11,470 research outputs found

    Broadband MC DS-CDMA Using Space-Time and Frequency-Domain Spreading

    No full text
    In this contribution multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) using space-time spreading (STS) assisted transmit diversity and frequency-domain (F-domain) spreading is investigated in the context of broadband communications over frequency-selective Rayleigh fading channels. We consider the attainable capacity extension of broadband MC DS-CDMA with the advent of using Time-Frequency-domain (TF-domain) spreading. The BER performance of STS assisted broadband MC DS-CDMA using Binary Phase Shit Keying (BPSK) modulation and TF-domain spreading is investigated by simulation for a range of parameter values. Both the correlation based single-user detector and the decorrelating multiuser detector are considered. Our study shows that the number of users supported by the broadband MC DS-CDMA system is determined by the product of the T-domain spreading factor and the F-domain spreading factor, while it is independent of the frequency diversity order. Furthermore, when multiuser detection assisted F-domain spreading is considered, the broadband MC DS-CDMA system is capable of supporting a substantially increased number of users, while maintaining a similar bit error ratio (BER) performance to that of the broadband MC DS-CDMA system using no F-domain spreading

    Analytical BER Performance of DS-CDMA Ad Hoc Networks using Large Area Synchronized Spreading Codes

    No full text
    The family of operational CDMA systems is interference-limited owing to the Inter Symbol Interference (ISI) and the Multiple Access Interference (MAI) encountered. They are interference-limited, because the orthogonality of the spreading codes is typically destroyed by the frequency-selective fading channel and hence complex multiuser detectors have to be used for mitigating these impairments. By contrast, the family of Large Area Synchronous (LAS) codes exhibits an Interference Free Window (IFW), which renders them attractive for employment in cost-efficient quasi-synchronous ad hoc networks dispensing with power control. In this contribution we investigate the performance of LAS DS-CDMA assisted ad hoc networks in the context of a simple infinite mesh of rectilinear node topology and benchmark it against classic DS-CDMA using both random spreading sequences as well as Walsh-Hadamard and Orthogonal Gold codes. It is demonstrated that LAS DS-CDMA exhibits a significantly better performance than the family of classic DS-CDMA systems operating in a quasi-synchronous scenario associated with a high node density, a low number of resolvable paths and a sufficiently high number of RAKE receiver branches

    Spectral Efficiency of Random Time-Hopping CDMA

    Full text link
    Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of NsN_\mathsf{s} chips out of the total NN included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where Ns=NN_\mathsf{s}=N. This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of sparse spreading, that is, Ns=1N_\mathsf{s}=1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.Comment: 26 pages, 13 figure

    Slow Frequency-Hopping Multicarrier DS-CDMA for Transmission over Nakagami Multipath Fading Channels

    No full text
    A novel multiple access scheme based on slow frequency hopping multicarrier direct-sequence code division multiple access (SFH/MC DS-CDMA) is proposed and investigated, which can be rendered compatible with the existing second-generation narrowband CDMA and third-generation wideband CDMA systems. The frequency hopping patterns are controlled by a set of constant-weight codes. Consequently, multirate communications can be implemented by selecting the corresponding sets of constant-weight codes having the required weights controlling the SFH patterns invoked. Two FH schemes, namely random and uniform FH, are considered and their advantages as well as disadvantages are investigated. We assume that the system operates in a multipath fading environment and a RAKE receiver structure with maximum ratio combining (MRC) is used for demodulation. The system’s performance is evaluated over the range of multipath Nakagami fading channels, under the assumption that the receiver has an explicit knowledge of the associated frequency-hopping (FH) patterns invoked. Furthermore, the performance of the SFH/MC DS-CDMA system is compared to that of the conventional single-carrier (SC) DS-CDMA system and that of the conventional MC DS-CDMA system, under the assumptions of constant system bandwidth and of constant transmitted signal power. Index Terms—Code division multiple access, constant-weight code, frequency hopping, Nakagami fading, orthogonal frequency division multiplexing

    Performance of the Smart Antenna Aided Generalized Multicarrier DS-CDMA Downlink using both Time-Domain Spreading and Steered Space-Time Spreading

    No full text
    In this contribution a generalized MC DS-CDMA system invoking smart antennas for improving the achievable performance in the downlink of the system is studied, which is capable of minimizing the downlink interference inflicted upon co-channel mobiles, while achieving frequency, time and spatial diversity. In the MC DS-CDMA system considered the transmitter employs multiple antenna arrays and each of the antenna arrays consists of several antenna elements. More specifically, the space-time transmitter processing scheme considered is based on the principles of Steered Space-Time Spreading (SSTS). Furthermore, the generalized MC DS-CDMA system employs time and frequency (TF)-domain spreading, where a user-grouping technique is employed for reducing the effects of multiuser interference

    LAS-CDMA using Various Time Domain Chip-Waveforms

    No full text
    LAS CDMA exhibits a significantly better performance than that of classic random code based DS-CDMA, when operating in a quasi-synchronous scenario. Classic frequency-domain raised cosine Nyquist filtering is known to show the best possible performance, but its complexity may be excessive in highchip-rate systems. Hence in these systems often low-complexity time-domain waveform shaping is considered. Motivated by this fact, the achievable performance of LAS-CDMA is investigated in conjunction with three different time-limited chipwaveforms, which exhibit an infinite bandwidth. The raised cosine time-domain waveform based DS-CDMA system is shown to achieve the best performance in the context of a strictly band-limited system, because its frequency-domain spectral side-lobes are relatively low

    Comparison and Performance Analysis of DS-CDMA Systems by Genetic, Neural and GaNN (hybrid) Models

    Get PDF
    Direct Sequence-Code Division Multiple Access (DS-CDMA) technique is used in cellular systems where users in the cell are separated from each other with their unique spreading codes. DS-CDMA has been used extensively which suffers from multiple access interference (MAI) and inter symbol interference (ISI) due to multipath nature of channels in presence of additive white Gaussian noise (AWGN). Spreading codes play an important role in multiple access capacity of DS-CDMA system and Walsh sequences are used as spreading codes in DS-CDMA. DS CDMA receiver namely genetic algorithm neural network and GaNN (hybrid) based MUD receiver for DS-CDMA communication using Walsh sequences is designed. The performance of the same will be compared among themselves

    Interference-Free Broadband Single- and Multi-Carrier DS-CDMA

    No full text
    The choice of the direct sequence spreading code in DS-CDMA predetermines the properties of the system. This contribution demonstrates that the family of codes exhibiting an interference-free window (IFW) outperforms classic spreading codes, provided that the interfering multi-user and multipath components arrive within this IFW, which may be ensured with the aid of quasi-synchronous adaptive timing advance control. It is demonstrated that the IFW duration may be extended with the advent of multicarrier DS-CDMA proportionately to the number of subcarriers. Hence, the resultant MC DS-CDMA system is capable of exhibiting nearsingle-user performance without employing a multi-user detector. A limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles

    Performance analysis of an ISMA DS-CDMA packet data network

    Get PDF
    The efficiency of MAC protocols for a packet switching DS-CDMA network strongly depends on the offered traffic statistic. For bursty sources where transmission needs are restricted to short message lengths, a protocol such as S-ALOHA can be efficient. However, for longer messages, a reduction in the randomness is required in order to improve the system performance. This improvement can be provided by a protocol such as ISMA when combined with the DS-CDMA technique. In this paper an analytical approach to modeling the resulting ISMA CDMA scheme is presented, and some design issues regarding the number of codes to be used are presented.Peer ReviewedPostprint (published version

    On the Uplink Performance of Asynchronous LAS-CDMA

    No full text
    In this paper closed-form formulae are derived for characterizing the BER performance of Large Area Synchronous CDMA (LAS-CDMA) as a function of both the number of resolvable paths Lp and the maximum delay difference τmax, as well as the number of users K, when communicating over a Nakagami-m fading channel. Moreover, we comparatively studies the performance of LAS-CDMA and the traditional random code based DS-CDMA
    corecore