79,820 research outputs found

    Rethinking Map Legends with Visualization

    Get PDF
    This design paper presents new guidance for creating map legends in a dynamic environment. Our contribution is a set of guidelines for legend design in a visualization context and a series of illustrative themes through which they may be expressed. These are demonstrated in an applications context through interactive software prototypes. The guidelines are derived from cartographic literature and in liaison with EDINA who provide digital mapping services for UK tertiary education. They enhance approaches to legend design that have evolved for static media with visualization by considering: selection, layout, symbols, position, dynamism and design and process. Broad visualization legend themes include: The Ground Truth Legend, The Legend as Statistical Graphic and The Map is the Legend. Together, these concepts enable us to augment legends with dynamic properties that address specific needs, rethink their nature and role and contribute to a wider re-evaluation of maps as artifacts of usage rather than statements of fact. EDINA has acquired funding to enhance their clients with visualization legends that use these concepts as a consequence of this work. The guidance applies to the design of a wide range of legends and keys used in cartography and information visualization

    The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

    Get PDF
    We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential" observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants' understanding when using explanations produced by BCM, compared to those given by prior art.Comment: Published in Neural Information Processing Systems (NIPS) 2014, Neural Information Processing Systems (NIPS) 201

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    Mixed-signal CNN array chips for image processing

    Get PDF
    Due to their local connectivity and wide functional capabilities, cellular nonlinear networks (CNN) are excellent candidates for the implementation of image processing algorithms using VLSI analog parallel arrays. However, the design of general purpose, programmable CNN chips with dimensions required for practical applications raises many challenging problems to analog designers. This is basically due to the fact that large silicon area means large development cost, large spatial deviations of design parameters and low production yield. CNN designers must face different issues to keep reasonable enough accuracy level and production yield together with reasonably low development cost in their design of large CNN chips. This paper outlines some of these major issues and their solutions

    Advanced characterization and simulation of SONNE: a fast neutron spectrometer for Solar Probe Plus

    Get PDF
    SONNE, the SOlar NeutroN Experiment proposed for Solar Probe Plus, is designed to measure solar neutrons from 1-20 MeV and solar gammas from 0.5-10 MeV. SONNE is a double scatter instrument that employs imaging to maximize its signal-to-noise ratio by rejecting neutral particles from non-solar directions. Under the assumption of quiescent or episodic small-flare activity, one can constrain the energy content and power dissipation by fast ions in the low corona. Although the spectrum of protons and ions produced by nanoflaring activity is unknown, we estimate the signal in neutrons and γ−rays that would be present within thirty solar radii, constrained by earlier measurements at 1 AU. Laboratory results and simulations will be presented illustrating the instrument sensitivity and resolving power
    corecore