3,797 research outputs found

    The Application of Downhole Vibration Factor in Drilling Tool Reliability Big Data Analytics - A Review

    Get PDF
    In the challenging downhole environment, drilling tools are normally subject to high temperature, severe vibration, and other harsh operation conditions. The drilling activities generate massive field data, namely field reliability big data (FRBD), which includes downhole operation, environment, failure, degradation, and dynamic data. Field reliability big data has large size, high variety, and extreme complexity. FRBD presents abundant opportunities and great challenges for drilling tool reliability analytics. Consequently, as one of the key factors to affect drilling tool reliability, the downhole vibration factor plays an essential role in the reliability analytics based on FRBD. This paper reviews the important parameters of downhole drilling operations, examines the mode, physical and reliability impact of downhole vibration, and presents the features of reliability big data analytics. Specifically, this paper explores the application of vibration factor in reliability big data analytics covering tool lifetime/failure prediction, prognostics/diagnostics, condition monitoring (CM), and maintenance planning and optimization. Furthermore, the authors highlight the future research about how to better apply the downhole vibration factor in reliability big data analytics to further improve tool reliability and optimize maintenance planning

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science
    • …
    corecore