1,773 research outputs found

    MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data

    Get PDF
    In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    An Overview of a Grid Architecture for Scientific Computing

    Full text link
    This document gives an overview of a Grid testbed architecture proposal for the NorduGrid project. The aim of the project is to establish an inter-Nordic testbed facility for implementation of wide area computing and data handling. The architecture is supposed to define a Grid system suitable for solving data intensive problems at the Large Hadron Collider at CERN. We present the various architecture components needed for such a system. After that we go on to give a description of the dynamics by showing the task flow

    HTC Scientific Computing in a Distributed Cloud Environment

    Full text link
    This paper describes the use of a distributed cloud computing system for high-throughput computing (HTC) scientific applications. The distributed cloud computing system is composed of a number of separate Infrastructure-as-a-Service (IaaS) clouds that are utilized in a unified infrastructure. The distributed cloud has been in production-quality operation for two years with approximately 500,000 completed jobs where a typical workload has 500 simultaneous embarrassingly-parallel jobs that run for approximately 12 hours. We review the design and implementation of the system which is based on pre-existing components and a number of custom components. We discuss the operation of the system, and describe our plans for the expansion to more sites and increased computing capacity

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure

    High-Throughput Computing on High-Performance Platforms: A Case Study

    Full text link
    The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size resource. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan---a DOE leadership facility in conjunction with traditional distributed high- throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i) a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner

    Any Data, Any Time, Anywhere: Global Data Access for Science

    Full text link
    Data access is key to science driven by distributed high-throughput computing (DHTC), an essential technology for many major research projects such as High Energy Physics (HEP) experiments. However, achieving efficient data access becomes quite difficult when many independent storage sites are involved because users are burdened with learning the intricacies of accessing each system and keeping careful track of data location. We present an alternate approach: the Any Data, Any Time, Anywhere infrastructure. Combining several existing software products, AAA presents a global, unified view of storage systems - a "data federation," a global filesystem for software delivery, and a workflow management system. We present how one HEP experiment, the Compact Muon Solenoid (CMS), is utilizing the AAA infrastructure and some simple performance metrics.Comment: 9 pages, 6 figures, submitted to 2nd IEEE/ACM International Symposium on Big Data Computing (BDC) 201
    • …
    corecore