83,675 research outputs found

    Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or Not to Combine?

    Get PDF
    To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, resampling techniques and data editing approaches, leading to a generation of a single classifier or a multiple classifier system, are scrutinised and compared. The classification performance on unseen data, commonly used as a criterion for comparing different competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classifier generation schemes. These include: the ability to estimate the true classification error rate, the classifier transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classifier or a combination of a number of component classifiers within a multiple classifier system

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets

    Analysis of the Correlation Between Majority Voting Error and the Diversity Measures in Multiple Classifier Systems

    Get PDF
    Combining classifiers by majority voting (MV) has recently emerged as an effective way of improving performance of individual classifiers. However, the usefulness of applying MV is not always observed and is subject to distribution of classification outputs in a multiple classifier system (MCS). Evaluation of MV errors (MVE) for all combinations of classifiers in MCS is a complex process of exponential complexity. Reduction of this complexity can be achieved provided the explicit relationship between MVE and any other less complex function operating on classifier outputs is found. Diversity measures operating on binary classification outputs (correct/incorrect) are studied in this paper as potential candidates for such functions. Their correlation with MVE, interpreted as the quality of a measure, is thoroughly investigated using artificial and real-world datasets. Moreover, we propose new diversity measure efficiently exploiting information coming from the whole MCS, rather than its part, for which it is applied
    • …
    corecore