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Abstract

Corporations such as insurance companies, postal companies and companies in the telecom world
benefit from having a good understanding of their business processes. Questions that often get
asked are: “How long will it take to complete this task?” and: “Will we finish this job before the
next fiscal quarter?” in addition to: “What part of our system is making the process slow?” To
answer these questions it is necessary to have a good understanding of what the bottlenecks in the
process are and it is necessary to have the ability to predict how long tasks in a process will take.
Luckily, many corporations store a large amount of digital data logs concerning historical process
information, which can be utilized to answer these questions. This work introduces the basis for
a novel approach based on process mining and queueing theory that focuses on using real-life
historical data of processes to find the bottlenecks in such processes and make predictions about
future instances of the processes. At the core of this approach are the day and week patterns of
real life business processes, which are used for making high quality predictions. The techniques
proposed have been implemented in ProM and were experimentally evaluated using both synthetic
and real-life event logs to demonstrate its applicability. The predictor and bottleneck finding
plugins are shown to be effective in both a lab and practical setting and have been published for
the community to use.

Keywords: Process mining, Queueing theory, Business processes, Real-life data
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Chapter 1

Introduction

This master thesis, completed as part of the Computer Science and Engineering master at Eind-
hoven University of Technology, is created within the Architecture of Information Systems (AIS)
group of the Mathematics and Computer Science department.

In this chapter the following topics are covered. In Section 1.1 the context in which this thesis
is written is presented along with a motivation of why the presented new approach is useful. Then,
the research goal of this work is presented in Section 1.2 and the scope of this research is given in
Section 1.3. Next, related work is presented in Section 1.4 and finally the outline for the coming
chapters is described in Section 1.5.

1.1 Thesis context

Corporations such as insurance companies, postal companies and companies in the telecom world
benefit from having a good understanding of their business processes. Questions that often get
asked are: “How long will it take to complete this task?” and: “Will we finish this job before the
next fiscal quarter?” in addition to: “What part of our system is making the process slow?” The
purpose of this work is to allow companies to use historical data to get an answer to these questions.
Often, business processes are supported by information systems such as Workflow Management
Systems or Enterprise Resource Planning systems. These systems allow for the collection and
storage of a large amount of detailed historical data concerning the tasks completed in business
processes. The proposed solution should analyze this data with the purpose of gaining insight
into the reality of business processes and the capability of predicting future events. Both can help
managers and analysts to get a better view of their process and provide operational support, i.e.:
to give supervisors of business processes insight in those processes to help decision making.

A new emerging type of data analysis techniques known as process mining [37] has been proven
very useful by offering new insights into business processes. Classical approaches in process mining
have already been successful at making predictions for and giving insight in processes, but have
limited potential. For that reason, a new approach is taken within the area, which is inspired by
queueing theory. Work in business processes often has queue-like behavior and for that reason it
makes sense to explore the possibilities extracting queue-based models from event logs and using
them as a means to provide operational support. This leads to the research goal of this thesis: How
to combine process mining and queueing theory to gain insights in the bottlenecks of a business
process and provide operational support.

9



1.2 Research goal

Operational support using process mining as a basis has become a popular topic [37, 39, 38].
A number of approaches that predict the future for running cases already exist. Most process
mining based techniques perform well in finding patterns in processes and other data, but often
ignore queueing behavior of humans in real life settings. On the other hand, queueing theory
based techniques perform well with respect to human behaviour, but do often take a very general
approach over all cases and do not consider fluctuations in the process or different contexts. The
purpose of this thesis is to extend these approaches with a novel one: using the strengths of both
queueing theory and process mining to provide operational support in a way that both real life
human behavior and real life patterns are taken advantage of. Patterns depending on relative time
and context information will be used to attempt improving previous results.

Operational support can be provided in a multitude of ways, e.g.: identifying bottlenecks,
predicting completion times and guiding or suggesting actions given some process state. This
approach focuses on identifying bottlenecks and predicting event and case completion times. The
approach to solve this problem is fitting queues on the most important bottlenecks of processes.
These queues can then be used to provide a more realistic view of how resources work, depending
on their context. For this approach the input is assumed to be an event log, i.e. a log of a number
of cases which contain a number of events executed within some process. The research question
of this thesis is as follows:

Research Question: Given an event log of a process, how can one combine queueing
theory and process mining to gain insights in the bottlenecks of the process and provide
operational support for the process?

This research question is split up into multiple smaller questions. The first goal is to find
relevant queues, given an event log. A queue is defined by resources and activities. The queues
with the biggest delays are the ones most interesting for analysis. Hence, the following sub-question
arises:

Sub-Question 1.2.1 Given an event log of a process, how can one find the most relevant queues
within this log, i.e.: the queues that cause the biggest delays in the process, in an automated way?

In addition to finding the main bottlenecks, it is necessary to find the characteristics of their
corresponding queues, e.g.: arrival rate, service rate, which resources can serve this queue and
how many actually serve it. This leads to the following sub-question:

Sub-Question 1.2.2 Given a bottleneck in a process, what are the essential characteristics of the
corresponding queue and how can these characteristics be derived in an automated way?

Then, given these bottlenecks and their characteristics, the question remains how to use this
information. Useful things to capture from these characteristics would be: Understanding the
bottlenecks better, predicting where delays and problems will occur given a process state and
suggesting improvements given a current process state. The final sub-question captures this:

Sub-Question 1.2.3 Given the characteristics of bottlenecks, how can one understand these bot-
tlenecks better, predict delays and problems given a current process state and suggest improvements
given a current process state?

Throughout this thesis these subquestions will be answered in detail. The next subsection will
focus on the scope in which these questions will be answered.
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Figure 1.1: Conceptual model of the global approach.

Queue Resources Activities Bottleneck factor
Queue 3 Henk, Anita Sort package 0.99
Queue 1 Nick, Katie Send package 0.71
Queue 2 Edward Inspect packages 0.60

Table 1.1: Example bottleneck identification results.

1.3 Research scope

To provide an answer for the research question stated in the previous subsection, an approach is
needed that allows an analyst to use an event log to create a queue collection, i.e.: A collection of
queues describing the process obtained by analyzing an event log. Then, an approach is needed to
use this queue collection to find bottlenecks in the process and to do predictions on future data.

In Figure 1.1 a high level overview of the suggested approach is shown. In practice, information
systems generate event logs of business processes, for example the process of delivering packages
of a postal company. A method needs to be devised to automatically derive a queue collection
from an event log, given a limited amount of user input. The method should be constructed in
such a way that an analyst can easily perform the conversion with only knowledge of the business
process and no need for extended knowledge of the techniques used. An example of a queue in such
a network is the department in a postal company that handles distribution of large packages to
different transport vehicles. Solving this problem provides an answer for Research Sub-Question
1.2.2 and will be discussed in Chapter 3.

Once a queue collection is obtained, it should be possible for an analyst to do two things. First,
the queues in the process, i.e. the clusters of resources and activities in some information system,
need to be analyzed such that the bottleneck queues can be identified, answering Research Sub-
Question 1.2.1. This should be done automatically and give an analyst insight in what the queues
are that produce the biggest delays in a process. For the example postal company a bottleneck
queue could be the department that has to process packages with unreadable addresses, since it
requires a lot of manual labor. An example result would be a ranking of bottlenecks over a set
of queues, as shown in Table 1.1. In this example, the queues are ranked on how much they are
a bottleneck for the system, Queue 3 being the biggest bottleneck. This problem and a possible
solution are discussed in detail in Section 4.3.

Secondly, it should be possible to do predictions based on a queue collection. I.e. it should be
possible to automatically predict how long an event (discussed in Section 4.1) or case (discussed in
Section 4.2) is going to take, given some information about that activity and the queue collection.
Operational support will then be provided in the form of a number of predicted values. An example
prediction output is shown in Table 1.2. In the case of a postal company, providing the user with
a good estimate of when their package will arrive is an application of these predictions. Solving
these two problems provides an answer to Research Sub-Question 1.2.3.
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Case ID Arrival time Predicted exit time
Case 1 25-09-2014, 13:53 29-09-2014, 11:23
Case 2 27-09-2014, 08:59 29-09-2014, 13:25
Case 3 30-09-2014, 17:30 05-10-2014, 10:11

Table 1.2: Example case duration prediction results.

1.4 Related work

In this section related work will be covered, starting with other process mining techniques. Then,
other work in the main areas of this thesis, namely operational support, time predictions and
performance analysis are discussed.

Process mining is a field that has been studied since the mid nineties by a number of groups.
Some of the initial research is summarized in Workflow mining: A survey of issues and ap-
proaches [43] by Van der Aalst et al. Early process mining techniques have been developed to
support multiple fields, including Workflow Management systems (WfMS) [1], business process
models [10] and software engineering processes [8]. More profound techniques were proposed by
Herbst [18].

In the last few years much research has been done on different novel process mining techniques.
While mining for a workflow pattern was introduced as early as 2004 by Van der Aalst et al. [38],
many other successful techniques have surfaced since then. These include, but are not limited to
the Heuristic miner [50] and Flexible Heuristic miner [49] bij Weijters et al., the Fuzzy miner [17]
by Günther et al., a genetic process mining approach by Medeiros et al. [29], a process mining
technique based in linear programming by Van der Werf et al. [45] and the Inductive Miner
by Leemans et al.[27]. A number of summarizing works and applications have also surfaced, for
example Discovery, Conformance and Enhancement of Business Processes [39], the Process mining
manifesto [37] by Van der Aalst et al. and a transition and region based solution by Van der Aalst
et al.[40]

The concept of queue mining has been approached from a different angle by Senderovich et
al. [36] around the same time as this thesis was developed. This approach shows much promise
on well-formed queue data and focuses more on queueing theory than the approach proposed in
this work. It does not, however, cover a general approach to deal with real life business process
logs. The approach of Senderovich et al. uses the assumption of knowing Effective Process Times
(EPT’s) or them being deducible in some way, to allow for clear measurements on how long
activities take waiting and being executed. More work on EPT’s is provided by Jansen et al. [23]
and Etman et al. [13]. In addition, Veeger et al.[47] introduced a queue and effective process
time in generating cycle time-throughput curves in a semiconductor fabrication setting, Jacobs et
al.[21] introduce a technique for finding operational time variability using EPT’s and Jacobs et
al.[22] present a paper on quantifying the variability of batching equipment using EPT’s. Even
though it would be very beneficial to have knowledge of EPT’s, the approach proposed in this
work assumes that EPT’s are not automatically deducible from a general event log.

The most important practical goal of this approach is to provide operational support for busi-
ness processes. Operational support has been provided by a multitude of approaches and angles,
this thesis included. A paper by Van der Aalst et al. [44] discusses how to provide assistance,
rather than guidance, in a case handling system, while a paper by Wynn et al. [53] discusses sim-
ulating of business processes from some intermediate state, rather than from scratch as a means
of operational support. In addition, Rozinat et al. [34] have discussed using past and current
state information of some process to predict near-future scenario’s. Practical applications have
been shown as well, one example being discussed in the paper by Bana et al. [3], which covers
operational support in improving the process at a textile plant in Brazil.
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This thesis covers doing time predictions based on a queue collection, yet other techniques in
the area of time predictions have been proposed. Van der Aalst et al. [41] discusses predicting
the completion times of running instances of a process, taking into account historical and present
data. Chen et al. [6] elaborates on how to use a fuzzy model to make completion time predictions
for the practical application of wafer fabrication. Chien et al. [7] introduce another approach that
uses historical and present time data to predict online travel times based on traffic. In addition,
a number of master theses have been written on the topic of time predictions, including the work
by Crooy [9] and the work by Schellekens [35]. In addition, work by Pika et al. [32] has shown
how to predict deadline transgressions using event logs.

One of the main strengths of this work is using time and context patterns from real life to
improve predictions. Other work in this area includes a paper by Eren et al.[12] which focuses on
providing running case predictions based on contextual information.

Performance analysis is a topic touched upon by doing bottleneck analysis and using it to find
which part of the process is the slowest. Performance analysis has been shown to be effective in
other contexts. Bolch et al. [4] propose an approach that uses queue collections for predicting
system performance before a system is put in operation. Wetzstein et al. [52] discuss a framework
for monitoring performance in Web Services Business Process Execution Language (WS-BPEL)
specified processes using machine learning.

1.5 Outline

In Chapter 2 the preliminaries are presented, most importantly the basics of process mining and
queueing theory used as a basis for the approach presented in this thesis. Next, Chapter 3 discusses
the methods for finding a queue collection that can serve as a predictor, which holds into account
the patterns of real life activities. The techniques used for predicting the completion times of
individual activities and complete traces are discussed in Chapter 4. Details on the realization of
the techniques mentioned in the two previous chapters are discussed in Chapter 5, after which the
experimental evaluation of those techniques and corresponding results are discussed in Chapter 6.
Finally, this thesis is wrapped up in Chapter 7 with a summary and the strengths and limitations
of the proposed approach in addition to a section describing possible future work in queue mining.
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Chapter 2

Preliminaries

Within this section, preliminary notions and concepts that are used for both conceptual techniques
and realization are explained. First, some general notation is introduced in Section 2.1. Then, in
Section 2.2 a short introduction in the area of queueing theory is given. Furthermore, the notion of
process mining is introduced in Section 2.3 and an in depth explanation is given on what an event
log is and what it is used for in Section 2.4. Finally, a number of tools used for the realization of
the approaches proposed in this thesis are introduced in Section 2.5.

2.1 Notation

To support the approaches presented in this work, the following notation is used:

• A multiset of items S = [a2, b, c3, ...] represents a set of items in which duplicates are allowed.
In this example the item a occurs twice, while c occurs three times.

• |S| for some set S indicates the number of elements in S.

• s ∈ S represents an element s from set S.

• L[i] for some (ordered) list L indicates the element at index i of the list L.

• S ‖ S′ for some strings S and S′ indicates the concatenation of these strings.

• max(S) denotes the maximum of values over some set S with comparable elements.

2.2 Queueing theory

Next to process mining, queueing theory is one of the areas that inspired the techniques presented
in this work. Queueing theory [15] is a theory first introduced by Agner Erlang [5] as early as
1909. The theory has been applied in many fields, including telecommunication and computer
science [30] and has been used for the design of many kinds of businesses, including factories and
hospitals [28]. Queueing systems have been a popular topic of research both for universities and
industry [2]. Queueing theory is often tied to operations research because one of queueing theory’s
main applications in practice is providing operational support for business decisions.

The most basic form of a queue is illustrated in Figure 2.1. Items arrive at the queue on the
left side with a mean arrival rate, i.e. the average amount of items arriving within some time
interval, which is denoted by λ. These then go into the queue which can be of any finite length,
for example the input conveyer belt of a sorting machine used for postal packages. Alternatively,
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µλ

Figure 2.1: Basic queue concept model.

µ = 6
λ = 10

c = 2

Figure 2.2: Basic queue example with steady state.

the queue size can be considered of infinite length. If an item arrives at a full queue, it will be
dropped. Once an activity works its way to the front of the queue, it gets removed from the queue
and some work will be done at a work station. The mean completion rate for this work, i.e. the
the average amount of items handled within some time interval, is denoted by µ. Items that are
being worked on are taken out of the queue, making room for new items. Items that are complete
leave the work station and are done.

Now a basic example will be shown of a single queue, for which the following assumptions
hold: there is no fluctuation in completion rate and arrival rate and there are no other external
factors influencing the system. Figure 2.2 shows such a queue which has a steady state system,
i.e.: the sojourn time for items stays the same over time. For such a steady state system, one can
analytically calculate a number of characteristics of this queue. The arrival rate λ = 10, the service
rate µ = 6 and the amount of servers c = 2. The system utilization is defined as the arrival rate
divided by the total service rate and is (c ·µ)/λ = 10/(2 ·6) = 0.833. The average amount of time a
work item spends in the system is defined by W = 1/(c ·µ−λ) = 1/(2 ·6−10) = 0.5. The average
amount of work items in the system is defined by Little’s law as: L = λ ·W = 10 · 0.5 = 5. The
average amount of time spent by a work item in the queue is defined by Wq = λ/(c ·µ)(c ·µ−λ) =
10/(12)(12 − 10) = 10/24 = 0.416. The average amount of work items in the queue is defined
as λ ∗Wq = 10 ∗ 0.416 = 4.16. Now consider the scenario with the same queue, but c = 1. The
system utilization is then equal to 10/6 = 1.67 > 1, which implies this system is broken, i.e.: the
queue will grow infinitely large and the work will never all be done. These calculations, however,
do not work on more complex real life models that are influenced by a large number of external
factors and often have no short term stability.

There are many aspects that are not covered in this simple model. For example, it is not made
explicit how items are taken from the queue, also known as the queueing discipline. Example
queueing disciplines are First In First Out (FIFO), Last In First Out (LIFO) or some scheme
where items with a higher priority are chosen first (For example, gold customers go before regular
customers). Another aspect is the amount of servers that help complete items from the queue.
There could be any number from one until an infinite number of servers for a queueing model.

The many different possible configurations of a queue have lead to a a standard notation to
describe a part of the configurations, called Kendall’s notation [25]. Kendall’s notation works as
follows: using the form A/S/c, A denotes the arrival process, which can for example conform
to a Poisson distribution. The service process is denoted by S, which indicates the service time
distribution, for example defined by a Normal distribution or a Poisson distribution. The c denotes
the amount of servers working in the queue. An example notation would be M/M/1, where
both M’s denotes a Markovian chain Poisson process. Arrival and service times are negative
exponentially distributed, the number of times that activities arrive and that they are serviced in
some period are Poisson distributed. The amount of servers is one.
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There also exists an extended version of Kendall’s notation including the queue capacity,
queueing discipline and amount of items to be handled. The extended notation is denoted as
A/S/c/K/N/D, where A, S and c are the same as in the previous notation. The queue capacity,
i.e.: the amount of items that can be in the queue before others are dropped, is indicated by K.
The total amount of items that has to be handled is denoted by N, which can be any positive
number. Finally, D indicates the queueing discipline, for example FIFO or LIFO.

A set of queues that form a bigger system is considered a queueing network. Items enter a
queueing network and then enter and leave a number of queues according to the queue specifications
and process flow, until the entire process for such items is completed. Different kinds of queueing
network have been proposed, for example Jackson networks [20] and G-Networks [14].

The typical assumptions stated for the simple queue example and often also made for more
complex queues are not valid in real life and as such it is not possible to analytically solve problems
this way. First, the assumption of having a constant arrival rate is false. Consider looking at a
normal workweek for a company where employees work from 9:00 to 17:00, the arrival rate at 10:00
will be vastly different from that at 03:00. Similarly, the service rate will be unstable over the day
and week. For example, at a Sunday, the service rate will be a lot lower than at Tuesday morning.
Finally, the assumption of a steady state is also unsafe. When running a postal office, the queue
of work around the Christmas periods will most probably build up as well as the average sojourn
times for deliveries, while afterwards these will go down again.

In addition to these assumptions, factors such as the context in which a process is or the
availability of fluctuations in how hard servers work or how much servers are present at all, make
it impractical to use a classical queueing model. Because the standard assumptions for queues do
not hold in this approach, a queue collection consisting of G/G/inf queues (Kendall’s notation) is
extracted, where G indicates any distribution.

2.3 Process mining

The techniques described in this thesis are inspired by queueing theory and process mining. The
latter will be introduced in this section. Process mining is, in short, “a set of techniques to discover,
monitor and improve real processes (i.e., not assumed processes) by extracting knowledge from
event logs” [37].

Process mining is part of a larger scope, as seen in Figure 2.3. Information systems are, as
noted before, used to support and control a real life process. The actions performed in real life
that pass through the information system are logged as historical and present data in event logs,
also denoted as provenance. Event logs are the basis of process mining and serve as a means for
creating models describing the real life situation, denoted as cartography. In addition, models
created using event logs can be used to gain insight in the log, also denoted as navigation. Finally,
one could compare man-made models (de juro) and models crated by some cartography technique
(de facto) to understand the difference between the designed model and the actual situation. The
methods proposed in this thesis fit in the cartography and navigation parts of the process mining
scope, or more precise: they fit into discover, predict and explore.

2.4 Event log

Business processes are often supported by information systems. These information systems most
likely provide logging functionality that produces event logs. An explanation of the context of
event logs is given in Section 2.3. This section will focus on introducing the abstract and formal
basics of what an event log is and how they can be used in process mining and queue mining.
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Figure 2.3: Process mining scope.
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Activities executed inside a process are the basis for process mining techniques, as they rep-
resent an activity being done within a business process. As such, it is necessary to give an exact
definition of what an activity is.

Definition 2.4.1 Event, Attribute Let E be the event universe, i.e., the set of all possible
event identifiers. Events may be characterized by various attributes, e.g., an event may have a
timestamp, correspond to an activity, is executed by a particular person, has associated costs, etc.
Let AN be a set of attribute names. For any event e ∈ E and name n ∈ AN : ATTn(e) is the
value of attribute n for event e. If event e does not have an attribute named n, then ATTn(e) = ⊥
(null value).

For convenience, the following standard attributes are assumed:

• ATTtype(e) is the activity associated to event e.

• ATTtime(e) is the timestamp of event e.

• ATTres(e) is the resource of event e.

• ATTcontext(e) is the context in which event e exists.

An example of an event would be as follows: Say that for an event with activity ATTtype(e) =“Send
package” we have the following additional attributes: the timestamp ATTtime(Sendpackage) =
the 26th of August 2014 at 22:35 and the resource ATTres(Sendpackage) = “Henk”. That means
that event describes a package being sent on the 26th of August 2014 at 22:35 by a resource named
Henk. The context of sending this package is left unknown, i.e.: ATTcontext(Sendpackage) = ⊥.
In addition to formalizing a single activity, it is also preferable to have some notion of a case and
an entire event log of activities, i.e.: a single execution of a process.

Definition 2.4.2 (Case, trace, event log) Let C be the case universe, i.e., the set of all possible
case identifiers and let AN be a set of attribute names. Cases, like events, have attributes. For any
case c ∈ C and name n ∈ AN : ATTn(c) is the value of attribute n for case c (ATTn(c) = ⊥ if case
c has no attribute named n). Each case has a special mandatory attribute trace: ATTtrace(c) ∈ E∗.
It is assumed ATTtrace(c) 6= 〈〉, i.e., traces in a log contain at least one event. trace is a finite
sequence of events σ ∈ E∗ such that each event appears only once, i.e., for 1 ≤ i < j ≤ |σ| : σ(i) 6=
σ(j). An event log is a set of cases L ⊆ C such that each event appears at most once in the entire
log, i.e., for any c1, c2 ∈ L such that c1 6= c2 : ∂set(ATTtrace(c1)) ∩ ∂set(ATTtrace(c2)) = ∅. If
an event log contains timestamps, then the ordering in a trace should respect these timestamps,
i.e., for any c ∈ L, i and j such that 1 ≤ i < j ≤ |ATTtrace(c)| : ATTtime(ATTtrace(c(i))) ≤
ATTtime(ATTtrace(c(j))).

So a case consists of a trace and some attributes, where the trace is a sequence of at least one
event which described a single process execution Say, for example, that the case with identifier
“HandlePackage” has a trace consisting of two activities, the first being the activity introduced as
an example for activity after Definition 2.4.1 and the second being as follows: The type would be
“Sort package”, the time would be the 26th of August 2014 at 22:10 and the resource would be
“Anita”. The trace would then consist of the activities “Sort package” and “Send package” in that
order, since they have to be ordered on timestamp non-decreasingly. Additionally, it is possible for
that trace to have attributes, such as a department code: ATTdept code(HandlePackage) = B100.
The set of all encountered process executions, also known as traces, is the event log. An example
of an event log, based on the examples in the definition of activities and traces is provided in Table
2.1.
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Trace id Activity Resource Timestamp ...
12324 Receive package Henk 14-02-2014 13:45 ...
12324 Sort package Henk 20-02-2014 19:42 ...
12324 Repackage Anita 20-02-2014 19:55 ...
12324 Send package Anita 21-02-2014 14:03 ...
12326 Receive package Henk 17-11-2014 15:12 ...
12326 Sort package Anita 19-11-2014 17:22 ...
12326 Send package Anita 21-11-2014 15:12 ...
... ... ... ... ...

Table 2.1: Example event log.

2.5 Supporting tools

In this section the tools supporting the research, development and experimental evaluation of this
thesis are touched upon. The tools and technologies used are ProM (Subsection 2.5.1), the XES
format (Subsection 2.5.2) and CPN Tools (Subsection 2.5.3).

2.5.1 ProM

The Process Mining framework ProM [42, 46] is used for the realization of the approaches proposed
in this thesis. This subsection will touch upon what ProM is and how it is used. ProM is a generic
open-source framework for implementing process mining tools in a standard environment. The
framework provides an easy access for researchers and analysts to many process mining oriented
techniques and helpful tools. ProM is easily extendable and allows researchers to implement new
techniques and share them. The current framework already offers a great variety of model types,
such as Petri Nets or Declare models and plugins such as the Alpha algorithm or the Fuzzy miner.
Additionally it provides convenient general functions such as importing, exporting and visualizing
data files. ProM is also able to handle the XES Event Log format (see next subsection) which
will be used as a basis for event logs. ProM 6.3 (“Salt”) was used for realizing process mining
techniques, importing event logs and exporting and visualizing results.

2.5.2 XES event log format

An important part of ProM is the ability to import and use the XES Event Log format1 and the
ability to use it in a large number of plugins. The XES format has been selected as the standard
format for event logs by the IEEE Task Force on process mining. The XES format is argued to
be an improved version of the XMXL format, as discussed by Verbeek et al. [48]. The plugins
designed for this thesis use the XES format for its input files. Figure 2.4 shows the metamodel
describing the XES standard. The metamodel is very similar to the formal model of a log given in
Subsection 2.4 and Definition 2.4.2: Events in the formal description are comparable to XEvent’s
in the XES standard with Attributes corresponding to XAttributables. Similarly, cases from the
formal description correspond to XTrace’s in the XES standard. Finally, an event log corresponds
to an XLog. When, at any point, an event log is mentioned in this work, in the realization an
XLog with all its components was used.

In addition to the XES metamodel, the extension interface is also found in Figure 2.4. An XEx-
tension allows for introducing additional standardized attributes in the XES framework. XExten-
sions are defined using a xesext file and are stored at some URI location, where it can be referenced
from within ProM.

1http://www.xes-standard.org/
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Figure 2.4: XES metamodel

2.5.3 Synthetic log generation tools: CPN Tools and Prom Import
Framework

CPN Tools [24, 33] is a tool for creating (Colored) Petri-nets, which can be used for simulation
and log generation. In this thesis, CPN Tools is used to create Petri-nets that produce synthetic
logs, which are useful for doing several experiments with respect to validating and verifying the
techniques proposed in this thesis. CPN Tools offers an extensive set of tools to create and
manipulate Petri-nets and allows for simulation of fictional business processes. CPN Tools has
already been shown that it is fit for creating test logs, for example by De Medeiros et al. [11] and
also for doing performance analysis as shown by Wells [51]. All synthetic logs used for testing have
been generated using CPN Tools 4.0.0. Logs created by CPN Tools are being pre-processed to be
used in ProM with help of the ProM Import Framework [16]. The ProM Import Framework is a
tool designed to convert log data from a large number of sources into data that can be handled by
ProM. For the realization phase of this thesis ProM Import Framework 7.0 (Propeller) was used.
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Chapter 3

Finding a queue collection based
on an event log

The main goal of this thesis is to gain insight in the bottlenecks of a (business) process and provide
operational support for that process. To achieve this, the strengths of queueing theory and process
mining will be combined by generating a queue collection in which each queue should accurately
simulate a real life queue that is susceptible to changing contexts and properties. The first step
in achieving this goal is to find a queue definition that describes the process to be analyzed. The
input process is assumed to be described in the form of an event log such as given in Table 2.1.
It is assumed that for this event log L holds that ∀c ∈ L : [∀e ∈ ATTtrace(c) : ATTres(e) 6=
⊥ ∧ ATTtime(e) 6= ⊥ ∧ ATTtype(e) 6= ⊥], i.e.: all events have a non-empty value for the activity,
resource and a timestamp attribute. The wanted output is a queue collection that accurately
describes the process described by the event log and in that way provides an answer to Research
Sub-Question 1.2.2.

The method for finding a collection of real life queues builds upon the principle of patterns
found in real life logs. The first kind of pattern is apparent when looking at an example as shown
in Figure 3.2. This figure shows the amount of activity starts for every hour over the course
of three weeks, starting on a Saturday. It can be observed that there is a clear day and week
pattern in the amount of activity starts, which leads to the intuition that different parts of the
week have different arrival and service rates. In addition, consider Figure 3.3 which shows a clear
pattern that is not due to the influence of a work week. This leads to the intuition that in different
contexts there is a different arrival and service rate, which should be accounted for. The innovation

Figure 3.1: Conceptual model of extracting queues from event log.
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Figure 3.2: Example log showing clear week patterns in activity starting count. The pattern has
a granularity of one hour, concerns three weeks and starts on a Saturday.

proposed to achieve this, is splitting up arrival rate and service rate data based on the relative
time they arrive and the context at the moment of arrival.

A conceptual model of the approach is found in Figure 3.1. To allow splitting up data using
context information, one must be able to enrich an event log with context information. As it
is necessary to have context information to run any experiments on the effects of using context
information, some kind of context information had to be acquired. The context chosen for this
purpose is the workload in the system at some point in time, since it seems like an important
factor in real life: if it is a busy week at work, things are different than in a regular week.
As such, a technique was developed to extract workload context information from an event log.
Both extracting context information and enriching a log with context information is covered in
Section 3.1. In addition, this section describes how to cluster activities and resources such that
each cluster correctly represents a queue and work station in the real process. The output of this
method is a set of basic queues.

Then, Section 3.2 covers how to use context information and temporal information to enrich
basic queues with important queue characteristics. The characteristics deemed most important
are the service and arrival rates. So, the input of this method is a set of basic queues and the
output is a queue collection.

3.1 Finding basic queues and handling context information

This section discusses, as a part of the conceptual approach shown in Figure 3.1, two separate sub-
jects. First, there is the matter of obtaining contextual information from an event log and adding
contextual information to an event log, which is covered in Subsection 3.1.1. Then, enriching a
log with context information from any source is covered in Subsection 3.1.2. In the realization,
these actions need to be performed as a preprocessing step, before making basic queues. Then, the
conceptual technique on how to find a set of basic queues, given an event log, is presented in Sub-
section 3.1.3. The resulting set of basic queues is used in the techniques described in Section 3.2
to obtain a queue collection.
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Figure 3.3: Example log showing clear non-week related patterns in activity starting count. The
pattern has a granularity of one day and concerns 2332 days in total.

3.1.1 Extracting workload context information from an event log

The approach for tackling the weakness of the classical queueing models is to split up historical
data based on the context and the arrival time of activities. To allow using context data later on,
it is necessary to obtain context information from some source and to add context information
to an event log. This subsection introduces a method, given an event log, to derive context
information on the workload over time. In addition, a method is introduced that allows adding
context information to the context attributes of events. For example, weather data or stock market
information.

Workload information was chosen as the context information to be extracted from an event log.
Workload information is in essence information about how busy or not busy the system is at some
point in time. The goal is to determine for each day how busy that day is. Extracting workload
information can be done in a number of different ways. The first is for each day to look at the
global arrival rate and global service rate and define the workload as the service rate divided by
the arrival rate and bin these workloads in a small number of classes. Another possibility is to
sum the arrival rate over the last weeks and take this as the workload. Then bin these workloads
in a small number of classes. Next, it is possible to find the workload for each day by looking
at the arrival rates in some window. Then, the workload class is defined by taking the average
workload of the entire historical data and using the standard deviation to define classes for busy,
quiet and regular. The last of these possibilities was chosen to be implemented, but there is no
clear evidence that this is the best method.

The purpose of this method is, given some event log as input, to calculate some metric for
the average workload over the entire log. Then, for every event, compare the workload at that
instance to the average and put it into either the class “Quiet”,“Regular” or “Busy”. This leads
to two challenges.

First, what is an example metric for the workload of a day in the process? Given a day d, the
interval three days before that day and three days after are used as a window. The window size
of seven is chosen such that any patterns with respect to a week, e.g. nothing being done on the
weekend, does not influence the workload metric. The reason for choosing days both before and
after the day d is that both can have an influence on the duration of events on day d. It is obvious
that items that happen before d could have an influence by being in the same queue. Items that
arrive after d can also have an impact, depending on the queueing discipline. For example, when
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Day 1 2 3 4 5 6 7 8 9 10 11 12
Number of events 10 4 4 4 4 4 4 4 1 1 1 1
Workload - - - 34 28 25 22 19 16 - - -

Table 3.1: Context workload example values.

using LIFO or some priority scheme where gold customers go before other customers it would
matter which items come after d. Since it cannot be assumed which queueing discipline is used,
both items before and after d are considered. Strictly speaking this metric does not compute the
absolute workload, but rather an expected amount of work to be done before the tasks of this day
are handled. Within the sliding window the amount of occurrences of events are counted and that
is considered the metric for workload. An example is shown in Table 3.1.

In this example the days 1-3 and 10-12 are part of a warming up and cooling down period, since
the window size is three days in both directions. Only the events of days 4-9 will be considered.
On day 4, there is a total of 34 events in the scope, namely 4 on the day itself and 30 on days 1-3
and days 5-7. This is summed for all days and is displayed in the Workload row.

The second challenge is: given some metric for workload, what should be the bounds for the
three classes. As noted before, there are a number of possibilities. One could choose to bin
the workloads in a finite number of sets. Alternatively, one could try to find the mean value and
classify any values that are statistically distant from this mean as either significantly busy or quiet.
The last approach was chosen, but is not necessarily the best. An argument for this metric is that
the standard deviation gives a good indication of cases deviating from average with a statistical
significant amount. It is not seen as a problem that a large number of the cases falls into the class
of “Regular”, as it would be expected that most days will be regular days.

It is possible to calculate the mean value for the workload by taking the average of the workload
over all days. The mean for this toy set is the sum of all the workload values for all days divided
by the amount of days considered, which is:

(34 + 28 + 25 + 22 + 19 + 16)/6 = 24

There is a multitude of choices for which distance from the mean would indicate something
being significantly quiet or busy, for example the standard deviation, possibly multiplied by some
constant, or a fraction of the total range of values. The choice was made to classify an event context
as “Busy” if the workload of that event is more than the mean plus the standard deviation, but
this is not necessarily the best choice. Similarly an event context is classified as “Quiet” when the
workload value is less than the mean minus the standard deviation. Otherwise, the context will
be classified as “Regular”. A formalization is given below in Definition 3.1.1.

Definition 3.1.1 Workload context Assume there exists a day counter d ∈ {0, ..., NRDAY S}
where NRDAY S indicates the range of days in log L. Assume an ordered list of workload values is
supplied where workload(d) indicates the workload on day d, i.e. the amount of activities arrived
in a window of 7 days around d. The mean workload is then defined as:

meanW =

∑
d∈{0,...,NRDAY S} workload(d)

NRDAY S

The workload standard deviation is then:

stdW =

√∑
d∈{0,...,NRDAY S}(workload(d)−meanW )2

NRDAY S
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Listing 3.1: Workload context information example result

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>
<con t ex t In f o>
<contextVar iab l e name=”Workload”>

<contextItem>
<context va lue=”Busy”/>
<time value=”4”/>

</ contextItem>
<contextItem>

<context va lue=” Regular ”/>
<time value=”5”/>

</ contextItem>
<contextItem>

<context va lue=” Regular ”/>
<time value=”6”/>

</ contextItem>
<contextItem>

<context va lue=” Regular ”/>
<time value=”7”/>

</ contextItem>
<contextItem>

<context va lue=” Regular ”/>
<time value=”8”/>

</ contextItem>
<contextItem>

<context va lue=” Quiet ”/>
<time value=”9”/>

</ contextItem>
</ contextVar iab l e>
</ cont ex t In f o>

For each day, the context value context(d) will then be set using the following function:

context(d) =

 “Quiet′′ if workload(d) < meanW − stdW
“Busy′′ if workload(d) > meanW + stdW
“Regular′′ otherwise

The standard deviation for the example can be calculated as shown in Definition 3.1.1 and
is 5.916. This means any day with a workload lower than 18, 084 would be considered “Quiet”,
which corresponds to day 9. Any day with a workload higher than 29, 916 would be considered
“Busy”. That means day 4 is considered “Busy”. The rest of the events would be classified as
“Regular”. The resulting context information file for this case is described by an example XML
file in Listing 3.1.

3.1.2 Adding context information to an event log

This subsection will cover how to add context information from any source to event logs. The input
is an event log and context information data. Examples of influential contexts are the weather,
the level of workload within the company or the stock market. To support context data not bound
to events a format was introduced to support context information as an independent data object.
The meta-model of this format can be found in Figure 3.4.
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Figure 3.4: Context information metamodel.

Event id ATTtype ATTtime ...
e1 Sort package day 2, 14:22 ...
e2 Send package day 4, 12:11 ...
e3 Inspect package day 8, 23:59 ...
e4 Send package day 12, 09:00 ...

Table 3.2: Simple event log example with day timestamp attributes.

As can be observed in Figure 3.4, context information has a number of context variables. A
context variable is a value for the kind of context being described, for example the weather, the
workload or the stock market. All these context variables can have context items, indicating
the current state of a context variable at a current time. Example context information data for
workload can be found in Listing 3.1.

After obtaining a context, be it from an external source, or be it from distilling it from a
business process, it is necessary to enrich event logs with this information in order to use it. The
intuition is to look at the time of an event and find a context value based on context information
that is relevant at the time of that event. It seems logical to either take the context value that
happened right before the event, or the context value that is closest in time to the event. The
time right before the event was chosen, although it is not necessary the best option.

For example, take the context information from Listing 3.1 as an input and say the input
event log is described by Table 3.2. For the first event e1 the timestamp attribute ATTtime(e) =
day 4, 12:34. The context value just before this is that of day four, which is “Busy”. Any event
(as an example e2) for which the timestamp is before the first context value, is classified as null.
Any event after the last timestamp is classified as the last timestamp. The result of enriching the
example log with the example context information can be seen in Table 3.3.

3.1.3 Finding basic queues

After adding all wanted context information to an event log, the goal is to find a set of basic
queues, which means to cluster all resources and activities that occur in the event log such that
each cluster of resources and activities accurately represents the servers and work items at a
queue and workstation in the real process. As input for this method we have an event log and
as output a set of basic queues which are useful for finding a queue collection. An example
output set of basic queues is illustrated in Table 3.7. It is assumed for every event e in the
input log that the attributes for activity ATTtype(e) and resource ATTres(e) are not null, i.e.:

Event id ATTtype ATTtime ATTcontext ...
e1 Sort package day 2, 14:22 ⊥ ...
e2 Send package day 4, 12:11 “Busy” ...
e3 Inspect package day 8, 23:59 “Regular” ...
e4 Send package day 12, 09:00 “Quiet” ...

Table 3.3: Simple event log example with day timestamp and context attributes.
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Activity / Resource Henk Anita Nick
Sort package 10 16 0
Send package 10 16 1
Inspect package 12 0 1
Approve package inspection 0 1 30

Table 3.4: Matrix showing event executions for given resource and type of some log.

∀c ∈ L : [∀e ∈ ATTtrace(c) : ATTtype(e) 6= ⊥ ∧ ATTres(e) 6= ⊥]. The solution for this problem is
bound by a constraint: two clusters should never contain the same activity, since it should not be
the case that work items can be handled at multiple queues. It should be possible for resources
to work at multiple queues. Within these constraints, a method should be devised to cluster
resources and activities.

There exist a multitude of ways to consider when resources and activities should or should not
be clustered together. An intuitive way of deciding whether activities and resources fit together
is to look at how many times resources have executed certain activities in historical data and
see whether this amount exceeds some threshold indicating a strong link between the resource
and activity. There are, however, many possible metrics for deciding what this threshold should
be. The first idea is to take a fraction of the maximum times some activity is executed by some
resource as the threshold. Another example is the average amount an activity is executed over
all resources. One more example is to find the mean and standard deviation over the amount of
times a certain activity is executed and include all pairs where a resource executes this activity at
least the minus or plus the standard deviation amount of times. The last example is defining the
threshold as: the average amount of times an activity is executed, considering only resources that
execute that activity. This last example will be used as an example metric for implementing the
technique, but it is not the case that one metric is distinctly better than the others.

Example method for finding a threshold: The threshold is to be defined as the average
amount of times an activity is executed, considering only resources that execute that activity.
The input for this method is execution count data such as in Table 3.4. The output is a list of
fairness thresholds, an example of which is illustrated in Table 3.5.

To find the average amount of times a resource is executed, one must count the amount of
times any resource executes any activity. This is done by summing all the events in some log L
for which the resource r and activity a match these values, i.e.:

executes(a, r) =
∑
c∈L

∑
e∈ATTtraces(c)

{
1 if ATTtype(e) = a ∧ATTres(e) = r
0 otherwise

Say we want to count the amount of times resource “Henk” executes “Sort package”. Then all
events e for which ATTres(e) = “Henk” and ATTtype(e) = “Sort package” are counted. An
interesting example input log would be very long, so instead an example set of aggregated counted
data is shown in Table 3.4. In this table one can see that the combination of resource “Henk” and
activity “Sort package” was observed ten times.

The main idea is to take a threshold of the average amount of executions of some activity by
some resource. This is possible from two perspectives: the perspective of the activity and a fair
share of work, i.e.: did this activity get executed by this resource a fair amount of times compared
to other resources that execute this activity. The other perspective is that of the resource and a
fair share of attention, i.e.: did this resource execute this activity a fair amount of times compared
to other activities this resource executes. For both perspectives there will be an accompanying
threshold value.
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Obtaining the fair amount threshold for some activity a will go as follows: Sum the total
amount of times a was executed in a log L and call this executions(a, L).

executions(a, L) =
∑
c∈L

∑
e∈ATTtraces(c)

{
1 if ATTtype(e) = a
0 otherwise

Consider the set R as all resource attributes that exist in L, i.e.:

∀r∈R∃c ∈ L∃e∈ATTtraces(c)ATTres(e) = r

Then sum the amount of resources for which holds that they executed a at least once and call this
resHelping(a, L,R).

resHelping(a, L,R) =

{∑
r∈R

1 if ∃c ∈ L∃e∈ATTtraces(c)ATTtype(e) = a ∧ATTres = r
0 otherwise

Divide the total executions by the amount of resources to obtain the threshold actThreshold(a, L,R).

actThreshold(a, L,R) = executions(a, L)/resHelping(a, L,R)

As an example, consider the threshold for activity “Sort package” of the matrix example in
Table 3.4. The amount of executions in the entire log are the same as the sum of all counts
concerning activity “Sort package” which is: 10 + 16 + 0 = 26. The amount of helping resources
is the amount of resources for which the count of “Sort package” is above zero. This concerns
both “Henk” and “Anita” and not “Nick”, so this value is two. The threshold is then: 26/2 = 13.
The threshold values for all activities can be found in Table 3.5.

Obtaining the fair amount threshold for some resource r is similar to that of activities: Sum
the total amount of times r executes something in a log L and call this executedBy(a, L).

executedBy(a, L) =
∑
c∈L

∑
e∈ATTtraces(c)

{
1 if ATTres(e) = r
0 otherwise

Consider the set A as all activity attributes that exist in L, i.e.:

∀a∈A∃c ∈ L∃e∈ATTtraces(c)ATTtype(e) = a

Then sum the amount of resources for which holds that r executes them at least once and call
this activitiesDone(r, L,A).

activitiesDone(r, L,A) =

{∑
a∈A

1 if ∃c ∈ L∃e∈ATTtraces(c)ATTtype(e) = a ∧ATTres = r
0 otherwise

Divide the total executions by the amount of resources to obtain the threshold resThreshold(r, L,A).

resThreshold(r, L,A) = executedBy(a, L)/activitiesDone(r, L,A)

As an example, consider the threshold for resource “Anita” of the matrix example in Table 3.4.
The amount of times “Anita” executes something in the entire log are the same as the sum of all
counts concerning resource “Anita” which is: 16 + 16 + 0 + 1 = 33. The amount of activities
done is the amount of activities for which the count of “Anita” is above zero. This concerns “Sort
package”, “Send package” and “Approve package inspection” and not “Inspect package”, so this
value is three. The threshold is then: 33/3 = 11. Now a metric for a threshold of a fair share for
both activities and resources was defined. The fair share threshold values based on Table 3.4 are
shown in Table 3.5.
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Resource Fair share of attention threshold
Henk 11
Anita 11
Nick 11
Activity Fair share of work threshold
Sort package 13
Send package 9
Inspect package 7
Approve package inspection 16

Table 3.5: Matrix showing threshold values for resources and activities.

Example cost function definition based on threshold values: The next step is to introduce
a cost function for a certain proposed queue. Given this cost function it then becomes possible to
find which clustering is the best one, i.e.: the one with the lowest cost according to this function.
The input of this function is a cluster of activities, for example resources {“Henk”,“Anita”} and
activities {“Sort package”,“Send package”}. In addition, event log information in the form of
counting data from an event log as in Table 3.4 and fair thresholds, as illustrated in Table 3.5 are
needed. The output of the cost function is a value indicating how bad or good a cluster is. The
main constraints of this function are: There should be a cost when pairs inside a cluster fail to
meet threshold amounts. In addition, there should be a cost when pairs partially in the cluster do
meet threshold requirements.

Now an example cost function conforming to the set constraints will be discussed. Before
defining the cost of an entire cluster, the cost for a pair of resource and activity is defined by the
following rules:

• Initially, the cost is zero.

• If a (resource,activity) pair is in the cluster, but the resource does not execute the activity
a fair amount of times from the resource viewpoint, increase the cost by that fair amount
minus the amount of executions.

• If a (resource,activity) pair is in the cluster, but the resource does not execute the activity
a fair amount of times from the activity viewpoint, increase the cost by that fair amount
minus the amount of executions.

• If a (resource,activity) pair is not in the cluster, but either the resource or the activity is in
the cluster and the resource executes the activity at least the fair amount of times from the
resource viewpoint, increase the cost by that amount minus the fair amount.

• If a (resource,activity) pair is not in the cluster, but either the resource or the activity is in
the cluster and the resource executes the activity at least the fair amount of times from the
activity viewpoint, increase the cost by that amount minus the fair amount.

Note that multiple cases can be true at the same time and hence the cost of all those cases will
be summed.

As an example, consider resource “Anita” and activity “Sort package”. The amount of times
“Anita” executes “Sort package” is 16. The threshold value for “Anita” is 11, which is smaller than
16, so no cost is added. Similarly, the threshold value for “Sort package” is 13, which is also smaller
than 16 and hence also includes no cost. The total cost of this pair remains zero, indicating a good
match. As another example, consider resource “Anita” and activity “Approve package inspection”.
The threshold value for “Anita” is 11, yet she only executes “Approve package inspection” once.
The cost from the resource viewpoint is hence 11 - 1 = 10. The threshold value for “Approve
package inspection” is 16, yet “Anita” executes it only once. The cost from the activity viewpoint
is hence 16 - 1=15. The total cost for this pair is then 10 + 15 = 25.
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Activity / Resource Henk Anita Nick
Sort package 10 |16| 0
Send package 10 |16| 1
Inspect package |12| 0 1
Approve package inspection 0 1 |30|

Table 3.6: Matrix showing event executions for given resource and type. Activities and resources
that are matched, are indicated as |#|.

The cost function for the cluster of resources and activities is then defined as follows: Sum for
each pair of (resource,activity) in the cluster the cost of this pair.

As an example, the cost for the queue with resource “Anita” and activities {“Sort pack-
age”,“Send package”} will be calculated, with help of the fair share values in Table 3.5. A previous
example has already shown the cost of the pair (“Anita”,“Sort package”) to be zero. The pair
(“Anita”,“Send package”) will also result in a cost of 0, since the thresholds for “Anita” and “Send
package” are respectively 11 and 9, which is both smaller than 16. Apart from the pairs inside the
cluster, all pairs consisting one element from the cluster need to be taken into account. This con-
cerns the pairs (“Anita”,“Inspect package”), (“Anita”,Approve package inspection”), (“Henk”,
“Sort package”), (“Nick”,”Sort package”), (“Nick”,”Send package”) and (“Henk”,“Send pack-
age”). Of these pairs, only the pair (“Henk”,“Send package”) is the only one with a cost. The
threshold for “Send package” is 9, while the amount of times “Send package” is executed by “Henk”
is 10. The threshold for “Henk” is 11, so there is no cost from the resource viewpoint. Hence, the
cost for this pair is 10-9 = 1. All other pairs produce no cost, since none of their execution values
are higher than the threshold. The total cost for this queue is hence 1. This value can then be
compared to other possible configurations, such as including “Henk” in the queue.

The weakness of this technique is illustrated when considering the queue with resources {“Henk”,
“Anita”} and activities {“Sort package”, “Send package”}. Even though the amount of times
“Henk” executes “Sort package” is 10, which is not much lower than “Anita” with 16 and cer-
tainly not much lower than the 12 times that “Henk” executes “Inspect package”, the value falls
under the threshold for both perspectives. Intuitively, this seems like bad behaviour. Addition-
ally, the activity “Send package”, where “Nick” executes once, has a threshold of 9 instead of 11,
making the cost of pair (“Henk”,“Send package”) from the activity perspective zero. This is a
large influence by only a single execution in the entire log and it seems such a small difference
should not have such an impact. A metric that has no weakness such as this one has not been
found during the development of these techniques and is left as future work.

Example cluster finding algorithm based on cluster costs: The goal is to find a clustering
of resources and activities. The input for this method is a cluster cost function as described in
the previous paragraph. The wanted output is queue clustering similar to that in the example of
Table 3.7.

An attempt to use a brute force method for trying all possible clusterings turned out too slow.
For this reason, a greedy algorithm was implemented. Given the constraint that no two queue
should hold the same activity, this algorithm tries to cluster all activities with a set of resources
for which the cost metric is low and then tries to match activities with other activities (including
their resource sets). Each step of the way the greedy algorithm will compare if the cost of adding
some activity and resource is lower or if the cost of not merging is lower. Each time the lowest
cost choice will be executed, until for every cluster it holds that not merging has the lowest cost.
After running this algorithm, a clustering of resources and activities is obtained. Table 3.6 shows
the result on the example counting matrix of Table 3.4.

The problem stated in this section was to cluster all resources and activities that occur in the
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Basic queue ID Activity set Resource set
1 Inspect package Henk
2 Sort package, Send package Anita
3 Approve package inspection Nick

Table 3.7: Illustration of queue clustering output based on the input counting matrix in Table 3.4.

event log such that each cluster accurately represents the servers and work items at a queue and
workstation in the real process and in that way obtain a set of basic queues. The set of basic
queues that follows from the example in Table 3.6 are shown in Table 3.7 and illustrate a typical
output for this method. This queue clustering will be an input for the techniques described in the
next section and is ultimately used for finding a queue collection.

3.2 Finding queue characteristics

In the previous section a technique for obtaining a set of basic queues has been shown. This
section will focus on explaining what the problem is with current queueing models and introduces
a way to tackle this problem. Then, a method will be proposed to convert basic queues and event
log information to obtain a queue collection.

A limitation of the classical queueing model is that predictions are often made for an average
over the entire time-frame. In real life, processing times are heavily influenced by the time of day
at which an activity arrives and the context of the time an activity arrives. To provide a new
approach, it is necessary to first consider the important characteristics of queues and the input
information that is necessary to find the characteristics that will be covered. These things are
described in Subsection 3.2.1. Next, a few examples will illustrate the necessity of the techniques
that will be covered in the coming subsections.

The first example is a secretary that works only in morning hours and has to do relatively small
tasks, say 15 minutes per task. In the classical approach all tasks that arrive in the afternoon
would be predicted to take a very long time, while the tasks arriving in the morning would take a
relatively short time. On average this would give a very large expected completion time. A better
estimate would be to say that in the morning the expected time until completion is 15 minutes,
while in the afternoon the expected time is some time the next day. This idea forms the basis of
splitting the arrival and service rates, based on the relative arrival time of an activity and obtain
a distribution useful for predictions for each part. Subsection 3.2.2 covers how splitting the arrival
and service rates based on time can be done.

Another example is an ice-cream company that sells ice-cream directly to customers. The
classical queueing model would model the amount of arriving customers in a general scenario.
However, the weather is of great influence for the amount of ice-cream that is bought at some
point in time. As such, it is not only relevant to look at the time at which an activity arrives, but
also at the context at that time. So, it is also relevant to split arrival and service time predictors
based on context. Subsection 3.2.3 covers how splitting the arrival and service rates based on
context would work.

In Subsection 3.2.4 the techniques proposed in Subsections 3.2.2 and 3.2.3 are wrapped up and
combined to form a method for finding a queue collection, given a set of basic queues and an event
log.
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3.2.1 Important queue characteristics

To obtain a network of queues that accurately describes a process, it is necessary to think about
which characteristics would be important to have. The most basic characteristics are the servers
and the types of activities that arrive at the queue, which have already been covered as basic
queues in Section 3.1.

Other possibly interesting characteristics of a queue will now be listed with a short explanation.
This list is not exhaustive. In this work only the arrival and service rates are chosen to be looked
at, because these are necessary groundwork for most of the other characteristics.

• Arrival rate, the average amount of tasks that arrive at the queue in some time interval.

• Service rate, the average amount of tasks that are completed at the work station in some
time interval.

• Service discipline, the order in which items are handled. For example FIFO, LIFO, or some
priority scheme where certain item types are more important than others (gold customers
versus regular customers). This also includes other patterns such as batch execution.

• Buffer size, the amount of items that fit in the queue before new arriving items will be
dropped. Can be infinite.

• Resource availability, information concerning when certain servers of this queue are available.

Some metric needs to be found to find the duration of events. We assume that it is not possible
to derive Effective Processing Times (EPT’s) [19], because it is on one hand difficult to monitor
human resources to such an extent and on the other that there is no standard form of describing
EPT’s in existing logs that can be exploited. It is assumed that it is not possible to extract whether
an activity with corresponding timestamp indicate entering a queue, entering a work station or
exiting a work station in a generic way. As such, an estimate has to be made using the timestamps
of the events. Some possibilities of how to estimate durations are now listed:

• The timestamp of some event indicates the time an event enters a workstation. The duration
is inferred from the timestamp of the current an next event, for example taking a factor of
the difference in time.

• The timestamp of some event indicates the time an event enters a workstation. The duration
is defined as the difference between the timestamp of the current and the next event.

• The timestamp of some event indicates the time an event enters a queue. The duration is
defined as the difference between the timestamp of the current and the next event.

We have chosen to estimate event start and end times as in the last case: The start time for
an event is the timestamp of that event. The end time (and the start time of the next event) is
the timestamp of the next event in the trace. It is assumed that the start times correspond to
the time when the work item enters the queue, rather than the time it arrives at the workstation.
The end time is assumed to be the time when the item leaves the work station.

So, the duration of an event e is estimated by looking at the timestamp ATTtime(e) and the
timestamp ATTtime(e

′) of the event e′ that follows directly after e. Looking at the example event
log in Table 2.1 the starting time for the event with activity “Receive package” of trace “12324”
would be 14-02-2014 13:45, the end time would be 20-02-2014 19:42 and hence the total duration
would be 6 days, 5 hours and 57 minutes. When considering the last event of a case, the end time
will be equal to the start time. These activity durations will be used to predict arrival and service
rates for a set of basic queues. In the next subsections splitting arrival and service distributions
based on time and context will be discussed.
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Case ID Activity Resource Timestamp
1 Inspect package Henk Monday 29-09-2014, 10:02
1 Sort package Anita Monday 29-09-2014, 17:12
1 Approve package inspection Nick Monday 06-10-2014, 10:24
2 Inspect package Henk Monday 06-10-2014, 15:56
2 Sort package Anita Tuesday 07-10-2014, 09:12
3 Inspect package Henk Monday 05-01-2015, 09:00
3 Sort package Anita Monday 05-01-2015, 17:30

Table 3.8: Example event log with three cases that have events with activity, resource and times-
tamp attributes.

Figure 3.5: BPI 2011 challenge log and Dutch municipality process log showing clear week patterns.
On the x-axis the hours of three consecutive weeks are plotted. The y-axis shows the amount of
activities started in some hour.

3.2.2 Time-based log splitting

The approach for tackling the weakness of the classical queueing models is to split up historical
data based on the relative arrival time of activities. A reason for pursuing this kind of split
is showed in Figure 3.2, where a clear week pattern is shown to exist in a log. This is not a
special case: two more real-life event logs from different sources with such a pattern are shown
in Figure 3.5. This subsection will cover how one can split up data based on the relative arrival
time, given an event log as input. An example input is given in Table 3.8 The output will be a
set of events split up based on their relative arrival time.

This approach aims to find a golden mean between these two extremes by looking at a number
of different parts of a larger period of time and assigning arrival rates to those parts. The challenge
is to decide how long should this larger period be and how long should the individual parts be. In
business processes describing a regular business, tasks are bound by week and day patterns, as has
been observed in Figure 3.5 and Figure 3.2. For this reason, it was chosen that the larger period
should be a week. In general this week should be split up such that there is no underfitting in the
parts, i.e.: it should be split up in enough parts to find patterns such as working 9 to 5 and people
working half days. On the other hand, there should be no overfitting in the parts, i.e.: the week
should not be split up in such a way that only a few cases are present for each part and hence no
statistically sound predictions can be made. Definition 3.2.1 formalizes the time quantities used
in this approach.

Definition 3.2.1 Time quantities Let the larger time period MainT ime be defined as one week
time. Then, let the minimal amount of parts be MinParts = 7, indicating the week should at least
be split up in parts of one day time. The value k ∈ N>0 indicates in how many parts each day
will be split up. The total amount of parts in a week is MinParts · k. Each part has a size of
MainT ime/(MinParts · k) time.

So, the values for MainT ime (one week) and MinParts (7) are treated as constant truths.
The variable k is introduced for indicating in how many parts a day of the week should be split
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up hence it defines what the length of those parts is. For the coarsest granularity (k = 1) that
means the week is split up in 7 parts of a single day. Higher k implies finer grained results, e.g.:
k = 24 means every hour of every day in a week is a different part.

The challenge is now simplified to: what is the right k such that patterns in the business
process are visible, but the amount of events per part is not too small? Or: What is the right k
to split up a log, such that no overfitting and no underfitting occur?

At this moment, an automated method for extracting a good value for k, given some event log,
is not evident. A possible approach is to try number of different k’s, while keeping track of how
“good” these tries are. To incorporate the day and week patterns, it does not suffice to look at
multiples of two. Rather, it would be a good idea to look at the multiples of some small set of
prime numbers, such that a larger part of the total number space can be traversed, while ignoring
numbers that are probably not interesting. For this purpose the Primetree structure is introduced
in Definition 3.2.2.

Definition 3.2.2 Primetree Let P be the set of all possible primes. Consider the finite set of
primes P ′ ⊂ P . A Primetree is a tree T with vertices TV , edges TE and root value 1. Consider
a function val(v) which for a vertex returns the value of that vertex. Each vertex v ∈ TV has an
edge towards all vertices v′ for which holds: ∃p∈P ′val(v′) = val(v) · p.

Figure 3.6 gives an example of a Primetree using a limited set of primes, in this case two, three
and five and a limited set of vertices: one, two, three, five, six, nine and fifteen. A Primetree can
be used as follows: Imagine the values for all vertices in the Primetree are in fact possible values
of k, i.e.: the value of a vertex indicates in how many parts the log would be split, namely 7 · k.
Then one could find a limited search space for possible values of k, given a PrimeTree.

Then consider automatically traversing such a Primetree, trying out all possibilities and finding
which k is good. For each vertex it would then be necessary to check for underfitting and over-
fitting. To automatically discern when overfitting becomes a problem is relatively trivial, namely
setting the threshold to any number for which the part has a statistically significant size, e.g. 100
and checking how much parts are overfitting. To discern when underfitting happens and what
pattern is the one fitting the business process, is far from trivial. An expert on the process would
need to look at the patterns and see whether they fit their business process. For this reason an
automatic approach to this was not pursued, but instead a method was provided for experts to
explore a Primetree and find the best fitting k. More information on how this was achieved in
practice is covered in Subsection 5.3.2.

Next a technique for splitting log information based on their relative arrival time and putting
them into the corresponding time parts will be explained. Consider an event e with timestamp
ATTtime(e) and consider a value k that indicates the amount of parts a day will be split up in.
Then the absolute arrival time ATTtime(e) needs to be mapped to a relative arrival time. This is
achieved by performing a modulo operation based on the MainT ime value, i.e.:

Relative arrival time for e : relT ime(e) = ATTtime(e)%MainT ime

Then, using the relative arrival time, the corresponding time part for this event has to be found
by dividing the relative time to the amount of time that is in one part of the week. Recall that
MinParts is the constant indicating in how many parts MainT ime should be split.

Time part for e : timePart(e) = brelT ime(e)/ MainT ime

MinParts · k c

Splitting up events is then achieved by calculating the time part for each event and grouping
events by this time part.

Now let’s look at an example: say k = 2, and we want to find the time bucket for an event
for which the time attribute is Tuesday the 26th of August 2014 at 12:34. The relative weektime,
acquired by doing a modulo on the size of a week will be Tuesday at 12:34. There are (MinParts ·
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Figure 3.6: Partially unfolded primetree with primes 2,3,5.

Time part Activity Resource Timestamp
1 (Monday 0:00-11:59) Inspect package Henk Monday 29-09-2014, 10:02

Inspect package Henk Monday 05-01-2015, 09:00
Approve package inspection Nick Monday 06-10-2014, 10:24

2 (Monday 12:00-23:59) Inspect package Henk Monday 06-10-2014, 15:56
Sort package Anita Monday 29-09-2014, 17:12
Sort package Anita Monday 05-01-2015, 17:30

3 (Tuesday 0:00-11:59) Sort package Anita Tuesday 07-10-2014, 09:12
4 (Tuesday 12:00-23:59) - - -
... ... ... ...
14(Sunday 12:00-23:59) - - -

Table 3.9: Event log data from Table 3.8 split up based on time part for k = 2. Only parts 1, 2
and 3 have data based on the input event log.

k) = 7 · 2 = 14 buckets which have the size of half a day. Tuesday after 12:34 would fall into the
4th bucket, since it falls into the 4th half day of the week. An partial example output for this
method can be seen in Table 3.9, based on the event log example in Table 3.8.

So, all events in a log can be grouped by relative time part in the week. For each time part it
is then possible to create a distribution over the durations of all the events in those buckets. This
shall be covered in more detail in Subsection 3.2.4.

3.2.3 Context-based log splitting

The approaches for tackling the weakness of the classical queueing models is to split up historical
data based on the context at the arrival time of activities. A reason for pursuing this kind of split
is showed in Figure 3.3, where a clear shift in context is shown to exist in a log. This subsection
will cover how one can split up data for a number of different contexts, given an event log as input.
The context of an event is provided in the context attribute. An event e should have context value
ATTcontext(e) 6= ⊥ for this approach to make sense. An example input log is shown in Table 3.10.

Splitting the events on basis of context is similar to that of splitting based on time. Events
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Case ID Activity Resource Context
1 Inspect package Henk Busy;Rainy
1 Sort package Anita Regular;Rainy
1 Approve package inspection Nick Regular;Sunny
2 Inspect package Henk Quiet;Sunny
2 Sort package Anita Quiet;Sunny
3 Inspect package Henk Regular;Sunny
3 Sort package Anita Busy;Rainy

Table 3.10: Example event log with three cases that have events with activity, resource and context
attributes.

Time part Activity Resource Context
Busy;Sunny - - -
Busy;Rainy Inspect package Henk Busy;Rainy

Sort package Anita Busy;Rainy
Regular;Sunny Approve package inspection Nick Regular;Sunny

Inspect package Henk Regular;Sunny
Regular;Rainy Sort package Anita Regular;Rainy
Quiet;Rainy - - -
Quiet;Sunny Sort package Anita Quiet;Sunny

Inspect package Henk Quiet;Sunny

Table 3.11: Event log data from Table 3.10 split up based on context value. Context combinations
not present in the log have no values.

should be grouped based on their unique context string. So, for example an event with context
“Cloudy weather” would end up in the context bucket for “Cloudy weather”. If multiple contexts
are present, i.e.: there is a context variable for weather and one for workload, which can be
either “Busy” or “Quiet”. There will be buckets for all combinations of these context values,
i.e.: “Cloudy;Busy”, “Cloudy;Quiet”, “Sunny:Busy” and “Sunny;Quiet”. Based on the example
input log of Table 3.10, the result of splitting on context value is shown in Table 3.11. The next
subsection will cover how to combine these techniques to create a queue collection.

3.2.4 Finding characteristics based on time and context

The previous subsections described how to find the context and relative part of the week of a given
activity. The next and final step is splitting the activities belonging to a queue into a matrix of
event sets that represent the historical data of a relative arrival time within a certain context. For
each unique matrix cell the data will be saved as distribution functions for the service time and
a number indicating the arrival rate over the duration of events that fall within that time and
context frame. An example input log for this technique is shown in Table 3.12.

Assume a queue clustering corresponding to this log is present as in Table 3.13. The first
step in this technique is for all queues to split all data in an event log based on their relative
time and context attribute. This is done for each queue as was described in Subsection 3.2.2
and Subsection 3.2.3 respectively. The result of this step on the example input can be seen in
Table 3.14.

The final step in this process is converting the sets of events for all cells into a distribution of
service times. This is achieved by binning the durations of the events in a cell using bins with the
same sizes as time parts. Using the example queue collection in Table 3.14, consider the queue with
activities “Inspect package”,“Sort package” and consider the cell for time part “1” and context
“Busy;Rainy”. There are two events in this cell, both of which can be found in the input event
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Case ID Activity Resource Timestamp Context
1 Inspect package Henk Monday 29-09-2014, 10:02 Busy;Rainy
1 Sort package Henk Monday 29-09-2014, 17:12 Busy;Rainy
1 Approve package inspection Nick Monday 06-10-2014, 10:24 Busy;Rainy
2 Inspect package Henk Monday 06-10-2014, 15:56 Quiet;Rainy
3 Inspect package Henk Monday 05-01-2015, 09:00 Quiet;Sunny
3 Sort package Henk Monday 05-01-2015, 09:30 Quiet;Sunny
4 Inspect package Henk Monday 16-11-2015, 08:12 Busy;Rainy
4 Sort package Henk Monday 16-11-2015, 21:22 Busy;Rainy
4 Approve package inspection Nick Monday 16-11-2015, 11:14 Busy;Rainy

Table 3.12: Example event log with three cases that have events with activity, resource, timestamp
and context attributes.

Queue ID Activities Resources
1 Inspect package, Sort package Henk
2 Approve package inspection Nick

Table 3.13: Example queue clustering based on the example log of Table 3.12.

Queue
activities
Inspect
package,
Sort Time part 1 2 3 ...
package Context

Busy;Rainy (Henk, Inspect package, (Henk, Sort package, - ...
Monday 29-09-2014,10:02, Monday 29-09-2014, 17:12 -
Busy;Rainy) , Busy;Rainy) -
(Henk, Inspect package, (Henk, Sort package, - ...
Monday 16-11-2015, 08:12, Monday 16-11-2015, 21:22, -
Busy;Rainy) , Busy;Rainy) -

Busy;Sunny - - - ...
Quiet;Rainy (Henk, Inspect package, - ...

Monday 06-10-2014, 15:56, -
, Quiet;Rainy) -

Quiet;Sunny (Henk, Inspect package, - ...
05-01-2015, 09:00 , -
Quiet;Sunny) -
(Henk, Sort package, - ...
05-01-2015, 09:30 , -
Quiet;Sunny) -

... ... ... ... ...
Approve
package Time part 1 2 3 ...
inspection Context

Busy;Rainy (Nick, Approve package inspection, - - ...
Monday 16-11-2015, 11:14, Busy;Rainy)
(Nick, Approve package inspection,
Monday 06-10-2014, 10:24, Busy;Rainy)

Busy;Sunny - - - ...
... ... ... ... ...

Table 3.14: Example queue collection for two queues. For every queue a matrix with relative time
parts and contexts is shown with example events from Table 3.12.
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log of Table 3.12 as well. Using this event log, one can obtain the durations for these two events
by looking at the timestamp of those events and the events that come directly after them. For
this example, the event at 29-09-2014,10:02 has a duration of 5 hours and 10 minutes, given that
the following event starts at 29-09-2014, 17:12. For the event at 16-11-2015, 08:12 the duration
is 13 hours and 10 minutes, since the following event starts at 16-11-2015, 21:22. This results in
the values 5 and 13 which then have to be binned. Since the time part size is half a day, 5 hours
will be mapped to 0 time parts and 13 hours will be mapped to 1 time part. The distribution for
this particular example is not very interesting with one sample at 0 hours, and one at 12 hours.
A more interesting example distribution is illustrated by Figure 4.2.
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Chapter 4

Using queue collections for
predictions and analysis

One of the main goals is to predict delays and sojourn times for a process. The queue collection
described in Subsection 3.2.4 will be used as an input to do such predictions. This chapter will
cover three prediction methods based on the queue collection: Queue exit time prediction (the time
it takes an activity to be completed once it arrives at some queue) in Section 4.1, activity routing
prediction (the most likely activity that follows after a certain activity is completed) and activity
sojourn time prediction (the time it takes for a complete trace to be completed). Section 4.1
and Section 4.2 provide an answer to the Research Sub-Question 1.2.3. In addition, an analysis
method is proposed to find the biggest bottlenecks in the queue collection in Section 4.3, which
provides an answer to Research Sub-Question 1.2.1.

Throughout this section, the design choices and techniques explained revolve around a large
assumption: The queues have infinite servers. This means there will be no queueing model like
a Markov chain or a state machine. This approach will focus only on the expected service times,
based on the context and time of an arriving event.

4.1 Queue exit time prediction

This section will discuss how to use a queue collection to predict how long it takes for an event
arriving at some queue exits to exit that queue. To achieve this, the relative time part and
context of this event will be derived according to the techniques presented in Subsection 3.2.2
and Subsection 3.2.3 respectively. Assume that as input there is a queue collection such as shown
in Table 3.14. Then, depending on the activity of an event one can find the queue in the queue
collection at which this event should arrive. Using the relative time part and context information
of the event, one can then find the service time distribution corresponding to that queue, time
part and context. The question then is, how to use this service time distribution to predict the
time this event will spend in the queue and at the work station. There are a few alternatives to
what value to choose from the distribution as the predicted exit time.

First of all, it is possible to use the expected value of the distribution to predict the exit time.
An example will now illustrate why the expected value might not be a good estimate. Consider
Figure 4.1 as an example service time distribution of a queue for some time part and context.
When calculating the expected value of this distribution, it is possible that the resulting value is
right between two peaks, indicating a period where no work is done. It would make no sense to
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Figure 4.1: Typical duration distribution for time cycle based processes

predict a duration that never occurred in the historical data and would never normally occur in
the process. For this reason this approach was not pursued.

The second option is using the most likely value of the distribution for predicting the exit
time. Looking at Figure 4.1 again, it seems that the the highest probability would be within the
time-frame in which events are completed and would at the same time be very likely close to the
actual value. The downside of this approach is that less probable but also valid alternatives are
not taken into account. This is the method that will be used.

Another possible option is using another piece of information from an arriving event. If it is
known how long the event has already waited in this queue, this can be taken into account. For
example, if it is known that it has already waited a day after arriving and the most likely value for
completion is somewhere within the day that has already passed, the most likely value after that
point in time would be a better estimate. A simple way to achieve this is to not take the highest
probability of the entire distribution, but to look at the highest probability in the distribution that
is longer than the waiting time. This technique has not been implemented, but is an interesting
future work topic.

So, predicting the exit time will go as follows: Consider a queue collection C and some arriving
event e as input. The first step is finding the queue in the queue collection which corresponds to
the activity of e, i.e.: The queue q ∈ C for which activity ATTtype(e) is in the set of activities
belonging to q. Once that queue is found, the service time distribution corresponding to the event’s
time ATTtime(e) and context ATTcontext(e) will need to be found. Before that is possible, the
time part needs to be extracted from the timestamp, as specified in Subsection 3.2.2. Assuming
the time part is found, one can obtain the distribution using this time part and the context, with
the method specified in Subsection 3.2.4. The final step is then to find the most likely value in
this distribution. If multiple equally likely values exists, the first value encountered is predicted.

Now an example will be given for a simple case. Suppose there is an event for which we would
want to predict the exit time and there is a queue collection. Then suppose the correct queue in
the queue collection is found and assume that the distribution corresponding to the context and
time part of the event is shown in Figure 4.2. The predicted duration time will be the most likely
value, i.e.: the highest peak in this distribution, which is six hours. The queue exit time predictor
will then predict the starting time of the input event plus six hours as the exit time.

So, once a queue collection is known, it becomes possible to find the distribution that conforms
to the time part and context in which some event arrives. Then, the most likely value will be
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Figure 4.2: Example service time distribution: For each waiting time the amount of events that
waited that long is counted.
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predicted as the duration of the activity and the predicted exit time is the starting time plus the
predicted duration. In the next section, it will be discussed how to, given the possibility to predict
queue exit times, predict the sojourn times for some activity.

4.2 Sojourn time prediction

The purpose of this approach is to predict the sojourn time of a case, i.e. predict when a certain
case is done, based on the arrival time and, if present, knowledge about the activities that already
occurred. Once again a queue collection is the main source of input for this technique. This
approach uses two techniques. The first is the queue exit time prediction as discussed in the
previous subsection. The second is a way to predict the next event for a known (incomplete)
trace.

To allow sojourn time predictions, it is necessary to predict what queue an activity will most
likely arrive at next, if any, after exiting some other queue. In the paper by Van der Aalst [41]
a number of techniques for creating a transition system useful for time predictions are proposed.
An important factor in this approach is using a known set of previously executed activities, a so
called prefix, to predict what the next activities will be and how long they will take. A number
of different abstractions are proposed for creating these prefixes, for example set, bag, sequence,
etc. There are a number of different ways to predict the next activity. The example shown in
this section was chosen because it strongly utilizes the already present queue collection, but is not
necessarily the best approach. A number of interesting alternatives are discussed in the future
work section.

To utilize the queue collection model, the queue, context and relative time part of an event
will be taken into account in predicting the next activity, in addition to a prefix. This means
that every part for which the next activity has to be found will have a relatively small amount
of historical data, since a filter takes place on not only queue, context and k, but also the prefix.
As such, it seems a good choice to take an abstraction method that does not introduce a large
number of unique prefixes. This taken into account, the bag abstraction was chosen.

At some point the end of the trace should be predicted. There are multiple ways to do this.
One would be to find a list of ending events and always declare the end of the trace if one such
event is executed. An alternative would be that in the case that no historical data is found about
the combination of queue, context, k and prefix, the end of the trace should be predicted. The
latter was chosen for this technique, but both approaches seem equally valid.

The main goal is to, given some partial trace t where the final event in this trace is e, find the
most likely next activity based on: the prefix, i.e. the bag of events that happened before in t,
the relative time part of e as extracted by using the technique of Subsection 3.2.2 and the context
attribute ATTcontext(e). This is achieved by considering the set of events S that have the same
type, time part, context and prefix as e. Then consider all events that follow after S and count
how many times each following activity occurs. The activity that follows most consider the events
in S will be the most likely event to happen next.

Now an example will be given to illustrate the concept of temporal and context-based routing.
Consider Table 4.1, which illustrates a partial set of values that followed after a certain prefix, time
part and context. Say an event arrives for which “Receive package” has been executed, the time
part is 1 and the context is “Quiet”. Then there are two possible next events to complete: “Sort
package” or “Package lost”. In this case, the event “Sort package” occurred many more times
than the alternative, so that type of event will be predicted as the next step. Now consider the
same prefix and time part, but with a “Busy” context. Once again the same options are available.
This time, however, the count for “Package lost” is higher, so an event with type “Package lost”
will be the next step.
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Prefix Time part Context Following activity Amount
... ... ... ... ...
{Receive package} 1 Quiet Sort package 132
{Receive package} 1 Quiet Package lost 2
{Receive package} 1 Busy Sort package 63
{Receive package} 1 Busy Package lost 94
... ... ... ... ...
{Receive package, Package lost} 1 Busy ENDTRACE 62
{Receive package, Package lost} 2 Busy ENDTRACE 63
... ... ... ... ...

Table 4.1: Partial list of possible nextActCount values.

Now both ingredients for predicting sojourn times are in place: A queue exit time predictor
and a temporal and context-based router. There are multiple ways to predict the sojourn time.
One is to create a transition system based on either the event log or devise a method to create a
more specific transition system based on the queue collection. Alternatively, one could use a step
by step method which considers each event in a trace separately and tries to find the next most
probable event one at a time. The last option was chosen for this approach.

The following method will be used for predicting sojourn times of some given input trace c,
assuming a temporal router as previously described and an exit time predictor as described in the
previous section are available.

1. The timestamp of the last event in c is taken as the starting time.

2. The total duration is set to be 0.

3. Consider the last event in ATTtrace(c) and call it e.

4. Given the event e and it’s time part and context, let the exit time predictor predict the
completion time of this event and call this time et. This time will be added to the duration.

5. Given the current prefix, i.e. the bag of all activities in c, the time part and context corre-
sponding to et, use the temporal router to find the most probable next activity. Consolidate
the time, context and activity into a new event e.

6. If e is not the end of the trace, return to step 3.

7. Otherwise, the duration so far is the total amount of time the trace will still take. The
predicted completion time is the timestamp of the last event in c plus this duration.

Now let’s look at an example for sojourn time finding. Once again consider Table 4.1 as an
input for the temporal and context-based router and consider Figure 4.2 as an example service
time distribution. Consider an event with type “Receive package” that arrives at 27-09-2014,
20:47 and consider Figure 4.2 as its service time distribution. The queue exit time predictor will
predict that this event will exit the queue 6 hours after arrival. Now suppose we then get a prefix
{“Receive package”}, a context of “Busy” and a time part of 1 (indicating that after 6 hours we
arrive in time part 1). The temporal and context-based router will then find, based on Table
4.1 that the most likely next activity is “Package lost”. So then the queue exit time predictor
will calculate the exit time given “Package lost” as an input at time part 1 and with context
“Busy”. Since “Package lost” is always the final event in a trace, the predicted duration is 0,
as no future event exists to estimate the duration. The following input is then obtained for the
temporal context-based router: The prefix is {“Receive package”,“Package lost”}, the context is
“Busy” and the time part is still 1. Considering Table 4.1 the end of the trace is now predicted.
The final duration, considering the event with type “Receive package” as a starting point, is 0 +
6 = 6 hours. The predicted sojourn time is then 27-09-2014, 20:47 plus six hours, which results
in 28-09-2014, 02:47.
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Queue 1 Queue 2
Time part “Quiet” “Busy” “Quiet” “Busy”
1 3 10 12 23
2 12 40 24 35

Table 4.2: Arrival rate values for toy example.

To summarize, given a queue collection as input and given some arriving event, it is possible to
predict the sojourn time of that activity based on the context and relative time at which that event
arrives. This section and the previous one provided an answer to Research Sub-Question 1.2.3.
The next section will cover how to use a queue collection to find the most important bottlenecks
in the process.

4.3 Highlighting bottleneck queues in the process

One goal of the queue-based approach is to highlight bottlenecks in the process. This section
provides an answer to Research Sub-Question 1.2.1. The queue collection result of the method
described in Section 3 can be used as a basis for tackling this problem. It will be covered how to
use a queue collection to find the most important bottlenecks, i.e.: the parts of the process that
slow down the process the most.

To find bottlenecks a new view on the queue collection is necessary that makes a bottleneck
apparent. There are a multitude of ways to gain insight in the bottlenecks, a number of which are
discussed in the future work section. This section will propose an example method for finding the
workload based on arrival and service rates.

The assumption for finding a bottleneck using arrival rates and service times is as follows:
The queues in which completion times are increased when the overall arrival rate is increased,
are bottlenecks. The approach to find which queues conform to this is to first define when an
overall increase in arrival rate occurs. This is done by creating a ranking of all possible cells
within queues of the queue collection, i.e.: Each unique time part and context combination will
be ranked descending according to their arrival rate.

Take, for example, a queue collection with 2 queues, for which both there are 2 time parts and
2 contexts and the arrival rate is shown for all of these possibilities in Table 4.2. The arrival rate
for context “Busy” and time part 1 is then the sum over all queues for a given context and time,
which is 10 + 13 = 23. In this example, time part 2 has a higher arrival rate than part 1 and
context “Busy” has, as one would expect, higher workload than context “Quiet”. The arrival rate
ranking of these combinations would be {“2;Busy”,“2;Quiet”,“1:Busy”,“1:Quiet”}.

To find the queues for which the average duration increases most in busy periods, it is necessary
to look at the behaviour of these queues in the parts of the week and contexts when global workload
is high. To achieve this, for each queue the cells within a queue are ranked descending based on
their mean service time. Then, some measure of comparison is necessary between the global arrival
rate ranking and the service time ranking for a specific queue.

The Kendall-τ [26] method is used to compare the two orderings. Since the Kendall-τ measures
a distance between two ranking, the inverse value is used to identify the similarity between the
rankings. This ranking is used since it gives a good indication of how the queues mean service
times behave in comparison to the global arrival rate. For each two pairs of context and time part
values the relative position in the global load ordering and the queue load ordering are compared.
If the relative position is similar, it is an indication that the queue has an increase in duration
when there is a global increase in arrivals. The sum over all possible pairs is the bottleneck factor
of the queue.
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Queue 1 Queue 2
Time part “Quiet” “Busy” “Quiet” “Busy”
1 6 20 13 11
2 24 80 11 12

Table 4.3: Mean service time values for toy example.

To give an example of how the bottleneck factor would be calculated, an example set of service
time distribution mean values are shown in Table 4.3. The mean service time for a certain queue,
time part and context is the corresponding table value. Recall that the ranking for the global
workload was {“2;Busy”,“2;Quiet”,“1:Busy”,“1:Quiet”}. Now consider the ranking for Queue 1:
{“2;Busy”,“2;Quiet”,“1:Busy”,“1:Quiet”}. This ranking is exactly the same as that of the global
workload and hence it obtains a high bottleneck factor. Now consider the ranking for Queue 2:
{“1:Quiet”,“2;Busy”,“2;Quiet”,“1:Busy”,}. Without going into the exact Kendall−τ metric, this
ranking is a lot less similar to the global ranking and as such Queue 2 and hence will have a higher
Kendall−τ distance and a lower bottleneck factor than Queue 1.

To conclude this chapter, ranking the queues on similarity with the global workload ordering
gives insight in how strong the relation is between an increase in arrivals globally and an increase
in duration for a certain queue. The queues that score highest on this scale are estimated to be
the biggest bottleneck queues and finding these bottlenecks provides an answer to Research Sub-
Question 1.2.1. In the next chapter, the implementation of all techniques covered in this chapter
and Chapter 3 will be covered.
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Chapter 5

Realization

In this section the realization of the techniques discussed in Chapters 3 and 4 is presented. All
realization is done within the ProM framework (see Subsection 2.5.1) and has been implemented
as a number of plugins. Throughout this section screenshots, implementation details, links to
plugins used and examples will be supplied. All software proposed in this work is available to the
public as a ProM package called “QueueMiner”. One can test this software by installing ProM1

and then adding the “QueueMiner” package from either the nightly builds or, later, a released
version.

An overview of the realization approach is shown in Figure 5.1. At the start of the pipeline is
an event log, which can come from any source. Before acquiring such an event log, it might be
necessary to perform some preprocessing steps. These are discussed in Section 5.1. Then, it is
possible to add context information to the event log. How context information is obtained and
handled in the event log is discussed in Section 5.2. Next, a queue collection is acquired by using
the event log as an input. This process is discussed in Section 5.3. Once a queue collection is
acquired, it becomes possible to use it for predictions and other information gaining techniques,
which are covered in Section 5.4.

5.1 Log preprocessing

Two topics will be covered in this section: How XES Event Logs are obtained from a number of
data sources and how to remove the start-up and cool-down period from an event log.

In some cases an XES Event Log or XMXL file is readily available as an input file and can
be directly imported in ProM and used for this approach in the XLog format. In other cases,
however, it is necessary to preprocess data into an XES Event Log. Now all the cases relevant for
this thesis will be covered.

First of all, to support tests with synthetically generated logs using CPN Tools (See Subsec-
tion 2.5.3), it is necessary to use the ProM Import Framework. The ProM Import Framework can
use CPN Tools generated files and produce an XES log based on this data. These XES logs are
then directly usable. Another possibility is event logs that are only available in a CSV format.
ProM provides a standard plugin named “Convert Key/Value Set to Log” that allows for convert-
ing .CSV files to the XES Event Log format. With some knowledge of the process involved, fields
from the .CSV file can be mapped to fields in the XES format. After using this plugin an XLog
is returned which can then be directly used.

1http://www.processmining.org/prom/start
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Figure 5.1: Overview of implementation Queue Network finder.

Now it will be discussed how the start-up and cool-down periods can be removed from an event
log. Before analyzing a log, it might be necessary to zoom in on the most interesting period within
that log. Event logs often contain a start-up and cool-down period in which cases are being started
or finished, while the largest portion of the activities are done somewhere in between. To obtain
a realistic view on the average situation within a company, it is wise to remove these startup and
cool-down periods from the log before analyzing it.

For this reason, the “Start up period remover plugin” (See Appendix B.1) was developed. The
concept is straightforward: A user enters a starting and ending day that indicate the start and
end of the “interesting” part of the log. Any activities that happen before the starting day or
after the ending day are removed and the others remain to form a new log. It is important to note
that traces are not removed if some activity falls outside of the scope, because that would result
in a new log that has the same problem: a large number of events in the middle with a start up
and cool down period. Traces that have only part of their events will exist in the output, possibly
missing start or end events. If a trace has no more events after filtering, it is removed.

An example execution of the “Start up remover plugin” is shown in Figure 5.2 which has the
BPI 2013 incidents log (as seen in Appendix C.3) as an input. It is obvious that there is a very
long period of time at the beginning of the log in which almost no events happen compared to
the rest of the log. The peak on the right, however, seems to contain many events. The start up
remover plugin allows the user to select the starting and ending day of the peak to remove all the
information in the tail. The user can see which days to select by clicking in the graph, which the
plugin will respond to by showing the day of the position clicked. In this case the start of the
peak is around day 741.

This concludes the preprocessing steps for obtained a decent input XES Event Log file. In the
next section all implementation concerning context information is discussed.

5.2 Log context information implementations

This section will discuss everything concerning context information. Five plugins will be shown to
support the use of context information in ProM. First, a formal definition for a context information
format is given in Subsection 5.2.1. This is supported by three plugins that offer handling context
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Figure 5.2: Start up remover BPI 2013 incidents example. The x-axis of the graph shows the time
in days, the y-axis shows the amount of events that were started on that day. The start and end
fields indicate the range of days to be used.

information: importing, merging and exporting context information from any source. Context
information can come from multiple sources, one of which is a method for extracting workload
information from an event log, which is discussed in Subsection 5.2.2. Once again this functionality
is supported by a plugin. Workload context information or context information from an external
source can then be added to the event log, enriching the log with context information. This is
explained in more detail in Subsection 5.2.3 and is implemented using a ProM plugin as well.

5.2.1 Log context information definition

To support context information within logs, as described in Subsection 3.2.3, a new XESExtension
(see Subsection 2.5.2 for details on XES extensions) was made, namely the context extension. First
the formal description for this context information is given, after which the main functionality is
discussed.

The context information extension allows the XEvents of XES Event Logs in ProM to be
enriched with a specific context information field that consists of a string, describing the con-
text relevant for that XEvent. In addition, an XML-format was introduced to describe context
information files, be it with ProM as a source or any external source.

An example XML context file is shown in Listing 5.1. It describes two different context vari-
ables, namely “Weather” and “Workload”. For Weather two context items are present: From the
1st of January 1970 onward the weather was “Sunny”. Then the next entry states that onwards
from a little past noon at the 28th of June the weather is “Rainy” and not Sunny anymore. The
other variable (Workload) is similar and exists concurrent to the Weather data. In practice there
are three points where the global context changes in this example, as illustrated in Table 5.1.

Another fact can be observed from Listing 5.1, namely that it is straightforward to merge
context files from multiple sources. In practice, all that is necessary for merging is to take the
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Listing 5.1: Context file example

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<con t ex t In f o>

<contextVar iab l e name=”Weather”>
<contextItem>

<context value=”Sunny”/>
<time value=”1970−01−01 01 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=”Rainy”/>
<time value=”1970−06−28 12 : 4 1 : 4 6 ”/>

</ contextItem>
</ contextVar iab l e>
<contextVar iab l e name=”Workload”>

<contextItem>
<context value=”Very busy”/>
<time value=”1970−03−01 00 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=”No work a v a i l a b l e ”/>
<time value=”1970−09−28 12 : 4 1 : 4 6 ”/>

</ contextItem>
</ contextVar iab l e>

</ cont ex t In f o>

Time Before 1970 1970-01-01 1970-06-28 1970-09-28
Weather none Sunny Rainy Rainy
Workload none Very busy Very busy No work available

Table 5.1: Global context example
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Figure 5.3: Example importing context data

Figure 5.4: Example merging context data

“contextVariable” objects from both input files and concatenate them into an output file. A plugin
was made that supports this functionality, which will be covered next.

The main functionality of the context information is based on three plugins. One for importing,
one for exporting and one for merging. When context information from an external source is
available, it is possible to use the import functionality of ProM on an XML file, selecting “Context
model from XML file” as the input method. This is shown in Figure 5.3. After importing a
TimeContext object will be present in ProM which can be used for merging, exporting and log
enriching. The latter is covered in Subsection 5.2.3.

Merging context information with other context information is done by utilizing the “Merge
context info” plugin. This plugin can take two context information TimeContext objects as input
and generates a new TimeContext object that has the data of both seperate context information
objects. Figure 5.4 shows an example in practice. After pressing start no other input is required.

The final plugin is the export plugin, which is accessed by using the standard Export button
in ProM. This plugin is responsible for exporting generates an XML file that conforms to the
standard described in Subsection 3.1.2. Figure 5.5 shows an example of exporting a new context
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Figure 5.5: Example exporting context data.

information file.

5.2.2 Extracting workload context

To demonstrate the idea of enriching a log with context information, it was necessary to first
obtain context information. A technique was implemented to extract the workload information
of certain points in time from an event log. The abstract description of this technique can be
found in Subsection 3.1.1. A number of implementation details will be discussed concerning that
technique as well as the main functionality.

First, as mentioned in the description of Subsection 3.1.1, a sliding window moving with a
step size of a day is used to decide the workload of a given day. The size of the window in both
directions around that day, the day-radius, is set to three. This is because, including the day itself,
it is equal to seven days, or: one week. Choosing an entire week for the sliding window makes
sure no effects from the lower workload in the weekend have an effect on the final result.

Next, unlike the example provided in Subsection 3.1.1, start up and cool-down periods are not
taken into account in practice. The boundary days, i.e.: days that do not have three days before
or after them, simply have less days to consider and hence the workload is probably low on those
days.

Now some details will be provided on how the sliding window has been implemented. The
input for this approach is an Event Log, which in practice corresponds to an XLog from the XES
Standard (as seen in Subsection 2.5.2). The XLog format, however, is not very convenient for
this approach. For this reason an important internal data-structure based on the XLog data was
developed: The Time-Activity Log. The Time-Activity Log (or T-Log) is, as its name suggest, a
log consisting entries that specify an activity and the start and end times of that activity, sorted
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Figure 5.6: Example run of extracting context information from an event log.

ascending by starting time. Additionally, a reference to the XES XEvent is given with each T-Log
entry, for the cases where additional information is needed. The time values are saved separately
of the XEvent, since it allows for convenient sorting over all activities in a log, which is impossible
in the XLog format.

Acquiring a T-Log is done by looking at every XTrace in some XLog. For each XEvent the
following is consolidated into a T-Log entry. The time the XEVent starts as the starting time,
the time the next XEvent starts as the ending time, the “concept-name” attribute of the XEvent
as the activity and finally a reference to the XEvent. In case of the last XEvent in a trace, the
starting and ending time are taken to be the same. After looping over all traces, a large list of
T-Log entries is obtained. These entries are then sorted ascending by starting time.

Once a T-Log has been acquired, the sliding window is implemented as follows: The current
position in the T-Log is kept track of. For each new day, the following two actions are performed:
First, it is checked if some activities currently in the window should be removed, because they
fall outside the day radius. This is done by checking whether the starting time is within the day
radius. Then, from the current position in the T-Log it is checked whether the current activity
should be added to the windows or not. If so, it is added and the position is increased by one.
If not, the current window is done. This is repeated for each day and for each day the activities
in the window are counted. After counting the activities executed on each day, the mean and
standard deviation are found and the workload information “Quiet”, “Regular” or “Busy” is
chosen for each activity, as specified in Subsection 3.1.1. Finally, all T-Log information and the
corresponding workload information is saved in the TimeContext format, as introduced at the end
of Subsection 5.2.1, where the time corresponds to the T-Log entry starting time and the context
information corresponds to the workload information.

Now this technique will be shown in practice. Taking some XES Event Log, is is possible to
use the “Extract workload information” plugin to extract the workload for each unique time in
the entire log. Figure 5.6 shows an example where context information is extracted from the BPI
2012 challenge log. A partial result of this technique can be seen in Listing 5.2. No further input
is required for this plugin and a TimeContext context information object will be generated by the
plugin. This object can then be used for merging, exporting and/or enriching an event log with
context information. The latter will be covered in the next subsection.

5.2.3 Enriching a log with context information

This section will cover how to enrich an event log with context information from any source that
conforms to the format introduced in Subsection 5.2.1.

The details discussed here are based on the methodology to find a context described in Sub-
section 3.2.3, which is, in short, to find for each context variable the last context value before a
certain time. For each XEvent in the input XLog, the time at which the event arrives is extracted.
Then, the TimeContext object is asked: What is the context, given this arrival time? In the case
that the time is before any of the context items, “null” is returned. In the case that the time is
after all context items, the combination of the last context values is returned. For any value in
between, an iteration over all times a context changes is executed. If the time falls between any
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Listing 5.2: Extracted workload file for BPI2012 log

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<con t ex t In f o>

<contextVar iab l e name=”Workload”>
<contextItem>

<context value=” Quiet ”/>
<time value=”2011−10−01 00 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=” Quiet ”/>
<time value=”2011−10−02 00 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=” Quiet ”/>
<time value=”2011−10−03 00 : 0 0 : 0 0 ”/>

</ contextItem>
. . .
<contextItem>

<context value=” Regular ”/>
<time value=”2012−02−08 00 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=” Regular ”/>
<time value=”2012−02−09 00 : 0 0 : 0 0 ”/>

</ contextItem>
<contextItem>

<context value=”Busy”/>
<time value=”2012−02−10 00 : 0 0 : 0 0 ”/>

</ contextItem>
. . .
<contextItem>

<context value=” Quiet ”/>
<time value=”2012−03−12 00 : 0 0 : 0 0 ”/>

</ contextItem>
</ contextVar iab l e>

</ cont ex t In f o>
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Listing 5.3: Enriched BPI2012 log file

<l og xes . version=” 1 .0 ” xes . f e a t u r e s=” nested−a t t r i b u t e s ”
openxes . version=” 1 .0RC7” xmlns=” h t t p : //www. xes−standard . org /”>
<t r a c e>
<s t r i n g key=” concept:name ” value=”173688”/>
<event>
<s t r i n g key=” c o n t e x t : c o n t e x t ” value=” Quiet ”/>
<s t r i n g key=” o r g : r e s o u r c e ” value=”112”/>
<date key=” time:t imestamp ” value=”2011−10−01 T00:38:44 .546+02 :00 ”/>
<s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”COMPLETE”/>
<s t r i n g key=” concept:name ” value=”A SUBMITTED”/>
</ event>
<event>
<s t r i n g key=” c o n t e x t : c o n t e x t ” value=” Quiet ”/>
<s t r i n g key=” o r g : r e s o u r c e ” value=”112”/>
<date key=” time:t imestamp ” value=”2011−10−01 T00:38:44 .880+02 :00 ”/>
<s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”COMPLETE”/>
<s t r i n g key=” concept:name ” value=”A PARTLYSUBMITTED”/>
</ event>
. . .
<event>
<s t r i n g key=” c o n t e x t : c o n t e x t ” value=” Regular ”/>
<s t r i n g key=” o r g : r e s o u r c e ” value=”11169”/>
<date key=” time:t imestamp ” value=”2012−03−01 T09:27:41 .325+01 :00 ”/>
<s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”COMPLETE”/>
<s t r i n g key=” concept:name ” value=”W Afhandelen l e ad s ”/>
</ event>
</ t r a c e>
</ log>

of those two changes, the context values before that time are chosen to be the context for that
particular time.

Now a practical example will show how to use a TimeContext context information object and
an event log to enrich the event log with context information. Figure 5.7 shows an example where
the BPI 2012 challenge log and a TimeContext object consisting of the workload information of
the BPI 2012 log are used as input. The output is once again an XLog object. For all the activities
in this log the context attributes will have been set using the context information. A user will not
need to give any input other than the TimeContext objects. A part of the resulting log is shown
in Listing 5.3

This concludes the section on context information. Five plugins have been shown to support
the use of context information in ProM. The first three consist of handling context information as
is: importing, merging and exporting context information from any source. The fourth deals with
extracting workload information from an event log, allowing a user to find context information on
the load of the system at certain times. The final plugin offers functionality for enriching an event
log with context information from any source.
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Figure 5.7: Example run of enriching an event log with context information.

5.3 Queue collection finder implementations

This section will discuss how to find a queue collection given an event log. A queue collection is
obtained in a number of steps. First, the resource-activity matrix, the matrix indicating how much
each resource has done each activity, is extracted from the event log. Then, the resource-activity
matrix is used in combination with the event log to find a set of basic queues. The implementation
details and plugins used for this are covered in Subsection 5.3.1. Then, to support the technique
of enriching basic queues with temporal and context-based service and arrival rate data, it is
necessary to find the right number of timeparts a week should be split up in. For this purpose the
Week pattern visualizer plugin was developed, which allows users to achieve this. The viewer and
the methodology for using it is covered in Subsection 5.3.2. Finally, the event log and the number
of parts found with the Week pattern visualizer is used to enrich the basic queues with temporal
and context-based data. This is covered in Subsection 5.3.3.

5.3.1 Finding basic queues

This subsection discusses the implementation details concerning finding basic queues, as introduced
in Subsection 3.1. The basic queue finder has been implemented as a series of ProM plugins.
Starting with an event log, one first uses the Resource activity matrix finder plugin, which returns
a resource-activity matrix. Then, this matrix and the event log are used in the Queue clusterer
plugin to obtain a cluster of basic queues. The actions of finding basic queues and finding the
corresponding characteristics have also been consolidated in a single Queue rate finder plugin,
which can be used directly on an event log. The implementation details of both the Resource
activity matrix finder and the Queue clusterer will be shortly discussed in this subsection, while
the Queue rate finder will be discussed in Subsection 5.3.3. Additionally, this subsection will show
the main functionality of the plugins mentioned.

First, the Resource activity matrix finder details will be discussed. Given an XLog object,
the Resource ativity matrix finder will loop over all XTraces and loop over all XEvents in these
XTraces. For each XEvent considered, the resource and concept-name attributes will be checked.
A list will be kept of all resources and all activities (concept-name attribute) found while looping
over all XEvents. Then a matrix is created for which every row indicates an activity and every
column indicates a resource. All the XEvents in the input XLog are scanned once more and the
matrix cell value for each combination of resource and activity is increased once it is encountered.
Finally, a matrix is obtained in which the amount of times each resource executed each activity
is stored, which is to be used in the Queue clusterer plugin. Table 5.2 shows partial data for the
matrix of the BPI2012 log.

The implementation of the Queue clusterer is based on the technique described in Subsec-
tion 3.1. In practice a greedy algorithm was implemented, since a brute force algorithm was too
slow. The greedy algorithm has two phases. In the first phase, for each separate activity, a set
of resources is found that produces the highest score by the metric introduced in Subsection 3.1.
The data used for making these scores is based on the Resource activity matrix discussed in the
previous paragraph. Note, however, that the thresholds for Fairr and Fairt are multiplied by a
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Activity, Resource 112 null 10862 10913 11049 ...
A SUBMITTED 13087 0 0 0 0 ...
A PARTLYSUBMITTED 13087 0 0 0 0 ...
A PREACCEPTED 4852 0 42 77 0 ...
W Completeren aanvraag 4853 6478 0 1515 31 ...
A ACCEPTED 0 0 51 166 0 ...
O SELECTED 0 0 80 222 10 ...
... ... ... ... ... ... ...

Table 5.2: BPI 2012 log partial resource activity matrix.

Figure 5.8: Example run of Resource activity matrix finder using an event log.

factor 0.75, to make the selection criteria less strict. This was necessary since in practice many
intuitively good choices did not meet the demand of Fairr or Fairt.

After phase one, we have a list of all activities with a corresponding list of best resources. For
phase two, all activities are put into an ordered list in order of appearance in the original log.
While the ordered list is not empty, the next activity is taken out. Then the score for not merging
any other activities and the scores for merging any activities still in the list will be calculated.
While the score for merging remains higher than that of not merging, activities will keep being
added. Once not merging has the highest scores, the current set of activities and corresponding
resources is saved and removed from the list. This is repeated until the ordered list is empty and a
clustering of activities and resources is found. Figure 5.9 shows an example execution. There is no
visualizer for the resulting set of basic queues, so a portion of the raw data has been transcribed
and can be seen in Table 5.3. This set of basic queues is then saved to be used in the Queue rate
finder plugin, which is discussed in Subsection 5.3.3.

5.3.2 Week pattern visualizer

A user has to provide input for the Queue rate finder, which is the amount of parts a day should
be split up in: k. It is, however, not immediately obvious what this value should be. With this in
mind the Week pattern visualizer was developed, which is an aid for users to find the right value
for this variable such that there is no overfitting and no underfitting in all the subparts following
from splitting every day of the week into k parts, resulting in a total of 7 · k parts. The main

Queue nr. Activities Resources
1 A SUBMITTED, A PARTLYSUBMITTED 112
2 W Completeren aanvraag, W Nabellen offertes, 112, null, 10913, 11201, 11119,...

W Afhandelen leads
3 A PREACCEPTED 112, 10982, 11169, 10910
4 W Nabellen incomplete dossiers null, 10913, 11049, 10629, 10809,...
5 W Valideren aanvraag null, 11049, 10629, 10809, 10609,...
... ... ...

Table 5.3: BPI2012 log partial basic queue clustering.
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Figure 5.9: Example run of Queue clusterer using an event log and Resource activity matrix.

Figure 5.10: Prime tree traversal with good candidates highlighted. On the x-axis of each node
are the time parts of the week. The y-axis is split up in two parts. The top part uses a black-body
color-map to indicate the amount of activities occurring in each time part. The bottom part is
used for indicating which time parts have a significant amount of samples. Green parts are below
threshold, purple parts above.

functionality and methodology of using the week pattern visualizer is discussed in this subsection.

The underlying structure for the week pattern visualizer is the PrimeTree, which was discussed
in Subsection 3.2.2. Each node in the PrimeTree represents a value k implying the amount of
parts the log should be split up in is 7 · k. The Week pattern visualizer has multiple options
for comparing and exploring possible values of k and showing the corresponding pattern and the
amount of overfitting that occurs, i.e. the parts for which the size falls below a threshold. The
threshold value is 100, since that is enough for most statistical tests and in particular it is enough
to do good predictions with the resulting model.

An example of such an explored PrimeTree is shown in Figure 5.10. In the nodes the green
and purple parts indicate whether a node part is below (green) or above (purple) the threshold.
The nodes 10, 6, 9 and 15 obviously have a too high fraction of parts that fall below the threshold.
Nodes 3 and 4 seem to show a patterns that have enough detail. This view can be obtained on
any XES Event Log (or XLog) by selecting the PrimeLogTree Viewer when visualizing an event
log using ProM’s visualization function, as shown in Figure 5.11.

Now the methodology to find the right value for k will be discussed, in combination with
showing the capabilities of the PrimeLogTree Viewer plugin. The first step is to explore the tree
from the root to see which paths provide interesting patterns. The screenshot in Figure 5.12 shows
an example tree of the BPI Challenge 2012 log as described in Appendix C.2 which was partially
explored. Exploring the tree is done by clicking on individual nodes in the tree. Once a node
is clicked, it expands into all possible children. In this case the product of the node value with
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Figure 5.11: Example of starting a new PrimeLogTree Viewer instance.

Figure 5.12: Visualization of partially traversed Primetree of BPI Challenge 2012 log. On the
x-axis of each node are the time parts of the week. The y-axis is split up in two parts. The top
part uses a black-body color-map to indicate the amount of activities occurring in each time part.
The bottom part is used for indicating which time parts have a significant amount of samples.
Green parts are below threshold, purple parts above.

the primes two, three and five. The log considered was generated by a system that does most
activities in a normal work week. In this picture it is not immediately clear what the right way
to go will be, but it is apparent that the branch of 5 (including 10 and 15) does not have very
promising patterns, since it does not seem to have any similarity with a work week.

The second step is zooming in on branches of the tree that seem interesting. The user can
choose to zoom in on a certain node, for example 4. Zooming in is achieved by selecting the
“Single node” zoom modus and entering the number of the node that should be zoomed on below.
Then the “Update tree” button should be pressed. Figure 5.13 shows the tree zoomed in on node
4 (indicating a total of 4 · 7 = 28 parts in the week). Here one can see that the nodes 24, 12 shows
a promising result, but in this view it is difficult to compare exactly how the patterns relate.
The grey nodes are nodes for which the pattern cannot be visualized in the space given without
becoming imprecise. If knowledge of the pattern of these nodes is deemed relevant, one can zoom
in on them, or, alternatively, zoom in on a set of nodes to compare them.

The final step is to compare a number of nodes. Comparing a set of nodes is achieved by
selecting the “Node set” zoom option and entering a set of node numbers, separated by comma’s.
Then the “Update tree” button should be pressed. Let’s say the user has chosen 12, 24 and 36
as possible candidates, based on his knowledge of the system. Figure 5.14 shows a comparison of
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Figure 5.13: Primetree visualization of BPI Challenge 2012 log zoomed in on node 4. This is the
same data as for Figure 5.12, but taken the node with value four as a root.

the nodes 12, 24 and 36. Although 24 and 36 have a larger amount of parts below the threshold
than 12, it seems that 12 does not show enough of a pattern. Between 24 and 36 the choice is
rather difficult. Both have about the same pattern and about the same amount of parts below the
threshold. The user, knowing a normal workday in this process is 24 hours, would choose 24 over
36.

The value of k found is the one that can be used when utilizing the Queue rate finder plugin
to find temporal and context-based data, which is discussed in the next subsection. Before that,
the other functionality of the week pattern visualizer is touched upon. Consider Figure 5.13
and observe the options menu on the right. At this point visualization has been done using the
distribution size as the indicator for patterns. However, one can use other “Metric” values, namely:
The distribution mean or distribution variance for finding patterns. These patterns are mostly
very similar to that of the distribution size, especially for the finer grained results. In addition
to changing the pattern metric, it is possible to tweak the sizes of nodes and the space between
nodes, to find a better picture of the tree, e.g.: fitting more nodes on the screen or making nodes
larger to have a better understanding of their pattern.

At the very top of the options a field named “Length of the biggest time unit(days)” is available.
For this approach the biggest time unit is a week, as has been argued in the text around Definition
3.2.1. For experimental purposes, however, one might be interested to see patterns not bound to a
week, but instead for example a day or a month. When changing this option it is necessary to use
the “Begin new tree” button for the changes to take effect. This is necessary since the structure
of the log parts is very different depending on the biggest time unit. The next subsection will
discuss how the value k found using the week pattern visualizer is used in the Queue rate finder.

5.3.3 Finding a queue collection

The previous subsections focused on how to obtain a set of basic queues and how to find the value
k indicating the amount of parts a weekday should be split up in to do good predictions. The input
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Figure 5.14: Primetree visualization of BPI Challenge 2012 log zoomed in on nodes 12, 24 and 36.
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Figure 5.15: Schematic overview of how queue characteristics are found. Time parts indicate the
relative time part in the week, e.g. the first hour of the week could be time part 1. Context
indicates a unique context in which data can arrive. Each cell contains data that arrived in the
corresponding relative time part and context.

for this method is an event log, a QueueClustering object corresponding to that event log, similar
to the one presented in Table 5.3 and a variable k indicating the amount of parts a day should be
split up in time-wise. This subsection will elaborate on how this set of basic queues and value k
are used and the implementation details of the ProM plugin that finds the queue characteristics,
namely the “Queue rate finder” are discussed. This plugin implements the concepts discussed in
Section 3.2 and the implementation details of the “Queue rate finder” will be discussed as well.
The output of this technique is a queue collection. Figure 5.15 shows a schematic overview of the
technique that is now discussed.

First, the data inside the event log and QueueClustering object is split up into a number of
smaller parts. The QueueClustering and the event log are used to split up all XEvents within the
XLog based on: The queue they belong to, the relative part of the week they arrive (one of 7 · k
parts) and the context of the XEvent. So, for example, if k = 24 and an activity arrives on 29-09-
2014 at 3:01, which is a monday, and the context at this time is “Busy”, then this activity will fall
into the cell with time part 4 (since 3:01 is in the fourth hour of the week) and context “Busy”. All
the XEvents are converted into TimeActivity objects, which are, as specified in Subsection 5.2.2,
objects that contain the starting time, ending time, event type of the XEvent and a reference to
the XEvent itself. These TimeActivity objects are put in lists which are put into a big Hashmap,
based on their queue, relative part of the week and context, as in the left side of Figure 5.15.

Then, in the second phase, a loop is done over all elements of the big Hashmap mentioned in
the previous paragraph. Every bottom element is a list of TimeActivity objects. For every bottom
element, a service time distribution is found using the execution times (ending time minus starting
time) of all the elements in list of TimeActivity objects. The values in these distributions will be
binned with bin sizes equal to the time part sized. For example, if k = 24, there will be a bin for
every hour. All these distributions are put into another Hashmap, also based on queue, relative
part of week and context. The right part of Figure 5.15 shows the idea for this structure.

Apart from the service time distributions, information about the arrival rate is saved. For each
Queue and each relative week part and context within this queue, the total number of activities is
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Figure 5.16: Starting screen for Queue rate finder with QueueClustering object.

counted. Then, the total number of weeks that was considered in the original event log is counted.
The arrival rate of that particular week part, context and queue is then the number of activities
divided by the number of weeks.

Next, the Hashmap is converted to a QueueClustering object by taking the Hashmap entry for
a given queue and adding this info to a Queue object. In practice, this means that for each Queue
there is a matrix of distributions corresponding to all relative week parts and contexts and an
arrival rate number for each of these as well. All these Queues together form the queue collection
that is produced as an output and that can be used for predictions and gaining insight.

Now an example run of the Queue rate finder will be illustrated. First, the user should select
an event log and a QueueClustering object corresponding to that event log. In this case the BPI
2012 challenge log was used. Figure 5.16 shows the way for starting the plugin and the resulting
QueueClustering object. Once the start button is pressed, the user is prompted to enter the value
for k, as seen in Figure 5.17. For the BPI 2012 log, 24 is a good value for k. After entering this
value, the plugin does all the other work and produces a queue collection. A queue collection
result for the BPI 2012 log is difficult to visualize, as it consists of a large number of service rate
distributions and arrival rate numbers. To illustrate the produced result, Figure 5.18 shows the
results for a single cell of a single queue. The figure shows the activities and resources that belong
to this queue (information obtained from the basic queues) and shows the arrival rate and queue
sojourn duration distribution for this queue in the context “Regular” and in relative time part 9.

5.4 Queue collection prediction implementations

This section will cover the implementation details and main functionality of the plugins that
support the techniques introduced in Chapter 4, namely: making predictions for queues and finding
the most important bottleneck queues. Predicting queue exit times is covered in Subsection 5.4.1.
Predicting sojourn times is covered in Subsection 5.4.2 and finding the most important bottleneck
queues is discussed in Subsection 5.4.3. All the individual pieces of implementation might be
interesting from a research perspective, but are not so obviously useful from an analyst or any
other ProM users’s perspective. So, to allow end users, e.g.: analysts or managers, to easily use
the functionality provided by the plugins mentioned in this section, a few extra all-in-one plugins
were developed. Each subsection includes a short description of their corresponding all-in-one
plugin.

5.4.1 Queue exit time predictor

The queue exit time predictor, as discussed in Subsection 4.1, has been implemented through
the “Make exit time predictions based on a queueing model” plugin for practical use. First, the
workings of the Queue exit time predictor are discussed and then it is discussed how the predictor
fits within the validation plugin and in the practical plugin.
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Figure 5.17: Input screen for Queue rate finder.

Figure 5.18: Partial result for BPI 2012 log queue collection. For a single queue, a single cell for
time part 9 and context “Regular” the queue sojourn time distribution and arrival rate are shown.
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Figure 5.19: Example use of the exit time predictor plugin.

Figure 5.20: Visualization of results of exit time predictor plugin for the BPI2013 log. Note that
some of the predicted values are the same as the arriving times. This is due to activities that take
shorter than one time part to complete while the distributions are binned according to the size of
a time part, e.g. one hour for k = 24.

To understand the queue predictor it is necessary to look at the queue collection format once
more. As mentioned in Subsection 5.3.3, a queue collection is a list of queue objects. Each queue
object contains a map with data split on basis of: 1. their relative arrival time in a week (e.g. the
second hour of a Tuesday), 2. the context at the absolute time of arrival (e.g. “Busy”). For each
combination of a relative time part and a context, the service time distribution and arrival rate
have been stored. Say that a queue predictor gets some new arriving activity as input, in which
the activity, the relative arrival time and context of the activity are known. First, the right queue
is found, i.e.: the queue for which the activity is in the list of activities belonging to that queue.
Since the queues are not stored with activities as an index, a loop is done over all queues and the
queue that contains the right activity is taken.

Once the right queue is found, the data-structure inside the queue is used for finding the
service time distribution conforming to: 1. the relative time part and 2. the context of the
arriving activity. To find the relative time of an arriving activity, it is necessary to convert the
absolute arrival time by applying a modulo, i.e.: the relative arrival time is the absolute arrival
time modulo the amount of time in a week. To find the week part corresponding to this relative
arrival time is then . Once the service time distribution is obtained, the predicted duration is
found by extracting the most likely value from the distribution. The predicted exit time of the
arriving event is then the absolute arriving time of the event plus the predicted duration.

The practical plugin, named the “Make exit time predictions based on a queueing model”,
can be found in ProM as seen in Figure 5.19. Internally, the plugin uses a queue collection and
predicts the time for all events in a test set. The result is then shown in a visualizer, as shown in
Figure 5.20, as a list of predicted exit times. This result can also be exported to a CSV file using
an export plugin, accessed by the standard ProM export button. Figure 5.21 shows an example
of this.

In addition to a plugin based on a queue collection and testing set, an all-in-one version was
developed for end users. To start the all-in-one queue exit time predictor all that is needed is a
training log and testing log. Figure 5.22 shows an example start of the plugin. The plugin will
result in a set of prediction data which can be visualized and exported, as previously discussed.
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Figure 5.21: Exporting results of exit time predictor plugin.

Figure 5.22: Example use of all-in-one queue exit time predictor plugin.

5.4.2 Sojourn time predictor

The implementation of the sojourn time predictor, as discussed in Section 2.4.2, consists of two
subparts. The first is the queue predictor that was discussed in the previous subsection and
Section 4.1. The other is the temporal and context-based process routing that was discussed in
Section 2.4.2. First, the implementation details of the temporal and context-based router will be
discussed. Then, the implementation of the sojourn time predictor itself will be explained. Finally,
a practical prediction plugin where the predictor is used will be mentioned.

A temporal router is created and trained by using an XLog and value k indicating the amount
of parts a week is split up in as input. Training the temporal router is done in two phases. First,
for each XEvent in each XTrace in the input XLog, the following is counted: Given some prefix
of activities, the last type occurring in a certain context, and in a certain part of the week, count
the amount of times each activity follows given that prefix, context and part of the week. If no
activity follows in the trace, the end of the trace is counted by using a constant “ END ”. For
example, if there are 5 occurrences of the activity “Package lost” following after activity “Sort
package” in the context of “Busy” and the time part being a monday morning, the count for that
combination would be 5. The count is done for each possible combination. The second phase is
to look, for each prefix, in each context, in each part of the week, what was the following activity
with the highest count? A loop is done over all possibilities and the activity with the highest
count is stored. This means one obtains a HashMap in which the keys of activity prefix, context
and time of the week part, one can obtain the most likely next activity.

The sojourn predictor builds upon the queue predictor and the temporal router for its results.
To instantiate the sojourn predictor, an XLog training set, XLog testing set and queuing network
based on the training set are required. A temporal router and context object are created using
the training set on instantiation. To predict the sojourn time, the following parameters should be
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Figure 5.23: Example use of the sojourn time predictor plugin.

Figure 5.24: Visualization of sojourn time predictor results for the BPI2013 log.

supplied: The current prefix of activities that occurred, the current context and the current part
of the week. Then, the following steps are alternated, until the Temporal router predicts the end
of the trace:
Using the Queue Predictor, predict the queue exit time of the current activity. Use the context
object to determine the context at the exit time, derive the part of the week of the exit time. Use
the temporal router to predict the most likely next activity, using the context, part of the week
and prefix of previous activities.
After the end of the trace is predicted, the final end time minus the absolute starting time is
predicted as the sojourn time.

The practical plugin, named the “Make sojourn time predictions based on a queueing model”,
can be found in ProM as seen in Figure 5.23 and requires a testing set, training set and queue
collection. Internally, the plugin uses a sojourn predictor and predicts the time for all traces in a
test set. The result is then shown in a visualizer, as shown in Figure 5.24, as a list of predicted
sojourn times. This result can also be exported to a CSV file using an export plugin, accessed by
the standard ProM export button. Figure 5.25 shows an example of this.

In addition to a plugin based on a queue collection, testing set and training set, an all-in-one
version was developed for end users. To start the all-in-one queue sojourn time predictor, all that
is needed is a training and testing log. Figure 5.26 shows an example use of the plugin. Similarly
to the sojourn time predictor, this plugin will also result in a set of prediction data which can be
visualized and exported, as discussed previously.

5.4.3 How to find bottleneck queues

This subsection will discuss the implementation details of the bottleneck finder and the main
functionality offered by plugins supporting these techniques. The bottleneck finder, as mentioned
in Section 4.3, has been implemented as the Bottleneck Finder Plugin (See Section B.6) and has
stayed close to its conceptual description. The algorithm works in two phases.

In the first phase, for each context and week part, the amount of arriving activities is obtained.
This is done globally, so the count continues over all queues in the system. Then, the count of
every context and week part is stored in a RankedPart object. The RankedPart object consists of
the context, the week part and the amount of activities that arrived. The reason for putting them
in this format, is that they can easily be sorted using standard Java Comparable operations. This
results in a global ranking of how busy parts of the week in a certain context are.
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Figure 5.25: Exporting of sojourn time predictor results.

Figure 5.26: Example use of all-in-one queue sojourn time predictor plugin.
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Figure 5.27: Example of Bottleneck finder use.

Figure 5.28: Example result of bottleneck finder, showing bottlenecks in process.

The second phase focuses on obtaining rankings for each individual queue and measuring the
similarity between the ranking of the queue and the global ranking. The ranking within individual
queues is the mean service time. For each context and week part the service time is saved in a
RankedPart object, which is then sorted. To compare the rankings, the Kendall-τ metric was
used. The resulting value from the metric is saved as the score for a given queue. A list of queues
with scores is obtained, sorted and returned as the final ranking of how much a bottleneck every
queue is.

Now the main functionality of the plugins that support this functionality is presented. The
bottleneck finder consists of two plugins: The first is the actual bottleneck finding plugin called
“Find bottlenecks in queue clustering”. Figure 5.27 shows an example use of the bottleneck finder.
The second is the bottleneck data visualizer, which is automatically accessed after using the “Find
bottlenecks in queue clustering” plugin or by using the standard ProM visualization functionality.
Figure 5.28 shows an example result for the BPI 2012 challenge log. In this result one can see
the ordering of the bottleneck factor of the queues, implying the top listed queue is the biggest
bottleneck.

In addition to a plugin based on a queue collection, an all-in-one version was developed for
end users. To start the all-in-one bottleneck finder, all that is needed is an input event log.
Figure 5.29 shows an example use of the plugin. The bottleneck data resulting from this plugin
will automatically be visualized after executions, as previously discussed.

Figure 5.29: Example use of all-in-one bottleneck finder plugin.
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Chapter 6

Experimental evaluation

In this chapter the experimental evaluation of the techniques realized in the previous chapter is
discussed. The experimentation will generally be done in two parts. The first is the validation of
properties of the technique and trying to find the strengths and weaknesses of the approach. The
second is to test the technique on real-life data sets and check how well they perform compared
to other techniques. First, the experimental setup will be discussed in detail in Section 6.1.
Then, there will follow three sections with experiments, one for each end-user plugin: Section 6.2
will discuss the experiments concerning the queue exit time predictor, Section 6.3 will cover the
experiments on the sojourn time predictor and in Section 6.4 the experiments concerning the
bottleneck finder will be discussed.

6.1 Experiment setup

This section will cover the experiment setup for all the experiments in the coming sections. In
this section the machine used for experiments will be described, as well as the tools, their versions
and if relevant their configuration. For most experiments two real data sets were used, namely
the BPI 2012 challenge log and the BPI 2013 challenge log. Background information on these logs
can be found in Appendix C.

The machine used for experiments contains an Intel c©CoreTM i5 CPU and 4 gigabytes of
RAM. For the experiments an eclipse environment was used in which a ProM environment version
6.3 (“Salt”) with UITopia was utilized with a maximum of 900 megabytes of memory for the java
virtual machine. To generate synthetic logs CPN Tools version 4.0.0 and Prom Import Framework
version 7.0 (Propeller) were used.

Throughout this chapter, experiments will be conducted using k-fold validation. To be able to
perform k-fold validation, it is necessary to split up event logs into parts. A possibility would be
to split up the event log on a trace or event level by randomly selecting traces or events. When
splitting on event level randomly, however, it is probable that all information about traces is lost.
When splitting on trace level, the problem of losing trace information is gone and would present a
decent option. However, another valid option is introduced: splitting the event log based on time.

A k-fold validation method based on time is now discussed and is illustrated in Figure 6.1.
Logs are split up on an event level. In Figure 6.1 the log is shown as a number of traces which
are lines of blocks. Every individual block represents an event. The left side of each event block
indicates the starting time and the right side indicates the ending time, which is defined as the
start of the next event in the same trace. Each fold has a starting and ending time and all events
for which the start falls between these times belong to that particular fold. This means that the
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Figure 6.1: K-fold validation based on time splitting.

log is split at an event level and some traces will be split. For the experiments, a log is split up in
n folds according to this strategy and n− 1 folds are merged to form a training set. The other set
will be used for testing. The assumption made for this validation method to work is that there
is no concept drift, i.e.: the process considered remains largely stable over all folds. The amount
of folds used in all experiments was chosen as a relatively small number: four, to prevent that a
large amount of traces is split into many small parts.

For each experiment the error of the methods tested with in these experiments will be compared.
An error metric will be used to compare predicted times resulting from some predictor and the
actual times as they are in the event log. The metric used is the “normalized root mean square
error”, since it can be used independently of time sizes. This is necessary, since in real life logs
there is a large difference between event durations, ranging from seconds to weeks. Performing
better in these experiments thus means having a lower relative “normalized root mean square
error”.

6.2 Queue exit time prediction experiments

This section will cover all experiments concerning the queue exit time predictor plugin. First, a
number of synthetic logs will be considered to show the properties of the queue exit time predictor
in. Then, the performance of this technique on real-life data will be discussed.d.

For both experiments a number of techniques will be used for comparison. The first technique
is the queue exit time prediction as described in Subsection 5.4.1. This technique will be tested
for a different number of configurations of input variables k and with or without workload con-
text information. Then, to provide a baseline comparison for this technique, a technique called
“Average” is used. This technique takes the average over all the durations of activities in the
training set and will predict this average in every case. In general the assumption is made that if a
technique performs worse than the “Average” technique, it performs bad and if it performs better
it is a good sign. Finally, the “Last event” technique is used, which is a snapshot predictor that
predicts the duration of the last activity of some type as the duration for the incoming activity of
the same type.

Idle period test: The purpose of the first experiment is to show the effect of the size of idle
periods while maintaining a stable total idle time, where the size of the idle period indicates the
amount of time in which no events are being executed. The expectations for this test are formalized
in Hypothesis 6.2.1.
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Figure 6.2: Idle period testing model.
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Figure 6.3: Idle period pattern configurations. For each graph the x-axis indicates the day and
the y-axis indicates with green on which part of the day work is done, if at all.

Hypothesis 6.2.1 While keeping the average service time and total idle time stable, the longer
the amount of consecutive idle hours and hence smaller the amount of separate idle periods, the
better the “Average all” predictor will work compared to the queue exit time predictor, since the
completion times of only a few events will be influenced by the idle time. The “Last event” predictor
will perform better once there are less and longer idle periods, for the same reason. The queue exit
time predictor will perform relatively well in the scenario with a higher number of idle periods.
The difference between using or not using workload context information should be negligible, since
no change in workload on a large scale will happen.

To test this approach a model designed in CPN Tools was used, of which the conceptual model
can be seen in Figure 6.2. This model concerns a single queue, to provide a controlled testing
environment. Jobs arrive with a stable rate λ following a Poisson process with mean arrival rate of
five times the service rate. The service rate µ is defined by a Poisson process where the interarrival
time 1/µ = 16 hours and 40 minutes. This time excludes the waiting time in the idle periods. The
queue buffer is of infinite size and the amount of servers is one (c = 1).

The variation in this test is the number and length of idle periods in a week pattern. Figure 6.3
shows a number of week patterns that were used for testing. The granularity of the idle periods
goes from 7 half days of idle period until one idle period of half a week long.

The following techniques were used in order to test the hypothesis: “Average”, ”Last event” and
the queue exit time predictor with k = 24, for both cases with and without workload information.
The resulting error values for these tests can be seen in Figure 6.4. In this graph, “Average”
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Figure 6.4: Idle period test results. The line for “Average” indicates the “Average all” method,
the line “LastEvent” indicates the “Last event” predictor, “Queue” indicates the queue predictor
with k =24 and no context information. “QueueContext” indicates the same method, but with
context information. On the x-axis, seven idle periods corresponds to the top left time pattern in
Figure 6.3. Four , two and one idle periods correspond to the top right, bottom left and bottom
right pattern respectively.

indicates the “Average” technique, “LastEvent” denotes the “Last event” technique, “Queue”
means the queue exit time predictor without workload information and “QueueContext” is the
same, but with workload information. Workload information was extracted and added using the
implementations described in Subsections 5.2.2 and 5.2.3 respectively.

The results in Figure 6.4 mostly conform to Hypothesis 6.2.1. As expected, the queue approach
does well compared to the baseline “Average” and snapshot predictor “Last event” when the
amount of idle parts increases. Additionally, both “Last event” and “Average” seem to perform
somewhat better for the low amount of idle periods and it also seems to hold that there is hardly
any difference between the queue exit time prediction techniques. The behaviour for both the
“Average” and “Last event” techniques is expected for two idle periods, but the peak at one idle
period is unexpected. The source of this effect is that within the large idle period a lot of activities
pile up. Since these piled up activities are only started after the idle period, there exists heavy
queueing. In the case of heavy queueing, activity durations become relatively long and create a
sparse distribution. The latter makes it additionally difficult for the queue exit time predictor to
find a good most likely value in distributions. The “Last event” method seems to perform bad
overall, being outmatched by the bottom line of “Average”. The reason for this is the fluctuation
in event durations, i.e.: it often occurs that events with a relatively long duration and events with
a relatively short duration alternate.

Idle period service time test: The second experiment is similar to the first in the sense that
we will once again look at the size of idle periods. This time, however, the mean service time
will increase as the largest idle period does. The expectations for this test are formalized in
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Figure 6.5: Idle ratio testing model.

Hypothesis 6.2.2.

Hypothesis 6.2.2 While keeping the total idle time stable, when increasing the amount of con-
secutive idle hours and at the same time increasing the mean service time, the better the queue
exit time predictor will score relatively to the “Average” and “Last event” techniques. It is ex-
pected that the queue exit time predictor will make equally good predictions with or without context
information, since there is no big shift in workload.

To test this approach a model designed in CPN Tools was used, of which the conceptual model
can be seen in Figure 6.5, which is similar to that of the previous test. The only difference is that
the service rate is now defined as µ = 1.5 ∗ I. The variable I here indicates the largest consecutive
idle period present in the schedule. For variability, once again the week patterns of Figure 6.3 are
used. The value I for the first pattern would be half a day, since every idle period has that size.
The value for the second would be one day, since the largest idle period there is one day. This is
done for each pattern and both mean arrival and mean service times are updated based on this
value.

For this test the same techniques were used as for the previous test, i.e. the queue exit time
predictor with k = 24, with and without context information, and both “Average” and “Last
event” techniques. The error values results for these tests can be seen in Figure 6.6. Note that the
number on the bottom indicates the amount of idle periods and not the length of the idle periods,
i.e. the higher the amount of idle periods, the shorter their length.

The results in Figure 6.4 mostly conform to Hypothesis 6.2.2. As expected, the queue exit
time predictor, independently of workload information, outperforms both other techniques for
larger idle periods (and hence less idle periods). Unexpectedly, the baseline “Average” technique
also performed relatively good for the larger idle periods. This is due to longer service times
relative to idle periods giving a lower standard deviation between the predicted values. Another
unexpected effect is that the snapshot predictor “Last event” performs worse the longer the idle
periods become. This is due to an alternating effect that follows from larger idle periods combined
with longer mean service times: longer durations are alternating with relatively shorter durations.

Arrival rate/service rate ratio test: The final synthetic experiment for the queue exit time
predictor will be looking at the ratio between the mean service rate and mean arrival rate. One
would expect that with no queueing, the “Last event” and “Average” predictor perform relatively
well and that the queue exit time predictor shines when light queueing occurs. For heavy queueing
it will be difficult for all techniques. These expectations are formalized in Hypothesis 6.2.3.

Hypothesis 6.2.3 While keeping working and idle periods stable and increasing the ratio of ar-
rival rate/service rate, the following will occur: For no queueing and heavy queueing, the queue
exit time predictor will be inferior to the “Average” and “Last event” techniques. In between the
queue exit time predictor will be better than the other techniques, independent of using workload
information.

To test this approach once more a single-queue model was used, with a single server. A week
pattern as shown in Figure 6.7 will be used for defining the working and idle periods for this
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Figure 6.6: Idle ratio test results. The line for “Average” indicates the “Average all” method,
the line “LastEvent” indicates the “Last event” predictor, “Queue” indicates the queue predictor
with k =24 and no context information. “QueueContext” indicates the same method, but with
context information. On the x-axis, seven idle periods corresponds to the top left time pattern in
Figure 6.3. Four , two and one idle periods correspond to the top right, bottom left and bottom
right pattern respectively.
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Figure 6.7: Standard week pattern. The green parts indicate which part of the day work is done.

experiment. One can observe that in the weekend days nothing is done and all the other days
start with twelve hours of work, followed by twelve hours of idle time. The variation in this
experiment will be the ratio between arrival and service rate, i.e. the factor r for which λ = µ/r.
The values used for r are in the set {3, 4, 6, 8, 10}.

The results of this experiment can be observed in Figure 6.8. As predicted in the hypothesis,
the queue exit time predictor performs poorly in case of very heavy queueing (ratio = 3) and the
other techniques suffer as well. Surprisingly, however, the queue exit time predictor with workload
information does perform well for the case with heavy queueing. The reason for this is as follows:
When heavy queueing occurs, the queue size keeps growing and growing and hence the amount of
activities arriving and being executed grows compared to the starting state. For this reason, the
queue exit time predictor with workload information can distinguish between a more quiet and
a more busy period. Since the distributions for these periods are split up, a better prediction is
obtained. In addition, the queue predictor performs well for very light queueing as well, which is
due to the fact that the other techniques do not work well with the week pattern. It is noticeable
that the snapshot predictor “Last event” is once more worse than the base line. This is due to
at one side the week pattern and at the other the queueing behaviour, which lead to alternation
between longer and shorter event durations.

Real-life data experiment: This experiment will focus on testing the queue exit time predictor
on real-life data. A number of real-life data sets will be used for experimenting: The “BPI 2011”
challenge log concerning a hospital process, the “BPI 2012” challenge log concerning the process of
a financial institute, the “BPI 2013” challenge log on closed incidents of an incident management
system, a log of a building permit application process for a Dutch municipality called “CoSeLoG”,
a log for the receipt handling phase of an environmental permit process which will be called
“Receipt”, and a real-life like synthetic log concerning a photo copier process called “synPhoto”.
All logs except the synthetic photo copier log consist of real data from companies and was used
as a challenge input to test various process mining techniques. The synthetic photo copier log
is included to see the difference between real life work patterns and artificially created working
patterns. The source of all logs is the 3TU Datacenter1 and all logs are described in Appendix C.

A number of techniques will be used for comparison in this experiment. The baseline for these
experiments will once more be the “Average” predictor. The baseline will be used as an indication
for whether the technique is worth using, i.e.: if it has a lower error than the baseline. The “Last
event” snapshot predictor will be used for comparison as well. Finally, a number of configurations
of the queue exit time predictor will be used. The different values for k will be one, four and 500.
For each value of k, an experiment with and without workload information will be done.

Before a hypothesis will be made, the main characteristics of all the input logs will be summa-
rized as a basis for this hypothesis:

1http://data.3tu.nl
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Figure 6.8: Arrival and service rate ratio test results. The line for “Average” indicates the “Average
all” method, the line “LastEvent” indicates the “Last event” predictor, “Queue” indicates the
queue predictor with k =24 and no context information. “QueueContext” indicates the same
method, but with context information. The line for “Average” for a ratio of three performs
relatively extremely poor and hence it was chosen to not show the complete line, as it would
obfuscate the more interesting results.
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• The BPI 2011 log was obtained from a Dutch academic hospital and consists of a very large
amount of events (150291) and a relatively small amount of cases (1143), many of which
take zero seconds of time and has in general long cases. There is a clear week pattern in this
log, but there is not a clear workload difference pattern. There is a large number of different
starting activities in this log.

• The BPI 2012 log was obtained from a Dutch financial institute and has a large number of
cases (13087) and a large amount of events (262200). A large portion of the activities in this
log take a very short time, e.g. a few seconds. There are two kinds of cases present in this
log, one kind is almost immediately over after it opens and the other kind takes a longer
time, e.g. a few weeks. This log has a clear week pattern, but no clear workload pattern.

• The BPI 2013 log ontains events from an incident and problem management system and
has a relatively small number of cases (1437) and also a small number of activities (6660).
Typical cases take a very long time, e.g. a year and have a relatively small number of
activities. There is a clear week pattern and workload difference pattern in this log.

• The “Receipt” log considers the receipt phase of an environmental permit application and
has in general very short cases, e.g. done within a day, with some exceptions. There is
a relatively small number of cases (1434) and activities (8577). This log shows both week
patterns and difference in workload patterns.

• The “CoSeLoG” log contains the records of the execution of a building permit application
process and has a small amount of cases (937) which are in general very long, e.g. a year.
Many cases have a large number of events (38944 events in total), of which many of which
are very short and some are take a very long time. There are a lot of different events present
in this log. This log shows a week, but no workload pattern.

• The synthetic photo copier log “synPhoto” is the only synthetic log modeling a photo copier
and hence shows no week nor workload patterns. There is a small amount of cases (100),
but a large number of events (40995). Most of these events take around ten minutes and
most cases are around half a year long, but most activity in this case is present in only a
few weeks of the total time.

The main intuition is that the queue exit time predictor performs well on logs with day patterns
and logs that take a relatively long time. The expectation is that the snapshot predictor performs
well on very short activities and when there is less week patterns. Hypothesis 6.2.4 formalized
these expectations.

Hypothesis 6.2.4 It is expected that for logs with a week and workload pattern, i.e. “BPI 2013”
and “Receipt” , the queue predictor with k = 24 and workload information will perform the best. It
is expected that for all cases with a week pattern, i.e. all log except “synPhoto”, the queue predictor
with k = 24 will outperform other methods and queue methods with other values for k will not be
consistently better than the other techniques. It is expected that the “Average” predictor will be the
worst for all techniques except “synPhoto” and that it will perform well on “synPhoto” since it is
very regular. It is expected that the “Last event” predictor will perform well overall, except for the
logs with a workload pattern, i.e.: “BPI 2013” and “Receipt”.

The results of the experiments can be observed in Table 6.1 and are mostly as expected. In
general, note that errors of 0.0 indicate errors so small that they were indistinguishable within the
evaluation environment. There are small differences between these errors, but they are negligible.
Also, in general, scores between different variants of k and with or without workload for the queue
exit time predictor are not exactly the same, but have a negligible difference that is removed when
rounding. Another note is that the choice for the activity duration has a large impact on the
set of events tested and their result. Different interpretations for duration might lead to different
results. Lastly, the values for the version of the queue predictor with k = 500 and the “BPI2013”
log could not be completed, since there was not enough memory.
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Technique, Log synPhoto Receipt BPI2011 CoSeLoG BPI2012 BPI2013
Average 2.39E-8 9.44E-5 2.81E-5 0.0086 2.85E-5 0.0010
LastEvent 1.45E-7 7.22E-8 0.0 4.87E-5 0.0 3.42E-6
Queue24 1.26E-4 1.26E-7 0.0 1.48E-4 1.16E-5 1.16E-5
Queue24Context 1.26E-7 2.17E-8 0.0 3.10E-5 0.0 3.42E-6
Queue1 8.92E-4 2.25E-6 3.72E-4 1.48E-4 0.0 7.18E-6
Queue1Context 0.0049 2.91E-7 3.52E-4 3.10E-5 0.0 7.18E-6
Queue500 1.26E-4 1.31E-7 0.0 1.48E-4 1.83E-7 -
Queue500Context 7.12E-4 1.64E-7 0.0 3.10E-5 3.78E-10 -

Table 6.1: Mean normalized root square error for a multitude of event logs on the x-axis and
techniques used for prediction on the y-axis. Bold values are the lowest error values for some log.

For the “BPI 2011” log, it is noticeable that many techniques score a very low error. The reason
for this is that a very large number of events in this log take zero time. The same holds for all the
zero error values in the “BPI2012” log. For this reason, many of the models often predict exactly
zero for a large number of events and get it right. The “Average” predictor performed, as expected,
quite well when there was no week or context pattern. Especially for the “synPhoto” log, since
this had high regularity. In general, the “Last event” predictor performs poorer than expected for
some cases, but on par with the best queue technique in others. This is as expected, since “Last
event” performs quite well on logs with short cases and activities and does not perform well on
cases where workload has a big impact. The queue predictor with value k = 24 and workload
context information consistently performs very good, as was expected. Other variants of the queue
predictor also show good results, but not much consistency. In general the queue approach works
well, defeating the base line “Average” and often also the “Last event” snapshot predictor. To
further show the worth of this approach, experiments with other state of the art techniques should
be executed, which is left as future work.

6.3 Sojourn time prediction experiments

This section will cover the experiments showing the capabilities of the queue sojourn predictor
plugin introduced in Subsection 5.4.2. Given that part of the sojourn time predictor is the queue
exit time predictor, a focus will lie on the next event prediction part of this approach. This is why
there is only one experiment based on synthetic logs. In addition, an experiment on real-life data
will be executed, once again using a large set of real-life logs. All tests will be executed by doing
k-fold validation where logs are split on time. The effectiveness of techniques will be measured by
taking all traces in a testing set and comparing the actual duration of those traces to the predicted
duration. The prediction methods will get the first event of the trace as an input and need to
deduce the sojourn time. The normalized root mean square error of the difference between the
prediction sojourn time and the actual sojourn time is the error rate.

For these experiments a number of techniques will be used for comparison. The first technique
is the queue sojourn time prediction as discussed in Subsection 5.4.2. This technique will be
tested for possibly a different number of input variables k and possibly with and without workload
context information. Then, to provide a bottom-line comparison for this technique, a technique
called “Average trace” is used. This technique takes the average over all the durations of traces
in the training set and will predict this average in every case. Finally, the “Last trace” technique
is used, which is a snapshot predictor that predicts the duration of the last trace of the same type
as the duration for all incoming trace durations to be predicted.
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Single queue Straight line queues

Split and join

Loop

Figure 6.9: Basic queue collection patterns.

Basic process model pattern test: For this experiment four different basic patterns where
implemented as CPN Tools models and used for log generation. A conceptual model of all four
patterns can be found in Figure 6.9, which includes a single queue, a line of queues, a split and
join and a loop. For this experiment the following techniques will be used: “Average trace”,
“Last trace” and the queue sojourn time predictor, with and without workload information for
the following values of k : {5, 24, 500}. For each test the arrival rate was matched to the service
rate such that mild queueing occurs, i.e. no queues that keep infinitely growing and no queues that
are always empty. The amount of idle and work periods is described by a standard week pattern
as in Figure 6.7. The expected results for all these techniques are formalized in Hypothesis 6.3.1.

Hypothesis 6.3.1 The sojourn time predictor will perform on the following patterns in order of
successful to less successful: Single queue, straight line, split and join, loop. The sojourn predictor
will in general outperform the “Average trace” and “Last trace” techniques. It is expected that the
sojourn time predictions with workload information will not perform better than those without and
it is also expected that for k = 24 the results will be better than for k = 5 and k = 500.

The results of this experiment can be seen in Figure 6.10 and do not completely conform to
expectations. First, “Average trace” performs really well overall compared to the queue sojourn
time predictions and “Last trace”, which implies a low standard deviation on the activity durations.
As expected, the predictor instances with workload information do not perform better than its
counterparts without the workload information. This is due to the fact that there is no change
in workload during these test setups which results in splitting up distributions on some arbitrary
workload factor.
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Figure 6.10: Sojourn prediction pattern test results.

It is apparent for this example that, as expected, having a good value for k makes a difference.
All models except “Straight” show that k = 24 is the best choice. Prediction for the “Straight”
model appears to be difficult for all techniques, given that “Average” outperforms the best. The
reason for the queue sojourn time predictor is that there is a large amount of peaks of about the
same height, but different duration, in the distributions for this technique, which make it very
difficult to predict the exit time accurately. The other patterns do not show this effect as strongly.

Real-life data experiment: This experiment will focus on testing the queue sojourn time
predictor on real-life data. A number of real-life data sets will be used for experimenting: The
“BPI 2012” challenge log concerning the process of a financial institute, the “BPI 2013” challenge
log on closed incidents of an incident management system, a log of a building permit application
process for a Dutch municipality called “CoSeLoG”, a log for the receipt handling phase of an
environmental permit process which will be called “Receipt”. All logs consist of real data from
companies and was used as a challenge input to test various process mining techniques. The source
of all logs is the 3TU Datacenter2. A number of logs was not included, because multiple test cases
for these logs resulted in an out of memory error. The synthetic photo copier log was not included,
since it did not contain enough traces to train a classifier with these traces as an input.

A number of techniques will be used for comparison in this experiment. The baseline for these
experiments will once more be the “Average Trace” predictor. The baseline will be used as an
indication for whether the technique is worth using, which is when it has a lower error than the
baseline. The “Last trace” snapshot predictor will be used for comparison as well. Finally, a
number of configurations of the queue exit time predictor will be used. The different values for
k will be one, four and 500. For each value of k, an experiment with and without workload
information will be done. The logs that are used in this experiment have been described in detail
at the final experiment of Section 6.2. The expectations for these techniques are formalized in
Hypothesis 6.3.2.

2http://data.3tu.nl
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Technique, Log Receipt CoSeLoG BPI2012 BPI2013
AverageTrace 0.0011 0.0086 0.0021 0.0080
LastTrace 2.79E-4 0.0028 0.0038 4.35E-8
Queue24 0.0012 9.90E-4 1.06E-7 0.0
Queue24Context 0.0109 0.0081 1.84E-6 5.90E-6
Queue1 5.17E-4 0.0020 1.09E-7 0.0
Queue1Context 2.00E-4 0.0 1.22E-4 1.25E-5
Queue500 0.0013 - 0.0032 -
Queue500Context 0.0015 - 1.27E-7 -

Table 6.2: Mean normalized root square error for a multitude of event logs and techniques tested
with the sojourn time predictor. Bold values are the lowest error values.

Hypothesis 6.3.2 In general, the “Average Trace” predictor is expected to perform poorly for
cases where there is a large difference between case durations. This is in practice all input logs
except the “Receipt” log. The snapshot predictor “Last Trace” is expected to perform well on short
running cases, such as “BPI2012” and “Receipt”. The queue predictor with k = 24 is expected
to perform best for the logs without a workload pattern, e.g.: “BPI2012” and “CoSeLoG”. The
predictor with k = 24 and workload information is expected to be the best for the logs with workload
information, e.g.: “BPI2013” and “Receipt”. The queue predictors with k = 500 are expected to
perform poorly, since data is split up in many parts for the sojourn predictor and it is expected
this data will be too sparse to use for k = 500.

The results of the experiments can be found in Table 6.2 and conform mostly to the expectations
and also shows some surprising results. In general, note that errors of 0.0 indicate errors so small
that they were indistinguishable within the evaluation environment. The “Average” technique
performs badly overall but relatively good for the “Receipt” log, as expected. The “Last event” as
expected, performs quite good for logs with short cases, especially “Receipt”. Unexpectedly, the
performance for “BPI2012” is quite bad and for “BPI2013” it is rather good. This is due to an
alternating case length pattern in the “BPI2012” log and a rather stable change in case lengths for
the “BPI2013” log. Finally, the queue predictor performs relatively well on not only the expected
k = 24 (“BPI2012”,“BPI2013”), but also k = 1 often performs well (“Receipt”,“CoSeLoG”). The
reason for k = 1 outperforming the others is that the sojourn predictor splits up data on a large
number of aspects: unique prefix, relative time part, context and queue. This results in very
sparse data for each split part and hence makes a poor predictor. The cases for k = 1 have an
advantage due to less splitting compared to k = 24 and k = 500. This shows a weakness of the
current sojourn predictor, as it needs a very large number of samples to work properly.

6.4 Bottleneck finding experiments

This section will cover the experiments done to show the capabilities of the bottleneck finder plugin
as introduced in Subsection 5.4.3. For the bottleneck finder plugin there will be a single synthetic
log experiment, showing that the bottleneck finder works as it should. Then, two experiments will
be performed on real life data, namely the BPI 2012 challenge log and the BPI 2013 challenge log.
All tests will be executed by doing k-fold validation where logs are split on time. The effectiveness
of techniques will be measured by comparing the bottleneck finders results to known bottleneck
information. For the real life data an argumentation based in log data was given to compare the
bottleneck finder plugin’s results.

Bottleneck finder basic test: This experiments is a sanity check to confirm the bottleneck
finder method behaves as it should. For this experiment a model was constructed to generate log
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1/λ = 72h|36h|18h

∞

1/µ = 36h

c = 2

∞

1/µ = 1h

c = 2

Figure 6.11: Queue collection for testing bottleneck finder. Work items arriving in the system
split and arrive at both queues. Items arrive with an interarrival time of 72, 36 or 18 hours. The
interarrival time changes every 504 hours. The top queue has a mean service time of 36 hours and
the bottom queue has a mean service time of 1 hour.

Figure 6.12: Bottleneck finder basic test results.

files in CPN Tools. The conceptual model for this implementation can be found in Figure 6.11.
The interarrival times on the top left are 72, 36 and 18 hours. Every 504 hours the arrival rate
switches to create artificial busy, regular and quiet periods. In the beginning of the model jobs
are split to arrive at two separate queues. The service time of the first follows a Poisson process
with a mean service time of 36 hours and the service time of the other queue follows a Poisson
distribution with a mean service time of 1 hour. Both queues have two servers. The hypothesis
for this model has been formalized in Hypothesis 6.4.1.

Hypothesis 6.4.1 The queue with the higher mean service time of 36 hours will be predicted as
a bigger bottleneck than the other queue with mean service time of one hour.

The results of this experiment can be observed in Figure 6.12. All queues are ordered by their
bottleneck ranking, i.e.: how much correlation there is between an increased arrival rate and an
increased service time. The queue with a mean time of 36 hours was the queue with resources
{“Henk”,“Anita”} and the other queue had resources {“Katie”,“Nick”}. Hence, it is expected
that the former queue is a bigger bottleneck, which is confirmed by the results.

Bottleneck finder BPI 2012 challenge log test: To see the performance of the bottleneck
finder on real data, the BPI 2012 challenge log was used as an input for this experiment. As input
for the bottleneck finder a value of k = 24 was used. The expected results for all these techniques
is formalized in Hypothesis 6.4.2.

Hypothesis 6.4.2 By looking at the BPI 2012 challenge log it becomes apparent that many ac-
tivities often have a very small duration, because they are executed by an automatic system. Any
activities executed in this way that take only seconds are not expected to be part of a big bottleneck.
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Figure 6.13: Bottleneck finder BPI 2012 challenge log results.

Figure 6.14: Bottleneck finder BPI 2013 challenge log results.

This concerns most activities starting with A or O . Any work which is done by people and often
takes a longer time is expected to be a bottleneck. This concerns activities starting with W .

The results of this experiment can be observed in Figure 6.13. The two biggest bottlenecks
consist of activities {“W Completeren aanvraag”,“W Nabellen offertes”, “W Afhandelen leads”}
and {“A SUBMITTED”,“A PARTLYSUBMITTED”}. The former was expected, since the activ-
ities starting with W indicate people executing tasks. The latter is unexpected, but the reason
quickly becomes apparent when looking at the log: These activities are the automatic system’s
way of starting the case, after which some human resource needs to pick up this task. Tasks are
being picked up with a longer delays once things get busier, explaining the bottleneck behaviour.
A similar argument can be made for the queue with “A PREACCEPTED”. Two exceptions exist
in this list, which are the queues with activity “W Beoordelen fraude” and “W Wijzigen contract-
gegevens”. The reason is on one side that these activities occur a very small amount of times in
the log compared to the others and on the other side that all these activities on average take only
a few minutes and are hence hardly influenced by a higher workload.

Bottleneck finder BPI 2013 challenge log test: The final experiment is another real data
experiment which is based on the BPI 2013 challenge log. As input for the bottleneck finder a value
of k = 24 was used. The expected results for all these techniques is formalized in Hypothesis 6.4.3.

Hypothesis 6.4.3 It is expected that the starting activities, i.e. with activity “Accepted”, have
the biggest bottleneck, since cases are started more slowly when the workload increases. It is also
expected that the ending activities, i.e. with activity “Completed” have a lower bottleneck rating,
since they are often at the end of traces.

The results of this experiment can be observed in Figure 6.14. These results conform to
the expectations in the sense that activity “Accepted” has a high bottleneck factor and activity
“Completed” has a lower factor. The “Unmatched” activity has a very low bottleneck factor, since
it only occurs five times in the entire log and hence it can be disregarded.
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Chapter 7

Conclusion

Within this master thesis a new area useful for providing operational support was proposed named
queue mining. The strength of queue mining lies in combining the strengths of queueing theory
and process mining to perform high quality predictions and analysis. A new technique for pro-
viding operational support and finding bottlenecks was proposed with a queue mining focus. The
goal of this thesis was to answer the question: Given an event log of a process, how can one
combine queueing theory and process mining to gain insight in the bottlenecks of the process and
provide operational support for the process? The problems arising when answering this question
have been discussed and a number of example techniques within the scope of queue mining have
been proposed. Stating the main problem, in combination with the development, implementation
and experimental evaluation of an example solution is the main contribution of this work. The
contributions in this work have been summarized in Section 7.1. The area of queue mining is
relatively new and has much potential for expanding. Possible future work in this area is covered
in Section 7.2.

7.1 Summary of contributions

The core contribution of this work is a queue collection that accurately describes a business process
and allows for predictions and analysis. The innovation of this model over previous techniques
is that it uses both the strength of queueing theory by representing a process model as queues
and the strength of process mining by using real life data patterns inside these queues. Instead
of finding an average arrival rate and service rate, this technique proposes a model in which the
arrival and service rate are extracted based on the parts of the log in some relative time and in
some context. This queue collection is the core component that opens the way to a number of
techniques.

Supporting contributions include the possibility for users to obtain, merge and use context
information to enrich event logs with added information. Context information can be used gener-
ically in any technique that uses the XES format. In addition, a visualizer was created to allow a
user to view the week and day patterns that are apparent within event logs. This allows the user
to both gain insight in their business process and to provide the input for the techniques described
below, i.e. the granularity of the week, or: the amount of parts a day should be split up in.

Using the queue collection result as an input, three example techniques were developed to pro-
vide operational support. The first contributed technique is that of exit time prediction. Queue
exit time prediction has been implemented within the ProM framework and allows users to easily
and quickly obtain predictions on the completion times of events within a business process. Ev-
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erything is fully automatic and only requires a single input from the user: the granularity for the
queue collection data.

The second contributed technique is that of sojourn time prediction. Sojourn time prediction
was implemented in the ProM framework as well and allows users to predict the sojourn times for
incomplete traces in a simple and fast way. The only input necessary is the preferred granularity
and everything else is fully automatic.

The final contributed technique concerns finding the most important bottlenecks in a system.
Bottleneck finding was also implemented within the ProM framework and allows users to, given
an event log of some process, obtain a list of the most likely bottleneck queues in this process.
Once more, this approach is fully automatic except for a granularity parameter.

To verify and validate the proposed techniques, an experimental evaluation was done comparing
the proposed techniques with a baseline and a snapshot predictor. To validate and discover the
properties of the proposed techniques, a number of synthetic logs were generated and their effect
on the different techniques was analyzed. In addition, a number of experiments were run on real-
life data to show the capability of handling real data. All experiments have shown that in general
these techniques perform well compared to a snapshot predictor, as long as there are significant
day and week patterns in the business process being analyzed.

This work has shown a novel set of techniques based on queue collections to provide operational
support for business processes. This is achieved by finding bottlenecks in a business process and
making predictions on the completion time of individual work items and complete cases. The
techniques proposed have been implemented in the ProM framework and are publicly available
and easy to use for analysts. All methods have been experimentally evaluated, yet a large number
of challenges are still in the future. There is a large number of potential and possibilities within
the scope of queue mining which is as of yet unexplored.

7.2 Future work

As stated before, there is a lot of queue mining left unexplored with this work and there are many
possibilities for expanding this area. This chapter will discuss future work topics in the area of
queue mining. In Subsection 7.2.1 the possibilities of incorporating queue mining techniques in
other operational support and guidance frameworks will be discussed. Next, in Subsection 7.2.2
the possibilities for adapting other queueing models to fit this approach will be discussed. Then,
Subsection 7.2.3 will discuss how simulation could help in providing an analysis tool. Next,
Subsection 7.2.4 will discuss alternatives and possible improvements for the example techniques
presented in this thesis. Finally, Subsection 7.2.5 touches upon how the experimental evaluation
can be extended to make it stronger.

7.2.1 Direct operational support and guidance

This section will discuss the possibilities of incorporating queue mining techniques in other opera-
tional support and guidance systems. The plugins developed in ProM already provide a convenient
method for doing predictions on completion times of events and traces and to find bottlenecks in a
business process. An opportunity to improve the usability of predicting sojourn times and queue
exit times in practice lies in a more real-time support and guidance based approach.

From the perspective of the current implementation, the most straightforward way to achieve
this is to use the infrastructure in ProM introduced by Nakatumba et al. [31] that allows for
testing of operational support algorithms. Embedding the current queue mining techniques in this
infrastructure would give a valuable opportunity to test validate these methods.
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Alternatively, such an approach could be realized in the following way. Given a business process
management system with a certain system state, provide an interface adaptor to communicate with
a set of queue mining implementations, possibly still within ProM. This interface adaptor then
has to provide the following functionality:

• Given the historical data of a business process management system, an input XES Log
training set should be generated.

• Given the system state of a business process management system, an input XES Log testing
set should be generated.

• Given some training and testing set XES Log, the adaptor should be able to instantiate the
queue miner and let it do sojourn and/or queue exit time predictions.

• Given one or more lists of prediction data, the adaptor should be able to either: convert the
data to a format such that predicted data can be shown in the business process management
system, or: visualize the prediction data in some other way externally.

Given an adaptor with such functionality it becomes possible to get real-time estimations on when
jobs and processes will be completed. This can then be improved by adding a guidance system,
for which an expansion of the sojourn time predictor would need to be developed. At this point
the sojourn time predictor can predict accurately what the end time for the most likely path will
be. If one would expand it such that it looks at the predicted end time of multiple or even all
paths, it can give advice on which path would be the one that leads to the quickest completion
time.

7.2.2 Adapting other queueing models to this framework

This section will discuss the possibility of using other queuing models for a queue mining approach.
The current queueing model only consists of the most basic queue characteristics: The kind of
events that arrive, the servers that operate the queue, the mean arrival rates and the mean service
time distributions. In addition, the amount of servers is not used in the current approach, but
could be in an alternative one. Developing and imbedding a more complex queue method could
help improve the performance of predictions and might be achieved in the following ways:

• Extending the queueing model to use the amount of servers in it’s prediction, by using e.g.
Markov chains.

• Develop a technique which derives the queue capacity (if any) of queues within a process.

• Introduce a method for estimating how long it will take to process a certain number of items
in a given queue.

• Develop a technique which derives the queueing discipline(s), such as FIFO, LIFO or prior-
ities for certain traces.

Developing any of these possible extensions will result in a more detailed queueing model. The
next challenge is developing a technique which uses some or all of the previously mentioned extra
queue information to make better queue exit time predictions, sojourn time predictions and to
enable a better way of finding which queues are bottlenecks.

7.2.3 Simulation as a means of analyzing a queue collection

The approach for predictions and analysis in this work focuses on considering historical data and a
single system state for which information is to be extracted. It would be very informative as well,
however, to look at a simulation model based on a queue collection. The work by Senderovich et
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al. [36] is shows promise for this direction. A list of possible valuable simulation setups will now
be presented:

• Using the service rates of queue collection as a predictor, and some system state as input,
one should be able to simulate the expected behaviour based on this current state to gain
insight in the process and predict completion times for currently relevant cases.

• Using the service rates of the queue collection as a predictor and using the arrival rates of
the queue collection in combination with some parameters to generate an input, one can see
the effects of the current steady week state and try to identify bottlenecks.

• Using the same setup as the previous example, but allowing the user to tweak arrival and
service rates, to allow for analysis of the system and gaining insight in the effects of for
example increased workload or a shift of workload over different times or different queues.

7.2.4 Alternatives for the presented queue mining approach

This section will discuss possible improvements and alternatives for the techniques presented in
this work.

First of all, the metric for workload in a system in Subsection 3.1.1 is not necessarily the best.
A number of alternatives will now be presented. One could try to find the workload based on
existing queueing theory techniques concerning workload, given some service rate and arrival rate.
Additionally, there exist a number of techniques for measuring workload, some of which could
possibly be adapted to fit the context of a queue collection. Having a better measure for workload
also has a big impact on the bottleneck finder implementation, which builds upon this definition.
Alternatives for implementing a bottleneck finder also include simulating historical data to find
the bottlenecks. To validate the current technique and workload measure one would need to see
if there is a strong correlation between workload and service time.

Next, the basic queue finder as introduced in Subsection 3.1.3 can be improved. The current
metric for queue costs and fairness thresholds has a limitation. Considering the example in Ta-
ble 3.4, the resource “Henk” is not considered a good match for “Sort package”, even though it he
intuitively executes this activity a fair amount of times. A number of different metrics are possible
for this fairness threshold, but none seem to work for all cases. Nevertheless, a list of alternatives
will be presented here:

• Taking a fraction of the maximum value as a threshold.

• Taking the mean value over all resources, instead of only the resources participating in that
activity and setting that value as the threshold.

• Alternatively for the previous idea, do not use the mean, but instead use the mean and some
factor times the standard deviation to set the threshold.

In the end, however, it seems that an entirely different metric might provide better behavior for
all cases.

Concerning the queue collection finder, there is a point that could be improved. The current
implementation bins the service time distribution data using bins the size of the relative time parts
in the week, e.g. one hour for k = 24. It might be better, however, to be able to separately config
the relative time part size and the time distribution bin size, as activities might be completed in
a matter of seconds, while the interesting patterns are still in the range of hours.

Then, there is a possibility to improve the algorithm that clusters activities and resources based
on their cluster costs. The current algorithm is greedy and is rather naive. It would be interesting
to search for an algorithm that is efficient, but returns a higher quality clustering. Of course, the
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definition of what is a good clustering is disputable as well, and finding which clusterings are good
representations is another interesting topic to look into.

Additionally, the way the activity duration has been extracted is quite naive. One could
research the possibilities of finding a better estimation of how long activities take, how long they
are in the queue and how long they are in the work station. Optimally, one would like to obtain
EPT’s (as discussed in Subsection 3.2.1) automatically or semi-automatically to allow a better
estimation of activity durations and possibly help with describing a better queueing model. A
semi-automatical approach would involve users choosing which activities correspond to starting,
completing and queueing actions. In the same spirit, letting a user have control over which parts
of the XES XEvent attributes denote the activity might give better results for the predictions
techniques that were previously discussed. For example the BPI 2013 log has a small number of
activities when looking only at the “concept-name” attribute, but might have a finer grained and
better queueing model if one would look at multiple attributes.

Next, there is a way to improve the queue exit time predictor. Considering the waiting time of
some arriving event and some service time distribution, one can give a better prediction on when
a job is done by taking the most likely value after the input waiting time. The current approach
would predict the most likely overall time no matter how long the an event has already waited.
This change also improves part of the sojourn time predictor, as it uses the exit time predictor as
a module.

Finally, there exist a number of alternatives for implementing the temporal router presented as
a part of the example sojourn time predictor. The weakness of the current router is that a large
number of samples is necessary for the technique to work. One way to change this is to choose
another way of presenting the prefixes in the current approach such that less unique prefixes exist.
Alternatively, an entirely new sort of router based on temporal and contextual data could be
devised or a routing technique could be used that does not build upon the queue collection, but
rather tries to find workflow patterns in a more advanced way. In addition, the same could be said
for the entire sojourn predictor approach. The current technique considers what the next queue
is one step at a time. An alternative way would be to try and find the entire future path at once
and use other forms of prefixes, transition systems, etc.

7.2.5 Extending the experimental evaluation

The experimental evaluation in this thesis has shown comparisons with a baseline predictor and a
simple snapshot predictor. However, no comparison has been made to state of the art techniques for
sojourn predictions and bottleneck finding. A valuable extension of this work would be to perform
experiments and compare with some of the following techniques. This list is not exhaustive and
other interesting prediction techniques will surely appear in the future.

• The cycle time prediction proposed by Crooy [9].

• The short-term simulation methods proposed by Rozinat et al. [34].

• The cycle time prediction techniques proposed by Schellekens [35].

• Deadline transgression prediction by Pika et al. [32].

• The Context-based prediction method by Eren [12].

In addition, it is possible to research the effect of using different kinds of context information and
their effectiveness on helping predictions for a certain process.
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Appendix A

Glossary

(Event) log Log of events executed within some (business) process. A log consists of
traces.

Trace One unique trace from an event log describing the path of a single execu-
tion of the process, discerned by some unique trace id. A trace consists
of events.

Event One event within a trace, indicating some work done by some resource
at some point in time.

Resource Any entity, human or machine, that performs a task in a process.
Basic Queue A queue for which only the servers and type of arriving activities are

known.
Queue Object representing a queue in a business process. Contains a list of

activities that arrive at the queue and a list of servers that can execute
arriving activities. Queues have rates for the arrival of activities and a
distribution of the service time of finishing activities.

Queue collection A collection of queues describing the process obtained by analyzing an
event log.

Arrival rate Amount of tasks that arrive at a queue in some time interval.
Service rate Amount of tasks that are handled at a queue in some time interval.
Primetree Tree that consists of the multiples of a number of pre-defined primes.

Every node has children with numbers that are a multiplication of the
node number and a pre-defined prime. See subsection 3.2.2.

Prefix A representation of the activities that happened in the past of some
trace.
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Appendix B

Reference to plugins used

This appendix will provide a list of the ProM plugins that are available to an end user and give a
short description of the purpose and the way to use this plugin. Any plugins specifically used for
testing or intermediate results have not been described.

B.1 Start up period remover

Plugin name: Start up period remover
Input: XES Log
Output: XES Log

The Start up period remover plugin was made to remove the start up and cool down periods
from a log. The user gets a graph of activity as a number of events started per day and has to
choose the starting and ending day of the relevant period (i.e.: the period excluding start up and
cool and cool down). The log is split on event level, based on a given starting and ending time.
Any event that does not fall within the time frame made by the starting and ending time specified
is omitted. Any other events remain.

To use the Start up period remover, start the plugin with any XES Log. For this example,
the 2013 BPI Log (as seen in Appendix C.3) will be used. The screenshot in Figure B.1 shows
the interface in which the user can indicate two fields: The Start day and End day indicating the
period in which events should be kept in the log. The graph assists the user in seeing where a lot
of activity is happening and where none is happening. In the example of the 2013 BPI Log, before
about day 700 there is a there is a relatively small percentage of events occurring. To get a more
precise feel for which day should be chosen for start or end, the user can click inside the graph,
which will put the number of selected day in the “Day indication” field. When the start and
end day are chosen, the user can press Finish and the events outside the range will be removed,
resulting in a new XES Log.

B.2 Week pattern visualizer

Plugin name: PrimeLogTree Viewer
Input: XES Log
Visualizer plugin The purpose of the PrimeLogTree Viewer is to find the variable k which
indicates in how many pieces a week should be split up to best fit a business process. A user
can access the PrimeLogTree Viewer through the visualizer menu with any XES Log and use the
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Figure B.1: Start up remover user interface.

visualizer to gain insight in how many parts is reasonable. More information on the implementation
of the PrimeLogTree Viewer can be found at the end of Subsection 5.3.3.

The functionality of the PrimeLogTree Viewer will be explained. Figure B.2 shows the interface
one gets when opening the visualizer on the BPI 2012 Log. There is a number of options in the
interface, which will now be described from top to bottom. The “Begin new tree” button on
top starts an entirely new tree from scratch. Depending on the field “Length of biggest time
unit(days)” the amount of total days which are considered is changed. The standard value for this
field is seven, a week. A new tree needs to be built to see the effect of changing this field. The
second button states “Update tree” and it takes into account all the fields below it.

When pressed, the tree is updated with respect to those fields. The first field is the “Metric”,
which indicates the metric used for visualizing the distributions. The metrics that can be chosen
are the distribution size, distribution mean or distribution variance. In addition to changing the
pattern metric, it is also possible to tweak the sizes of nodes and the space between nodes, to find
a better picture of the tree, e.g.: fitting more nodes on the screen or making nodes larger to have
a better understanding of their pattern. The fields that support this are “Node width” which lets
the user set the width of all nodes, “Node height” which allows for setting the height of all nodes
and “Layer spacing” with which one can customize the amount of pixels between layers of the
tree. The final input fields are for “Zoom modus”. There are three different zoom modi: “None”
which shows the standard tree from the root node, “Single node” in which the field below “Zoom
modus” indicates the root of the subtree that will be shown and for the “Multiple nodes” mode
a number of nodes indicated by a number of comma separated values in the field below will be
shown aligned to make comparisons easier.

In addition, in the main screen of the visualizer on the left side, using the zoom modus of
“None” or “Single node”, a user can click nodes to generate its children nodes. This process can
be repeated to traverse the tree as the user would like. An example execution of this plugin can
be found in Subsection 5.3.2.
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Figure B.2: PrimeLogTree Viewer basic user interface.

B.3 Context plugins

This section will discuss all context information related plugins.

Plugin name: Context model from XML file
Input: XML file
Output: TimeContext

The goal of this import plugin is to convert XML context information files into the TimeContext
object format. The TimeContext object can be used for the other context plugins. To import, a
user needs to select the “Context model from XML file” option when using the standard importing
functionality of ProM on an XML file, as illustrated in Figure 5.3.

Plugin name: Export context model (XML)
Input: TimeContext
Output: XML file

The goal of this export plugin is to convert the internal TimeContext object into an XML file.
To export, a user needs to use the standard ProM export functionality and export as an XML file,
as shown in Figure 5.5.

Plugin name: Merge context info
Input: TimeContext, TimeContext
Output: TimeContext

The purpose of this plugin is merge context information from multiple sources. A user can spec-
ify two context information objects and merge them into a single TimeContext object. Figure 5.4
shows an example execution.

Plugin name: Enrich log with context info
Input: XLog, TimeContext
Output: Xlog

The “Enrich log with context info” plugin was created to allow adding context information to
event logs. The TimeContext input will be used to set the context attributes for all events in the
input XLog. Figure 5.7 shows an example execution of this plugin.
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B.4 Queue exit time prediction

Plugin name: Make exit time predictions based on a queueing model (All-in-one)
Input: XLog, XLog
Output: PredictionDataContainer The goal of this plugin is to, given a training and testing
set XLog, make predictions of the queue exit time for all events in the testing log. For each event
the predicted end time will be saved in a PredictionDataContainer.

Figure 5.19 shows an example execution of the exit time predictor. The only input that has to
be given is a parameter k, indicating the granularity of the queue collection distributions in the
form of the amount of parts a day should be split up in. This is shown in Figure 5.17.

Like the context plugins, the resulting PredictionDataContainer is supported by a visualizer to
directly inspect results as seen in Figure 5.20 and an export plugin to convert the resulting data
to a CSV file as seen in Figure 5.21. These shall not be discussed in detail, but are nevertheless
available for use.

B.5 Queue sojourn time prediction

Plugin name: Make sojourn time predictions based on a queueing model (All-in-one)
Input: XLog, XLog
Output: PredictionDataContainer The goal of this plugin is to, given a training and testing
set XLog, make predictions of the sojourn time for all traces in the testing log. For each trace the
predicted end time will be saved in a PredictionDataContainer.

Figure 5.23 shows an example execution of the sojourn time predictor. The only input that
has to be given is a parameter k, indicating the granularity of the queue collection distributions
in the form of the amount of parts a day should be split up in. A similar input field is shown in
Figure 5.17.

The resulting PredictionDataContainer is supported by a visualizer to directly inspect results
as seen in Figure 5.24 and an export plugin to convert the resulting data to a CSV file s seen in
Figure5.25. These shall not be discussed in detail, but are nevertheless available for use.

B.6 Queue Bottleneck Finder

Plugin name: Find bottleneck in queue clustering (All-in-one)
Input: XLog
Output: BottleneckData The goal of this plugin is to, given an XLog describing some process,
find the most important bottlenecks of this log by assigning a bottleneck factor. The bottleneck
factor for each queue in the process will be saved within a BottleneckData object.

Figure 5.27 shows an example execution of the bottleneck finder plugin. The only input that
has to be given is a parameter k, indicating the granularity of the queue collection distributions
in the form of the amount of parts a day should be split up in. A similar input field is shown
in Figure 5.17. The resulting PredictionDataContainer is supported by a visualizer to directly
inspect results as seen in Figure 5.28.
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Appendix C

Input and output log reference

This appendix serves as a reference for the real-life and synthetic data logs used. The source and
characteristics of all logs will be discussed. All logs can be found in the 3TU Datacenter1.

C.1 BPI 2011 challenge log

The BPI 2011 challenge log2 is a real-life log, obtained from a Dutch academic hospital. This log
contains 1.143 cases and 150.291 events. Apart from some anonymization, the log contains all
data as it came from the hospital’s systems. Each case is a patient of a gynaecology department.

C.2 BPI 2012 challenge log

The BPI 2012 challenge log3 is a real-life log, obtained from a Dutch financial institute. This log
contains some 262.200 events in 13.087 traces. Apart from some anonymization, the log contains
all data as it came from the financial institute. The process represented in the event log is an
application process for a personal loan or overdraft within a global financing organization. The
log is split up into three distinct types: Activities starting with A imply states of the application,
activities starting with O imply states of the offer belonging to the application and activities
starting with W indicate a work item belonging to the application, i.e. a person doing some
work. The tasks have information on whether they are starting, completing or queueing, but this
is not used in this work to adhere to the assumption of handling a general log where no EPT’s
(see Subsection 3.2.1) are known.

C.3 BPI 2013 challenge log

The BPI 2013 challenge log4 is a real-life event log from Volvo IT Belgium. The log contains
events from an incident and problem management system called VINST and contains about 7.554
traces which contain 65.533 events. The log has a period where relatively few actions occur and
a large peak of a few weeks in which most of the activity of the log occurs.

1http://data.3tu.nl
2http://www.win.tue.nl/bpi/2011/challenge
3http://www.win.tue.nl/bpi/2012/challenge
4http://www.win.tue.nl/bpi/2013/challenge
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C.4 Receipt phase of an environmental permit application
process (WABO), CoSeLoG project

This event log5 contains the records of the execution of the receiving phase of the building per-
mit application process in an anonymous municipality. This log contains 1.434 cases and 8.577
activities.

C.5 Environmental permit application process (WABO),
CoSeLoG project

This event log6 contains the records of the execution of a building permit application process. The
log contains 937 cases and 38.944 events.

C.6 Artificial Digital Photo Copier Event Log

This event log7 is an artificial event log for a digital photo copier. The log is used in a demo paper
accepted at the CAiSE 2011 Forum. The log consists of 100 cases and 40.995 events.

5http://data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
6http://data.3tu.nl/repository/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5
7http://data.3tu.nl/repository/uuid:f5ea9bc6-536f-4744-9c6f-9eb45a907178
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