21,838 research outputs found

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    Supporting UK-wide e-clinical trials and studies

    Get PDF
    As clinical trials and epidemiological studies become increasingly large, covering wider (national) geographical areas and involving ever broader populations, the need to provide an information management infrastructure that can support such endeavours is essential. A wealth of clinical data now exists at varying levels of care (primary care, secondary care, etc.). Simple, secure access to such data would greatly benefit the key processes involved in clinical trials and epidemiological studies: patient recruitment, data collection and study management. The Grid paradigm provides one model for seamless access to such data and support of these processes. The VOTES project (Virtual Organisations for Trials and Epidemiological Studies) is a collaboration between several UK institutions to implement a generic framework that effectively leverages the available health-care information across the UK to support more efficient gathering and processing of trial information. The structure of the information available in the health-care domain in the UK itself varies broadly in-line with the national boundaries of the constituent states (England, Scotland, Wales and Northern Ireland). Technologies must address these political boundaries and the impact these boundaries have in terms of for example, information governance, policies, and of course large-scale heterogeneous distribution of the data sets themselves. This paper outlines the methodology in implementing the framework between three specific data sources that serve as useful case studies: Scottish data from the Scottish Care Information (SCI) Store data repository, data on the General Practice Research Database (GPRD) diabetes trial at Imperial College London, and benign prostate hypoplasia (BPH) data from the University of Nottingham. The design, implementation and wider research issues are discussed along with the technological challenges encountered in the project in the application of Grid technologies

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    Audit and Certification of Digital Repositories: Creating a Mandate for the Digital Curation Centre (DCC)

    Get PDF
    The article examines the issues surrounding the audit and certification of digital repositories in light of the work that the RLG/NARA Task Force did to draw up guidelines and the need for these guidelines to be validated.

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow

    Supporting the clinical trial recruitment process through the grid

    Get PDF
    Patient recruitment for clinical trials and studies is a large-scale task. To test a given drug for example, it is desirable that as large a pool of suitable candidates is used as possible to support reliable assessment of often moderate effects of the drugs. To make such a recruitment campaign successful, it is necessary to efficiently target the petitioning of these potential subjects. Because of the necessarily large numbers involved in such campaigns, this is a problem that naturally lends itself to the paradigm of Grid technology. However the accumulation and linkage of data sets across clinical domain boundaries poses challenges due to the sensitivity of the data involved that are atypical of other Grid domains. This includes handling the privacy and integrity of data, and importantly the process by which data can be collected and used, and ensuring for example that patient involvement and consent is dealt with appropriately throughout the clinical trials process. This paper describes a Grid infrastructure developed as part of the MRC funded VOTES project (Virtual Organisations for Trials and Epidemiological Studies) at the National e-Science Centre in Glasgow that supports these processes and the different security requirements specific to this domain

    Development of Grid e-Infrastructure in South-Eastern Europe

    Full text link
    Over the period of 6 years and three phases, the SEE-GRID programme has established a strong regional human network in the area of distributed scientific computing and has set up a powerful regional Grid infrastructure. It attracted a number of user communities and applications from diverse fields from countries throughout the South-Eastern Europe. From the infrastructure point view, the first project phase has established a pilot Grid infrastructure with more than 20 resource centers in 11 countries. During the subsequent two phases of the project, the infrastructure has grown to currently 55 resource centers with more than 6600 CPUs and 750 TBs of disk storage, distributed in 16 participating countries. Inclusion of new resource centers to the existing infrastructure, as well as a support to new user communities, has demanded setup of regionally distributed core services, development of new monitoring and operational tools, and close collaboration of all partner institution in managing such a complex infrastructure. In this paper we give an overview of the development and current status of SEE-GRID regional infrastructure and describe its transition to the NGI-based Grid model in EGI, with the strong SEE regional collaboration.Comment: 22 pages, 12 figures, 4 table
    • …
    corecore