribution of (γ0, τ0) is:

f ((γ0, τ0)|. . . ) ∝ GS

⎛⎝γ0, τ0|ν0 +

M∑
i=1

ni,0, p0
M∏
i=1

∏
j|ξij=0

λij, s0 +
1
2

M∑
i=1

∑
j|ξij=0

λij, n0 +

M∑
i=1

ni,0

⎞⎠ ,
where we assume ni,0 =

∑ni
j=1(1 − ξij) = ni − ni,1 and ni,1 =

∑ni
j=1 ξij. In the non-sparse case, we generate samples

(µik, γik, τik), k = 1, . . . ,N∗, by applying a single move Gibbs sampler. The full conditional for µik is

f (µik|. . . ) ∝ N (µik|c, d)
∏

j|ξij=1,dij=k

N (βij|µik, λij) ∝ N (Ẽk, Ṽk)
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with Ẽk = Ṽk

(
c
d +

∑
j|ξij=1,dij=k

βij
λij

)
and Ṽk =

(
1
d +

∑
j|ξij=1,dij=k

1
λij

)−1
, the mean and variance, respectively. The joint

conditional posterior of (γik, τik) is:

f ((γik, τik)|. . . ) ∝ GS

⎛⎝γik, τik|ν1 + ni,1k, p1
∏

j|ξij=1,dij=k

λij, s1 +
1
2

∑
j|ξij=1,dij=k

λij, n1 + ni,1k

⎞⎠ ,
for k ∈ D∗, where ni,1k =

∑ni
j=1 ξijI(dij = k) and from the prior H for k /∈ D∗. In order to draw samples from GS in both

cases, we apply a collapsed Gibbs sampler. Samples from f (γ ) are obtained by a Metropolis–Hastings (MH) algorithm and
samples from f (τ |γ ) are obtained from a Gamma distribution.

Update the coefficients β
The full conditional posterior distribution of β is:

f (βi|. . . ) ∝ Nni (ṽi,Mi),

with mean ṽi = Mi
(∑

t X
′
tΣ

−1yt +Λ−1
i (µ∗

i ⊙ ξi)
)
and varianceMi =

(∑
t X

′
tΣ

−1Xt +Λ−1
i

)−1
; and µ∗

i = (µidi1 , . . . , µidini
)′,

ξi = (ξi1, . . . , ξini )
′.

Update the covariance matrix Σ
By using the sets S and P as described in Appendix A and a decomposable graph, the likelihood of the graphical

Gaussian model can be approximated as the ratio between the likelihood in the prime and in the separator components.
Thus, the posterior for Σ factorizes as follows:

p(Σ |. . . ) ∝ HIWG

(
b + T , L +

T∑
t=1

(yt − X ′

tβ)
′(yt − X ′

tβ)

)
.

Update the graph G
We apply a MCMC for multivariate graphical models for G (see Jones et al. (2005)) and due to prior independence

assumption,

p(y|G) =

∫∫ T∏
t=1

(2π )−n/2
|Σ |

−n/2exp
(

−
1
2
(yt − X ′

tβ)Σ
−1(yt − X ′

tβ)
)
p(β)p(Σ |G)dβdΣ .

Following Jones et al. (2005) we apply a local-move MH based on the conditional posterior p(G|. . . ) with an add/delete
edge move proposal.

Update the allocation variables D and Ξ
Sampling from the full conditional of D is obtained from

P(dij = d, ξij = 1|. . . ) ∝
(1 − πi)N (βij|µid, λij)Ga(λij|γid, τid/2)∑
k∈Awi (uij)

N (βij|µik, λij)Ga(λij|γik, τik/2)

in the non-sparse case for every d ∈ Awi (uij). While in the sparse case, from

P(dij = d, ξij = 0|. . . ) ∝ πiI(uij < w̃id), d ∈ Aw̃(uij)

where Aw̃(uij) = {k : uij < w̃k} = {0}, because w̃k = 0, ∀k > 0,

P(dij = d, ξij = 0|. . . ) ∝

{
πiI(uij < 1)N (βij|0, λij)Ga(λij|γ0, τ0/2) if d = 0,
0 if d > 0.

Update the prior restriction probabilities π
The full conditional for πi is,

f (πi|. . . ) ∝ Be

(
ni + 1 −

ni∑
i=1

I(ξii = 1), αi +

ni∑
i=1

I(ξii = 1)

)
.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.04.022.

https://doi.org/10.1016/j.jeconom.2019.04.022
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