3,643 research outputs found

    Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events

    Full text link
    In this paper, we propose a new strategy for acoustic scene classification (ASC) , namely recognizing acoustic scenes through identifying distinct sound events. This differs from existing strategies, which focus on characterizing global acoustical distributions of audio or the temporal evolution of short-term audio features, without analysis down to the level of sound events. To identify distinct sound events for each scene, we formulate ASC in a multi-instance learning (MIL) framework, where each audio recording is mapped into a bag-of-instances representation. Here, instances can be seen as high-level representations for sound events inside a scene. We also propose a MIL neural networks model, which implicitly identifies distinct instances (i.e., sound events). Furthermore, we propose two specially designed modules that model the multi-temporal scale and multi-modal natures of the sound events respectively. The experiments were conducted on the official development set of the DCASE2018 Task1 Subtask B, and our best-performing model improves over the official baseline by 9.4% (68.3% vs 58.9%) in terms of classification accuracy. This study indicates that recognizing acoustic scenes by identifying distinct sound events is effective and paves the way for future studies that combine this strategy with previous ones.Comment: code URL typo, code is available at https://github.com/hackerekcah/distinct-events-asc.gi

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Stacked Convolutional and Recurrent Neural Networks for Bird Audio Detection

    Full text link
    This paper studies the detection of bird calls in audio segments using stacked convolutional and recurrent neural networks. Data augmentation by blocks mixing and domain adaptation using a novel method of test mixing are proposed and evaluated in regard to making the method robust to unseen data. The contributions of two kinds of acoustic features (dominant frequency and log mel-band energy) and their combinations are studied in the context of bird audio detection. Our best achieved AUC measure on five cross-validations of the development data is 95.5% and 88.1% on the unseen evaluation data.Comment: Accepted for European Signal Processing Conference 201

    Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection

    Get PDF
    Sound events often occur in unstructured environments where they exhibit wide variations in their frequency content and temporal structure. Convolutional neural networks (CNN) are able to extract higher level features that are invariant to local spectral and temporal variations. Recurrent neural networks (RNNs) are powerful in learning the longer term temporal context in the audio signals. CNNs and RNNs as classifiers have recently shown improved performances over established methods in various sound recognition tasks. We combine these two approaches in a Convolutional Recurrent Neural Network (CRNN) and apply it on a polyphonic sound event detection task. We compare the performance of the proposed CRNN method with CNN, RNN, and other established methods, and observe a considerable improvement for four different datasets consisting of everyday sound events.Comment: Accepted for IEEE Transactions on Audio, Speech and Language Processing, Special Issue on Sound Scene and Event Analysi
    corecore