261,691 research outputs found

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    HPS-HDS:High Performance Scheduling for Heterogeneous Distributed Systems

    Get PDF
    Heterogeneous Distributed Systems (HDS) are often characterized by a variety of resources that may or may not be coupled with specific platforms or environments. Such type of systems are Cluster Computing, Grid Computing, Peer-to-Peer Computing, Cloud Computing and Ubiquitous Computing all involving elements of heterogeneity, having a large variety of tools and software to manage them. As computing and data storage needs grow exponentially in HDS, increasing the size of data centers brings important diseconomies of scale. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance. More, HDS are highly dynamic in its structure, because the user requests must be respected as an agreement rule (SLA) and ensure QoS, so new algorithm for events and tasks scheduling and new methods for resource management should be designed to increase the performance of such systems. In this special issues, the accepted papers address the advance on scheduling algorithms, energy-aware models, self-organizing resource management, data-aware service allocation, Big Data management and processing, performance analysis and optimization

    Smart Grid Sensor Monitoring Based on Deep Learning Technique with Control System Management in Fault Detection

    Get PDF
    The smart grid environment comprises of the sensor for monitoring the environment for effective power supply, utilization and establishment of communication. However, the management of smart grid in the monitoring environment isa difficult process due to diversifieduser request in the sensor monitoring with the grid-connected devices. Presently, context-awaremonitoring incorporates effective management of data management and provision of services in two-way processing and computing. In a heterogeneous environment context-aware, smart grid exhibits significant performance characteristics with the grid-connected communication environment for effective data processing for sustainability and stability. Fault diagnoses in the automated system are formulated to diagnose the fault separately. This paper developed anoptimized power grid control model (OPGCM) model for fault detection in the control system model for grid-connected smart home appliances. OPGCM model uses the context-aware power-awarescheme for load management in grid-connected smart homes. Through the adaptive smart grid model,power-aware management is incorporated with the evolutionary programming model for context-awareness user communication. The OPGCM modelperforms fault diagnosis in the grid-connected control system initially, Fault diagnosis system comprises of a sequential process with the extraction of the statistical features to acquirea sustainable dataset with effective signal processing. Secondly, the features are extracted based on the sequential process for the acquired dataset with a reduction of dimensionality. Finally, the classification is performed with the deep learning model to predict or identify the fault pattern. With the OPGCM model, features are optimized with the whale optimization model to acquire features to perform fault diagnosis and classification. Simulation analysis expressed that the proposed OPGCM model exhibits ~16% improved classification accuracy compared with the ANN and HMM model

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Modified Context Aware Middleware Architecture for Precision Agriculture

    Get PDF
    The opportunities for researchers are enhanced with the progression in the technology of communication and computing. The ease in life of many people like farmers, educators, administers, managers, etc., is increased with more inventions of the researchers using this new technology. The progressive technology for data management is providing more amount of information. However, is the user able to access the needed information when required? This question rises to the more questions like, how to identify whether the information is as per the requirement? Whether a user is authorized or not? The answer for all the questions is to make the support aware of the context. Therefore, the present technology needs to be modified to make the system aware about the context. The process of demonstrating the services based on the context using Wireless Sensor Networks (WSN) with the help of illustration on mango crop is emphasized in this paper. There are many serious problems like unsuitable fertilizer use, wrong selection of crops in wrong seasons, water waste, poor publicizing in the case of farming. These problems are addressed using the ubiquitous context aware middleware architecture for precision agriculture in mango crop
    corecore