3,632 research outputs found

    Towards an Adaptive Skeleton Framework for Performance Portability

    Get PDF
    The proliferation of widely available, but very different, parallel architectures makes the ability to deliver good parallel performance on a range of architectures, or performance portability, highly desirable. Irregularly-parallel problems, where the number and size of tasks is unpredictable, are particularly challenging and require dynamic coordination. The paper outlines a novel approach to delivering portable parallel performance for irregularly parallel programs. The approach combines declarative parallelism with JIT technology, dynamic scheduling, and dynamic transformation. We present the design of an adaptive skeleton library, with a task graph implementation, JIT trace costing, and adaptive transformations. We outline the architecture of the protoype adaptive skeleton execution framework in Pycket, describing tasks, serialisation, and the current scheduler.We report a preliminary evaluation of the prototype framework using 4 micro-benchmarks and a small case study on two NUMA servers (24 and 96 cores) and a small cluster (17 hosts, 272 cores). Key results include Pycket delivering good sequential performance e.g. almost as fast as C for some benchmarks; good absolute speedups on all architectures (up to 120 on 128 cores for sumEuler); and that the adaptive transformations do improve performance

    Two Fundamental Concepts in Skeletal Parallel Programming

    Get PDF
    We define the concepts of nesting mode and interaction mode as they arise in the description of skeletal parallel programming systems. We sugegs

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU
    corecore