225,225 research outputs found

    Data Mining for Decision Support of the Quality Improvement Process

    Get PDF
    A two-stage methodology is presented for enhancing the process of assigning quality problems to quality improvement teams in industrial firms. The method advances the decision support system of the quality improvement process by grouping the related quality problems in two steps:. First, a soft grouping is performed using association rules as a data mining technique, and then, resulted groups are finalized by employing a costs minimization model. Moreover, to find the optimal groups, a mathematical programming language is used. Results show that this methodology is beneficial and attractive in making the quality improvement process more efficient and in providing support to managerial decisions for creating quality improvement teams. As a practical illustration, the implementation of this methodology is investigated for an EDM fast hole drilling process

    Turning Logs into Lumber: Preprocessing Tasks in Process Mining

    Full text link
    Event logs are invaluable for conducting process mining projects, offering insights into process improvement and data-driven decision-making. However, data quality issues affect the correctness and trustworthiness of these insights, making preprocessing tasks a necessity. Despite the recognized importance, the execution of preprocessing tasks remains ad-hoc, lacking support. This paper presents a systematic literature review that establishes a comprehensive repository of preprocessing tasks and their usage in case studies. We identify six high-level and 20 low-level preprocessing tasks in case studies. Log filtering, transformation, and abstraction are commonly used, while log enriching, integration, and reduction are less frequent. These results can be considered a first step in contributing to more structured, transparent event log preprocessing, enhancing process mining reliability.Comment: Accepted by EdbA'23 workshop, co-located with ICPM 202

    Improving data preparation for the application of process mining

    Get PDF
    Immersed in what is already known as the fourth industrial revolution, automation and data exchange are taking on a particularly relevant role in complex environments, such as industrial manufacturing environments or logistics. This digitisation and transition to the Industry 4.0 paradigm is causing experts to start analysing business processes from other perspectives. Consequently, where management and business intelligence used to dominate, process mining appears as a link, trying to build a bridge between both disciplines to unite and improve them. This new perspective on process analysis helps to improve strategic decision making and competitive capabilities. Process mining brings together data and process perspectives in a single discipline that covers the entire spectrum of process management. Through process mining, and based on observations of their actual operations, organisations can understand the state of their operations, detect deviations, and improve their performance based on what they observe. In this way, process mining is an ally, occupying a large part of current academic and industrial research. However, although this discipline is receiving more and more attention, it presents severe application problems when it is implemented in real environments. The variety of input data in terms of form, content, semantics, and levels of abstraction makes the execution of process mining tasks in industry an iterative, tedious, and manual process, requiring multidisciplinary experts with extensive knowledge of the domain, process management, and data processing. Currently, although there are numerous academic proposals, there are no industrial solutions capable of automating these tasks. For this reason, in this thesis by compendium we address the problem of improving business processes in complex environments thanks to the study of the state-of-the-art and a set of proposals that improve relevant aspects in the life cycle of processes, from the creation of logs, log preparation, process quality assessment, and improvement of business processes. Firstly, for this thesis, a systematic study of the literature was carried out in order to gain an in-depth knowledge of the state-of-the-art in this field, as well as the different challenges faced by this discipline. This in-depth analysis has allowed us to detect a number of challenges that have not been addressed or received insufficient attention, of which three have been selected and presented as the objectives of this thesis. The first challenge is related to the assessment of the quality of input data, known as event logs, since the requeriment of the application of techniques for improving the event log must be based on the level of quality of the initial data, which is why this thesis presents a methodology and a set of metrics that support the expert in selecting which technique to apply to the data according to the quality estimation at each moment, another challenge obtained as a result of our analysis of the literature. Likewise, the use of a set of metrics to evaluate the quality of the resulting process models is also proposed, with the aim of assessing whether improvement in the quality of the input data has a direct impact on the final results. The second challenge identified is the need to improve the input data used in the analysis of business processes. As in any data-driven discipline, the quality of the results strongly depends on the quality of the input data, so the second challenge to be addressed is the improvement of the preparation of event logs. The contribution in this area is the application of natural language processing techniques to relabel activities from textual descriptions of process activities, as well as the application of clustering techniques to help simplify the results, generating more understandable models from a human point of view. Finally, the third challenge detected is related to the process optimisation, so we contribute with an approach for the optimisation of resources associated with business processes, which, through the inclusion of decision-making in the creation of flexible processes, enables significant cost reductions. Furthermore, all the proposals made in this thesis are validated and designed in collaboration with experts from different fields of industry and have been evaluated through real case studies in public and private projects in collaboration with the aeronautical industry and the logistics sector

    Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining

    Full text link
    [EN] In order to improve the efficiency and effectiveness of Emergency Rooms (ER), it is important to provide answers to frequently-posed questions regarding all relevant processes executed therein. Process mining provides different techniques and tools that help to obtain insights into the analyzed processes and help to answer these questions. However, ER experts require certain guidelines in order to carry out process mining effectively. This article proposes a number of solutions, including a classification of the frequently-posed questions about ER processes, a data reference model to guide the extraction of data from the information systems that support these processes and a question-driven methodology specific for ER. The applicability of the latter is illustrated by means of a case study of an ER service in Chile, in which ER experts were able to obtain a better understanding of how they were dealing with episodes related to specific pathologies, triage severity and patient discharge destinations.This project was partially funded by Fondecyt Grants 1150365 and 11130577 from the Chilean National Commission on Scientific and Technological Research (CONICYT), the Ph.D. Scholarship Program of CONICYT Chile (CONICYT-Doctorado Nacional/2014-63140180), the Ph.D. Scholarship Program of CONICIT Costa Rica and by Universidad de Costa Rica Professor Fellowships.Rojas, E.; Sepúlveda, M.; Munoz-Gama, J.; Capurro, D.; Traver Salcedo, V.; Fernández Llatas, C. (2017). Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining. Applied Sciences. 7(3):1-29. https://doi.org/10.3390/app7030302S12973Welch, S. J., Asplin, B. R., Stone-Griffith, S., Davidson, S. J., Augustine, J., & Schuur, J. (2011). Emergency Department Operational Metrics, Measures and Definitions: Results of the Second Performance Measures and Benchmarking Summit. Annals of Emergency Medicine, 58(1), 33-40. doi:10.1016/j.annemergmed.2010.08.040Jansen-Vullers, M., & Reijers, H. (2005). Business Process Redesign in Healthcare: Towards a Structured Approach. INFOR: Information Systems and Operational Research, 43(4), 321-339. doi:10.1080/03155986.2005.11732733Grol, R., & Grimshaw, J. (1999). Evidence-Based Implementation of Evidence-Based Medicine. The Joint Commission Journal on Quality Improvement, 25(10), 503-513. doi:10.1016/s1070-3241(16)30464-3Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Radnor, Z. J., Holweg, M., & Waring, J. (2012). Lean in healthcare: The unfilled promise? Social Science & Medicine, 74(3), 364-371. doi:10.1016/j.socscimed.2011.02.011Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Neumuth, T., Jannin, P., Schlomberg, J., Meixensberger, J., Wiedemann, P., & Burgert, O. (2010). Analysis of surgical intervention populations using generic surgical process models. International Journal of Computer Assisted Radiology and Surgery, 6(1), 59-71. doi:10.1007/s11548-010-0475-yFernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Basole, R. C., Braunstein, M. L., Kumar, V., Park, H., Kahng, M., Chau, D. H. (Polo), … Thompson, M. (2015). Understanding variations in pediatric asthma care processes in the emergency department using visual analytics. Journal of the American Medical Informatics Association, 22(2), 318-323. doi:10.1093/jamia/ocu016Suriadi, S., Andrews, R., ter Hofstede, A. H. M., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information Systems, 64, 132-150. doi:10.1016/j.is.2016.07.011De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Aalst, W. M. P. van der. (2005). Business alignment: using process mining as a tool for Delta analysis and conformance testing. Requirements Engineering, 10(3), 198-211. doi:10.1007/s00766-005-0001-xVan der Aalst, W., Adriansyah, A., & van Dongen, B. (2012). Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery, 2(2), 182-192. doi:10.1002/widm.1045Song, M., & van der Aalst, W. M. P. (2008). Towards comprehensive support for organizational mining. Decision Support Systems, 46(1), 300-317. doi:10.1016/j.dss.2008.07.00

    A conceptual analytics model for an outcome-driven quality management framework as part of professional healthcare education

    Get PDF
    BACKGROUND: Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. OBJECTIVE: The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. METHODS: A deductive case study approach was applied to develop the conceptual model. RESULTS: The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. CONCLUSIONS: The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach

    Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant

    Get PDF
    The energy efficiency of industrial plants is an important issue in any type of business but particularly in the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more as a means of reducing the amount of fuel that gets wasted, thereby improving productivity, ensuring better product quality, and generally increasing profits. This article describes a decision system developed for optimizing the energy efficiency of a petrochemical plant. The system has been developed after a data mining process of the parameters registered in the past. The designed system carries out an optimization process of the energy efficiency of the plant based on a combined algorithm that uses the following for obtaining a solution: On the one hand, the energy efficiency of the operation points occurred in the past and, on the other hand, a module of two neural networks to obtain new interpolated operation points. Besides, the work includes a previous discriminant analysis of the variables of the plant in order to select the parameters most important in the plant and to study the behavior of the energy efficiency index. This study also helped ensure an optimal training of the neural networks. The robustness of the system as well as its satisfactory results in the testing process (an average rise in the energy efficiency of around 7%, reaching, in some cases, up to 45%) have encouraged a consulting company (ALIATIS) to implement and to integrate the decision system as a pilot software in an SCADA

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    An intelligent recommendation system framework for student relationship management

    Get PDF
    In order to enhance student satisfaction, many services have been provided in order to meet student needs. A recommendation system is a significant service which can be used to assist students in several ways. This paper proposes a conceptual framework of an Intelligent Recommendation System in order to support Student Relationship Management (SRM) for a Thai private university. This article proposed the system architecture of an Intelligent Recommendation System (IRS) which aims to assist students to choose an appropriate course for their studies. Moreover, this study intends to compare different data mining techniques in various recommendation systems and to determine appropriate algorithms for the proposed electronic Intelligent Recommendation System (IRS). The IRS also aims to support Student Relationship Management (SRM) in the university. The IRS has been designed using data mining and artificial intelligent techniques such as clustering, association rule and classification
    corecore