67 research outputs found

    DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    Get PDF
    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    End-to-end Precoding Validation over a Live GEO Satellite Forward Link

    Get PDF
    In this paper we demonstrate end-to-end precoded multi-user multiple-input single-output (MU-MISO) communications over a live GEO satellite link. Precoded communications enable full frequency reuse (FFR) schemes in satellite communications (SATCOM) to achieve broader service availability and higher spectrum efficiency than with the conventional four-color (4CR) and two-color (2CR) reuse approaches. In this scope, we develop an over-the-air test-bed for end-to-end precoding validations. We use an actual multi-beam satellite to transmit and receive precoded signals using the DVB-S2X standard based gateway and user terminals. The developed system is capable of end-to-end real-time communications over the satellite link including channel measurements and precompensation. It is shown, that by successfully canceling inter-user interference in the actual satellite FFR link precoding brings gains in terms of enhanced SINR and increased system goodput.Comment: Submitted to IEEE Access Journa

    Hardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics

    Get PDF
    In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture
    • …
    corecore