37,268 research outputs found

    Toward automatic censorship detection in microblogs

    Full text link
    Social media is an area where users often experience censorship through a variety of means such as the restriction of search terms or active and retroactive deletion of messages. In this paper we examine the feasibility of automatically detecting censorship of microblogs. We use a network growing model to simulate discussion over a microblog follow network and compare two censorship strategies to simulate varying levels of message deletion. Using topological features extracted from the resulting graphs, a classifier is trained to detect whether or not a given communication graph has been censored. The results show that censorship detection is feasible under empirically measured levels of message deletion. The proposed framework can enable automated censorship measurement and tracking, which, when combined with aggregated citizen reports of censorship, can allow users to make informed decisions about online communication habits.Comment: 13 pages. Updated with example cascades figure and typo fixes. To appear at the International Workshop on Data Mining in Social Networks (PAKDD-SocNet) 201

    Disease spread over randomly switched large-scale networks

    Full text link
    In this paper we study disease spread over a randomly switched network, which is modeled by a stochastic switched differential equation based on the so called NN-intertwined model for disease spread over static networks. Assuming that all the edges of the network are independently switched, we present sufficient conditions for the convergence of infection probability to zero. Though the stability theory for switched linear systems can naively derive a necessary and sufficient condition for the convergence, the condition cannot be used for large-scale networks because, for a network with nn agents, it requires computing the maximum real eigenvalue of a matrix of size exponential in nn. On the other hand, our conditions that are based also on the spectral theory of random matrices can be checked by computing the maximum real eigenvalue of a matrix of size exactly nn

    Statistical clustering of temporal networks through a dynamic stochastic block model

    Get PDF
    Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within group connectivity behavior. We study identifiability of the model parameters, propose an inference procedure based on a variational expectation maximization algorithm as well as a model selection criterion to select for the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and compare our procedure with existing ones on synthetic datasets. We also illustrate our approach on dynamic contact networks, one of encounters among high school students and two others on animal interactions. An implementation of the method is available as a R package called dynsbm

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    Properties of Healthcare Teaming Networks as a Function of Network Construction Algorithms

    Full text link
    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other. Most healthcare service network models have been constructed from patient claims data, using billing claims to link patients with providers. The data sets can be quite large, making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks. To address this issue, we compared the properties of healthcare networks constructed using different algorithms and the 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We found that each algorithm produced networks with substantially different topological properties. Provider networks adhered to a power law, and organization networks to a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and greatly altered measures of vertex prominence such as the betweenness centrality. We identified patterns in the distance patients travel between network providers, and most strikingly between providers in the Northeast United States and Florida. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications for selecting the algorithm best suited to the type of analysis to be performed.Comment: With links to comprehensive, high resolution figures and networks via figshare.co

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure
    corecore