112,808 research outputs found

    Is searching full text more effective than searching abstracts?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE<sup>® </sup>abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: <it>bm25 </it>and the ranking algorithm implemented in the open-source Lucene search engine.</p> <p>Results</p> <p>Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles.</p> <p>Conclusion</p> <p>Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations.</p

    Examining and improving the effectiveness of relevance feedback for retrieval of scanned text documents

    Get PDF
    Important legacy paper documents are digitized and collected in online accessible archives. This enables the preservation, sharing, and significantly the searching of these documents. The text contents of these document images can be transcribed automatically using OCR systems and then stored in an information retrieval system. However, OCR systems make errors in character recognition which have previously been shown to impact on document retrieval behaviour. In particular relevance feedback query-expansion methods, which are often effective for improving electronic text retrieval, are observed to be less reliable for retrieval of scanned document images. Our experimental examination of the effects of character recognition errors on an ad hoc OCR retrieval task demonstrates that, while baseline information retrieval can remain relatively unaffected by transcription errors, relevance feedback via query expansion becomes highly unstable. This paper examines the reason for this behaviour, and introduces novel modifications to standard relevance feedback methods. These methods are shown experimentally to improve the effectiveness of relevance feedback for errorful OCR transcriptions. The new methods combine similar recognised character strings based on term collection frequency and a string edit-distance measure. The techniques are domain independent and make no use of external resources such as dictionaries or training data

    An information-theoretic framework for semantic-multimedia retrieval

    Get PDF
    This article is set in the context of searching text and image repositories by keyword. We develop a unified probabilistic framework for text, image, and combined text and image retrieval that is based on the detection of keywords (concepts) using automated image annotation technology. Our framework is deeply rooted in information theory and lends itself to use with other media types. We estimate a statistical model in a multimodal feature space for each possible query keyword. The key element of our framework is to identify feature space transformations that make them comparable in complexity and density. We select the optimal multimodal feature space with a minimum description length criterion from a set of candidate feature spaces that are computed with the average-mutual-information criterion for the text part and hierarchical expectation maximization for the visual part of the data. We evaluate our approach in three retrieval experiments (only text retrieval, only image retrieval, and text combined with image retrieval), verify the framework’s low computational complexity, and compare with existing state-of-the-art ad-hoc models

    A Web Smart Space Framework for Intelligent Search Engines

    Get PDF
    A web smart space is an intelligent environment which has additional capability of searching the information smartly and efficiently. New advancements like dynamic web contents generation has increased the size of web repositories. Among so many modern software analysis requirements, one is to search information from the given repository. But useful information extraction is a troublesome hitch due to the multi-lingual; base of the web data collection. The issue of semantic based information searching has become a standoff due to the inconsistencies and variations in the characteristics of the data. In the accomplished research, a web smart space framework has been proposed which introduces front end processing for a search engine to make the information retrieval process more intelligent and accurate. In orthodox searching anatomies, searching is performed only by using pattern matching technique and consequently a large number of irrelevant results are generated. The projected framework has insightful ability to improve this drawback and returns efficient outcomes. Designed framework gets text input from the user in the form complete question, understands the input and generates the meanings. Search engine searches on the basis of the information provided

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops
    corecore