91 research outputs found

    Defeating Proactive Jammers Using Deep Reinforcement Learning for Resource-Constrained IoT Networks

    Full text link
    Traditional anti-jamming techniques like spread spectrum, adaptive power/rate control, and cognitive radio, have demonstrated effectiveness in mitigating jamming attacks. However, their robustness against the growing complexity of internet-of-thing (IoT) networks and diverse jamming attacks is still limited. To address these challenges, machine learning (ML)-based techniques have emerged as promising solutions. By offering adaptive and intelligent anti-jamming capabilities, ML-based approaches can effectively adapt to dynamic attack scenarios and overcome the limitations of traditional methods. In this paper, we propose a deep reinforcement learning (DRL)-based approach that utilizes state input from realistic wireless network interface cards. We train five different variants of deep Q-network (DQN) agents to mitigate the effects of jamming with the aim of identifying the most sample-efficient, lightweight, robust, and least complex agent that is tailored for power-constrained devices. The simulation results demonstrate the effectiveness of the proposed DRL-based anti-jamming approach against proactive jammers, regardless of their jamming strategy which eliminates the need for a pattern recognition or jamming strategy detection step. Our findings present a promising solution for securing IoT networks against jamming attacks and highlights substantial opportunities for continued investigation and advancement within this field

    Dimmer: Self-Adaptive Network-Wide Flooding with Reinforcement Learning

    Full text link
    The last decade saw an emergence of Synchronous Transmissions (ST) as an effective communication paradigm in low-power wireless networks. Numerous ST protocols provide high reliability and energy efficiency in normal wireless conditions, for a large variety of traffic requirements. Recently, with the EWSN dependability competitions, the community pushed ST to harsher and highly-interfered environments, improving upon classical ST protocols through the use of custom rules, hand-tailored parameters, and additional retransmissions. The results are sophisticated protocols, that require prior expert knowledge and extensive testing, often tuned for a specific deployment and envisioned scenario. In this paper, we explore how ST protocols can benefit from self-adaptivity; a self-adaptive ST protocol selects itself its best parameters to (1) tackle external environment dynamics and (2) adapt to its topology over time. We introduce Dimmer as a self-adaptive ST protocol. Dimmer builds on LWB and uses Reinforcement Learning to tune its parameters and match the current properties of the wireless medium. By learning how to behave from an unlabeled dataset, Dimmer adapts to different interference types and patterns, and is able to tackle previously unseen interference. With Dimmer, we explore how to efficiently design AI-based systems for constrained devices, and outline the benefits and downfalls of AI-based low-power networking. We evaluate our protocol on two deployments of resource-constrained nodes achieving 95.8% reliability against strong, unknown WiFi interference. Our results outperform baselines such as non-adaptive ST protocols (27%) and PID controllers, and show a performance close to hand-crafted and more sophisticated solutions, such as Crystal (99%)

    Twin Delayed DDPG based Dynamic Power Allocation for Mobility in IoRT

    Get PDF
    The internet of robotic things (IoRT) is a modern as well as fast-evolving technology employed in abundant socio-economical aspects which connect user equipment (UE) for communication and data transfer among each other. For ensuring the quality of service (QoS) in IoRT applications, radio resources, for example, transmitting power allocation (PA), interference management, throughput maximization etc., should be efficiently employed and allocated among UE. Traditionally, resource allocation has been formulated using optimization problems, which are then solved using mathematical computer techniques. However, those optimization problems are generally nonconvex as well as nondeterministic polynomial-time hardness (NP-hard). In this paper, one of the most crucial challenges in radio resource management is the emitting power of an antenna called PA, considering that the interfering multiple access channel (IMAC) has been considered. In addition, UE has a natural movement behavior that directly impacts the channel condition between remote radio head (RRH) and UE. Additionally, we have considered two well-known UE mobility models i) random walk and ii) modified Gauss-Markov (GM). As a result, the simulation environment is more realistic and complex. A data-driven as well as model-free continuous action based deep reinforcement learning algorithm called twin delayed deep deterministic policy gradient (TD3) has been proposed that is the combination of policy gradient, actor-critics, as well as double deep Q-learning (DDQL). It optimizes the PA for i) stationary UE, ii) the UE movements according to random walk model, and ii) the UE movement based on the modified GM model. Simulation results show that the proposed TD3 method outperforms model-based techniques like weighted MMSE (WMMSE) and fractional programming (FP) as well as model-free algorithms, for example, deep Q network (DQN) and DDPG in terms of average sum-rate performance

    Coordination and Self-Adaptive Communication Primitives for Low-Power Wireless Networks

    Get PDF
    The Internet of Things (IoT) is a recent trend where objects are augmented with computing and communication capabilities, often via low-power wireless radios. The Internet of Things is an enabler for a connected and more sustainable modern society: smart grids are deployed to improve energy production and consumption, wireless monitoring systems allow smart factories to detect faults early and reduce waste, while connected vehicles coordinate on the road to ensure our safety and save fuel. Many recent IoT applications have stringent requirements for their wireless communication substrate: devices must cooperate and coordinate, must perform efficiently under varying and sometimes extreme environments, while strict deadlines must be met. Current distributed coordination algorithms have high overheads and are unfit to meet the requirements of today\u27s wireless applications, while current wireless protocols are often best-effort and lack the guarantees provided by well-studied coordination solutions. Further, many communication primitives available today lack the ability to adapt to dynamic environments, and are often tuned during their design phase to reach a target performance, rather than be continuously updated at runtime to adapt to reality.In this thesis, we study the problem of efficient and low-latency consensus in the context of low-power wireless networks, where communication is unreliable and nodes can fail, and we investigate the design of a self-adaptive wireless stack, where the communication substrate is able to adapt to changes to its environment. We propose three new communication primitives: Wireless Paxos brings fault-tolerant consensus to low-power wireless networking, STARC is a middleware for safe vehicular coordination at intersections, while Dimmer builds on reinforcement learning to provide adaptivity to low-power wireless networks. We evaluate in-depth each primitive on testbed deployments and we provide an open-source implementation to enable their use and improvement by the community
    • ā€¦
    corecore