3,329 research outputs found

    ATP: a Datacenter Approximate Transmission Protocol

    Full text link
    Many datacenter applications such as machine learning and streaming systems do not need the complete set of data to perform their computation. Current approximate applications in datacenters run on a reliable network layer like TCP. To improve performance, they either let sender select a subset of data and transmit them to the receiver or transmit all the data and let receiver drop some of them. These approaches are network oblivious and unnecessarily transmit more data, affecting both application runtime and network bandwidth usage. On the other hand, running approximate application on a lossy network with UDP cannot guarantee the accuracy of application computation. We propose to run approximate applications on a lossy network and to allow packet loss in a controlled manner. Specifically, we designed a new network protocol called Approximate Transmission Protocol, or ATP, for datacenter approximate applications. ATP opportunistically exploits available network bandwidth as much as possible, while performing a loss-based rate control algorithm to avoid bandwidth waste and re-transmission. It also ensures bandwidth fair sharing across flows and improves accurate applications' performance by leaving more switch buffer space to accurate flows. We evaluated ATP with both simulation and real implementation using two macro-benchmarks and two real applications, Apache Kafka and Flink. Our evaluation results show that ATP reduces application runtime by 13.9% to 74.6% compared to a TCP-based solution that drops packets at sender, and it improves accuracy by up to 94.0% compared to UDP

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Cold Storage Data Archives: More Than Just a Bunch of Tapes

    Full text link
    The abundance of available sensor and derived data from large scientific experiments, such as earth observation programs, radio astronomy sky surveys, and high-energy physics already exceeds the storage hardware globally fabricated per year. To that end, cold storage data archives are the---often overlooked---spearheads of modern big data analytics in scientific, data-intensive application domains. While high-performance data analytics has received much attention from the research community, the growing number of problems in designing and deploying cold storage archives has only received very little attention. In this paper, we take the first step towards bridging this gap in knowledge by presenting an analysis of four real-world cold storage archives from three different application domains. In doing so, we highlight (i) workload characteristics that differentiate these archives from traditional, performance-sensitive data analytics, (ii) design trade-offs involved in building cold storage systems for these archives, and (iii) deployment trade-offs with respect to migration to the public cloud. Based on our analysis, we discuss several other important research challenges that need to be addressed by the data management community
    • …
    corecore