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Abstract—The internet of robotic things (IoRT) is a modern as 

well as fast-evolving technology employed in abundant socio-

economical aspects which connect user equipment (UE) for 

communication and data transfer among each other. For ensuring 

the quality of service (QoS) in IoRT applications, radio resources, 

for example, transmitting power allocation (PA), interference 

management, throughput maximization etc., should be efficiently 

employed and allocated among UE. Traditionally, resource 

allocation has been formulated using optimization problems, 

which are then solved using mathematical computer techniques. 

However, those optimization problems are generally nonconvex as 

well as nondeterministic polynomial-time hardness (NP-hard). In 

this paper, one of the most crucial challenges in radio resource 

management is the emitting power of an antenna called PA, 

considering that the interfering multiple access channel (IMAC) 

has been considered. In addition, UE has a natural movement 

behavior that directly impacts the channel condition between 

remote radio head (RRH) and UE. Additionally, we have 

considered two well-known UE mobility models i) random walk 

and ii) modified Gauss-Markov (GM). As a result, the simulation 

environment is more realistic and complex. A data-driven as well 

as model-free continuous action based deep reinforcement 

learning algorithm called twin delayed deep deterministic policy 

gradient (TD3) has been proposed that is the combination of policy 

gradient, actor-critics, as well as double deep Q-learning (DDQL). 

It optimizes the PA for i) stationary UE, ii) the UE movements 

according to random walk model, and ii) the UE movement based 

on the modified GM model. Simulation results show that the 

proposed TD3 method outperforms model-based techniques like 

weighted MMSE (WMMSE) and fractional programming (FP) as 

well as model-free algorithms, for example, deep Q network 

(DQN) and DDPG in terms of average sum-rate performance.  

Keywords—IoRT, Power Allocation, Radio Resource 

Management, User Mobility, Deep Reinforcement Learning, Twin 

Delayed Deep Deterministic Policy Gradient.  

I. INTRODUCTION

The internet of things (IoT), which emphasizes the goal and 
mission of a worldwide infrastructure connecting physical items 
known as things and uses internet protocol to allow them to 
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communicate and share information, has experienced rapid 
expansion and attention in recent years [1, 2]. At the same time, 
robotics is an intelligent technology rapidly developing and 
being utilized more frequently in industrial, commercial, and 
household contexts, as well as for rescue missions when there 
are safety dangers for people [3, 4]. IoT and robotic technologies 
have recently been combined in order to expand the functional 
capabilities of these robots, commonly called the internet of 
robotic things (IoRT). Unlike traditional robots, IoRT allows 
communication between robots to robots as well as between 
infrastructures to robots and vice-versa for coordinating, sharing 
and updating the data among robots [5-7]. The IoRT architecture 
may be divided into three levels [8-9]: perception, network and 
control, and service and application layers. The network and 
control layer, which is made up of various routers, controllers, 
and servers, is the most important layer. It effectively integrates 
all user equipment (UE) of the physical layer, such as smart cars, 
mobile robots, drones etc.  

To communicate and share the data among UEs through 
IoRT with robust and reliable connectivity, various wireless 
communication protocols, for example, 802.15.4, 802.11 or 
4G/LTE/5G, and beyond are generally deployed [10]. In 
addition, UEs, especially mobile robots, drones etc., can share 
data with the nearest UEs by creating a wireless sensor network 
[11, 12]. To accommodate the rising spectrum demand of UEs 
in IoT/IoRT, more cells, for example, macro, small, pico cells, 
etc., in cellular communication have been deployed [13]. When 
the density of UEs served per cell raises, the intra-cell as well as 
inter-cell interference will increase, making crucial issues to get 
the expected spectrum demand of UEs. The emit power of the 
remote radio head (RRH), which is connected to a centrally 
controlled unit known as the baseband unit (BBU) via a high-
speed front-haul link, as illustrated in Fig. 1, can also be 
increased to maximize data throughput. However, doing so can 
harm networks it interferes with. In cellular networks, power 
distribution, as well as interference management, are, therefore, 
both critical and challenging [14, 15, 16]. A fundamental nature 
of UEs, especially robots, drones etc., of IoRT is the mobility 
that impacts path loss, shadow effect, small-scale fading etc., of 
communication channels [17-19]. According to our 
understanding, not many works have been done based on the 
mobility nature of UEs. Consequently, the development of a 
suitable power allocation (PA) approach for ensuring the QoS of 
each UE is crucial as well as challenging tasks when the mobility 
effect of UE on the channel, interference management, and 
throughput maximization have been considered [20, 21]. 

Several resource management strategies, including dynamic 
PA in RRH, are formulated as an optimization problem to meet 
these QoS requirements. A few of them are simple and can be 
optimized by convex optimization. In [22], power allocation  
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optimization is done by convex optimization. However, most of 
the formulated problems, for example, dynamic PA, 
maximization of sum rate is strongly nonconvex as well as 
nondeterministic polynomial-time hardness (NP-hard) [23]. As 
a result, it isn't easy to get the optimized result [24]. Fractional 
programming (FP) [25] and weighted MMSE (WMMSE) [26] 
have been implemented to simulate dynamic PA by maximizing 
the average sum rate. These approaches are not suitable in real-
world IoRT application contexts with varied UE distributions, 
mobility, geographic surroundings, and other characteristics 
since they mainly rely on tractable mathematical models. 
Secondly, the computational complexity of these algorithms is 
relatively high [27]. 

 

Fig. 1.  Radio resource allocation in IoRT 

 

To solve the many problems in IoT/IoRT, machine learning 
(ML) [28] methods have recently been used that are often model-
free as well as data-driven. There are primarily three categories 
of machine learning algorithms: supervised learning, 
unsupervised learning, and reinforcement learning (RL). Except 
for RL, both directly depend on the data set and are efficient for 
classification tasks, for example, signal detection [29], 
modulation recognition [30] and intrusion detection of IoT [31]. 
Recently metaheuristic optimization, for example, prairie dog 
[32], dwarf mongoose [33], reptile search (RS) [34], aquila 
optimization [35] etc., have been implemented with machine 
learning/deep learning [36] to solve many problems in 
IoT/IoRT. In [37], authors implemented RS and DL combinedly 
to execute the feature extraction as well as selection for 
improving intrusion detection. Additionally, dwarf mongoose 
optimization has been combined with ML to detect cyber-attack 
in IoT [38]. In [39], aquila optimization and wavelet mutation 
combinedly has been deployed to achieve an energy-efficient 
routing protocol in WSN coverage [40]. 

 RL is one of the most prominent study areas in machine 
learning that allows an agent to make decisions regularly, 
monitor the outcomes, and then automatically modify its 
approach to arrive at the best possible policy. Even though this 
learning method has been shown to converge, it needs a long 
time to find the optimal policy because it must first explore and 
learn about the entire system, which makes it inappropriate and 
unusable for large-scale networks. As a result, there are very few 
applications of RL in practice. Nowadays, deep learning (DL) 
[36] has been implemented with RL to overcome its limitation, 
which is called deep reinforcement learning (DRL). By utilizing 
the benefit of deep neural networks (DNNs) in the training 
process, RL algorithms perform better and learn more quickly. 
DRL presented in Fig. 2 has been utilized in various RL 
applications in wireless communication, robots, computer 
vision, IoT, IoRT etc. [22, 41]. 

 

 

Fig. 2. Architecture of deep reinforcement learning (DRL) 

 DRL is broken down into three classifications: value-based, 
policy-based, and actor-critic (AC) approaches. The value-based 
algorithm, for instance, deep Q network (DQN), considers the 
expected return value of being in each state. DQN is only 
applicable when action space is discrete and low dimension. 
However, dynamic PA is a continuous action space issue. 
Hence, the DQN algorithm cannot be implemented directly. The 
policy-based algorithm uses the stochastic gradient ascent to find 
the best policy that works on continuous action space. In actor-
critic (AC) methods, for example, deep deterministic policy 
gradient (DDPG), the advantage of value-based and policy-
based have been implemented combinedly, which handles the 
continuous and high-dimension action space [42, 43]. Twin 
delayed DDPG (TD3) [44] is an extended version of DDPG 
which considers approximation error function to improve the 
performance and stability [45] and consists of double DQN [46], 
policy gradient [47] and actor-critic [48] combinedly. 
Consequently, TD3 performed better than other model-free 
algorithms in the Open AI gym for continuous action space 
across all environments [44–45].  

 We have looked at the interfering multiple access channel 
(IMAC) scenarios, which focused on system-level optimization 
as well as maximized the overall total rate by mitigating the 
interference of intra and inter-cell, which has appeared at 
SoftCOM, IEEE, 2022 [49]. In the real-world application of 
IoRT, the mobility of UE is a crucial issue. Due to mobility, 
channel conditions, path loss, shadow effect, and small-scale 
fading are varied, which is the more realistic problem [17-19]. 
The main contributions of this article are summarized below: 
1. We formulate the dynamic PA optimization problem of RRH 

for multi UEs by considering three scenarios 1) UEs are 
stationary, 2) UEs move according to the random walk 
model, and 3) UEs travel based on modified Gauss-Markov 
(GM). In addition, state, action, and reward functions are 
carefully designed to adopt continuous action space based 
DRL algorithms. 

2. We implement and fine-tune an alternative method of 
updating the actor (policy) in the DDPG algorithm called 
TD3 to speed up convergence and achieve stability with a 
robust learning process. 

 The remainder of this article is structured as follows. The 
related work is outlined in Section II. The system model is 
described in Section III, where the mobility model and network 
model are taken into account. We introduce the twin delayed 
DDPG algorithm in Section IV below. Then, in Section V, 
simulation results are displayed. We finally put our effort to rest 
in Section VI. 
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II. RELATED WORK 
  

 Conventional methods for resolving the PA problem have 
been implemented with multiple robots [50], mobile users [51] 
and unmanned aerial vehicles [52]. In [26], the authors devised 
a technique called WMMSE in order to optimize the PA problem 
when just channel state information (CSI) is required. This 
strategy is according to the minimization of weighted mean-
square error (MSE). In order to allocate power to UE, beamform 
and maximize energy efficiency, the theory of fractional 
programming (FP) was employed to address ongoing issues in 
the wireless communication system [25]. The multi-robot 
system's combined dynamic power allocation as well as 
interference coordination were solved using a genetic algorithm 
[50]. When each RRH has only one antenna, the greedy pilot 
assignment was deployed in [53] to investigate the max-min PA 
according to CSI. The same issue is examined for numerous 
antennas in RRH using conventional mathematics [54].  

 The study [24] found that mathematical model-based 
methods can perform in both theoretical analysis and numerical 
simulations when solving non-convex and NP optimization 
problems. Due to the dynamic environment and density of UE, 
these algorithms, however, confront substantial difficulties in 
the real world. They adopted DL for physical layer 
communication in response. In [55–56], the DL technique was 
used to address PA in large multiple input multiple output 
(MIMO) antenna. For managing the interference in multi-cell 
cellular networks, authors [57] deployed a fully connected 
neural network to replicate the WMMSE approach. The 
arithmetical results demonstrated that it closely replicated the 
performance of WMMSE using DL. In [58], the author proposed 
low time complexity DL algorithm of the two convolutional 
layers with four fully connected layers to allocate the power in 
massive MIMO utilizing the time-division duplex operation 
(TDD), which estimated almost similar results of heuristic based 
on the bisection algorithm. To maximize spectrum efficiency by 
utilizing the max-min power policy, the authors in [55] used a 
fully connected neural network with a recurrent neural network. 
For power distribution, a two-layer DNN has been used to 
counter intercell interference [56]. In addition, the cutting-edge 
residual dense block (ResDense) technique was employed for 
the same issue in multi-cell massive MIMO [59]. In [60], the 
author developed an unsupervised DL algorithm that did not 
require optimal data sets during the training period and was a 
simple as well as a flexible model in the training stage. The 
proposed algorithms achieved the performance complexity 
trade-off 400 times faster than the optimized-based algorithms. 
In addition, a feed-forward unsupervised DL algorithm using the 
channel gain has been implemented in [61] to optimize the 
power transmission for uplink and downlink in cellular 
networks. However, collecting suitable data sets for PA for 
enhancing UE QoS is the main drawback of using DL.   

 To overcome the data set limitations, researchers have 
implemented DRL-based algorithms in various wireless 
resource optimization issues, mainly non-convex and NP-hard, 
for example, PA, throughput maximization, channel allocation, 
etc. In [62], The authors employed DQL for allocating the power 
in a cloud-RAN to reduce overall power utilization by satisfying 
the UE demands. In the same environment, the double DQN 
algorithm has been implemented [22]. In addition, they 
calculated the emergency efficiency. Due to the advantage of a 
double network, the numerical results outperformed DQN [62]. 
The authors of [63] developed a non-cooperative DRL algorithm 

based on distributed DQN for spectrum-sharing techniques in 
primary as well as secondary UEs. While the secondary UEs 
learnt on their own how to change the emitting power for sharing 
the common spectrum, the prime UE received predetermined 
power. When the base stations are randomly as well as densely 
located, the wireless network is a bit complex. The authors in 
[64] targeted that environment for maximizing the overall 
network efficiency. They applied a deep Q full connected 
network (DQFCNet) considering CSI, which showed a 
substantial enhancement in convergence speed as well as 
stability. In IoT/IoRT, jamming is a huge challenge. In [65], 
authors have implemented the DQN algorithm to allocate power 
in the anti-jamming communication of IoT, where the jammer 
observed the communication condition. Convolutional neural 
network (CNN)-based online PA was used, according to DQN, 
to enhance non-line of sight (NLOS) propagation in 5G [66]. 
The algorithm optimized the sum rate of the UE under 
constrained transmitting power as well as QoS. Additionally, 
DRL has been applied to achieve the optimal PA policy, which 
was compared to the GA algorithm [67]. Recently, a multi-agent 
DRL (MADRL) algorithm has been applied to solve PA issues. 
In [68], MADRL has been employed to allocate the downlink 
power in the IoT network, where each RRH and UE is 
considered an RL agent. In addition, MADRL has been 
implemented to maximize the weighted sum rate using CSI to 
optimize the PA [69]. The sum rate was employed as a reward 
function when the DQN algorithm was used [27] to optimize the 
PA issue in the LTE network with IMAC. RRH emits power 
continuously, whereas DQN is a discrete action space-based 
DRL algorithm. In order to implement the DQN concept, the 
continuous action space (PA) must be discretized. In [42], the 
same authors solved the same issue the following year using a 
policy-based method. They also looked into the DDPG 
algorithm, which produced superior simulation outcomes to 
DQN, policy-based DRL, WMMSE and FP. Furthermore, the 
DDPG was deployed in order to optimize PA in MIMO systems 
in the downlink to maximize the sum rate [70] and full-duplex 
communications to maximize the spectrum efficiency [71]; 
however, DDPG has an overestimation bias issue [44]. TD3 is 
an extension of DDPG, which overcome the overestimation bias 
issue of DDPG by three improvements: target policy smoothing, 
clipped double-Q learning and delayed policy updates of actor-
network. In target policy smoothing, clipped Gaussian noise is 
added with each dimension of the estimated action. Afterwards, 
the target action is clipped to fit in the acceptable action range. 
TD3 chooses the least value from two target critic networks 
called clipped double Q-learning, which overcomes the 
limitation of the overestimation phenomenon of DDPG. Finally, 
it utilizes the delayed update policy to reduce the per update 
error.    

 In wireless networks, UE moves here and there, which 
directly creates an impact on channel condition as well as 
throughput. Only a few researchers have considered this vital 
phenomenon in their research. In [72], authors have considered 
the UE mobility model in n non-orthogonal multiple access 
(NOMA), where each UE moved from one position to another 
with variable directions and speed. They proposed a traditional 
dynamic power allocation (DPA) algorithm by considering the 
channel conditions because of UE mobility. According to [19], 
UE mobility strongly impacts NOMA's performance, especially 
for downlink throughput. In [73], the authors developed a power  
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control algorithm for the wireless network where the 
communication channel varies because of UE mobility.  The 
summary of related works has been presented in Table I. 
 

III. SYSTEM MODEL 
 

We take into account the issue of PA in a IoRT network with 

the IMAC with 𝑁 cells, every cell having single RRH of one 

antenna serving 𝐾  UEs concurrently while sharing the 

frequency bands. For realistic simulation, UE mobility has been 

considered. 

   

A. Mobility Model 

UE mobility creates the impact on overall network. In this 

sub section, we illustrate two well-known UE mobility models 

that are random walk and modified Gauss-Markov. 

 
A.1 Random Walk 
 

The random walk mobility model presented mathematically 

by Einstein is a process that considers the subsequent steps in a 

randomized fashion concerning the current position of UE. In 

this model, the average speed (1 m/s), the average pedestrian 

walking speed and the direction range are generally considered 

[74]. 

 

A.2 Modified Gauss-Markov 
 

The GM mobility model uses temporal dependency to 

enhance earlier methods. Here, a mobile terminal's speed and 

direction are updated in accordance with prior time periods' 

recorded values. Additionally, depending on the characteristics 

of the simulated wireless network, the amount of randomness 

used in the calculation of these two numbers can be adjusted. 

The memories of earlier steps are preserved; hence the GM 

mobility model is not stateless. The UE mobility is still separate 

from that of other mobile terminals connected to the same 

network, though [72,74]. According to Fig. 3, user mobility 

makes possible 𝑘𝑡ℎ  UE to move randomly with average 

velocity that is indicated as 𝛥𝛼𝑘,𝑡−1,𝑡 and 𝑣𝑘,𝑡−1,𝑡 respectively. 

The coordinates of 𝑘𝑡ℎ  UE are 𝑥𝑘,𝑡  and 𝑦𝑘,𝑡 at time 𝑡 is given 

by  
 

 

 
 

 
Fig. 3. Mobility model for UE by considering the random direction and 

average speed.  

 

𝑥𝑘,𝑡 = 𝑥𝑘,𝑡−1 + 𝑣𝑘,𝑡−1,𝑡 ∗ cos(𝛼𝑘,𝑡 ) ∗ 𝛥𝑡                   (1) 

𝑦𝑘,𝑡 = 𝑦𝑘,𝑡−1 + 𝑣𝑘,𝑡−1,𝑡 ∗ sin(𝛼𝑘,𝑡 ) ∗ 𝛥𝑡                   (2) 

𝛼𝑘,𝑡 = 𝛼𝑘,𝑡−1 + 𝛥𝛼𝑘,𝑡−1,𝑡                                           (3) 

where, 𝑥𝑘,𝑡−1, 𝑦𝑘,𝑡−1 and 𝛼𝑘,𝑡−1 are the x-axis, y-axis and 

direction of 𝑘𝑡ℎ UE at 𝑡 − 1 time slot. The distance traveled 

by 𝑘𝑡ℎ within 𝛥𝑡 can be illustrated by  

 

𝑑𝑘,𝑡−1,𝑡 = √(𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−1)2 + (𝑦𝑘,𝑡 − 𝑦𝑘,𝑡−1)2           (4) 

The distance between 𝑛𝑡ℎ RRH and  𝑘𝑡ℎ UE at 𝑡 time slot is 

presented as 
 

𝑑𝑛,𝑘,𝑡 = √(𝑥𝑛,𝑡 − 𝑥𝑘,𝑡)2 + (𝑦𝑛,𝑡 − 𝑦𝑘,𝑡)2                      (5) 

 

where, 𝑥𝑛,𝑡 and 𝑦𝑛,𝑡 are the coordinates of 𝑛𝑡ℎ RRH.  

 

B. Network Model 

 The independent channel gain 𝑔𝑛,𝑘
𝑡   from the 𝑛𝑡ℎ  RRH to 

𝑘𝑡ℎ UE at time slot 𝑡 can be stated as [8,9, 20]  

𝑔𝑛,𝑘
𝑡 = |ℎ𝑛,𝑘

𝑡 |2 𝛽𝑛,𝑘
𝑡                                                          (6) 

 

where, shadow fading effects and geometric attenuation have 

been studied. In addition, 𝛽𝑛,𝑘
𝑡 is the large-scale fading elements 

and ℎ𝑛,𝑘
𝑡   is stated as small-scale fading that is considered as a 

first-order complex Gauss-Markov process based on Jakes 
model.    

ℎ𝑛,𝑘
𝑡 = 𝜌ℎ𝑛,𝑘

𝑡−1 + 𝑛𝑛,𝑘
𝑡                                                        (7) 

where, ℎ𝑛,𝑘
𝑡 ~𝒞𝒩(0,1)  and 𝑛𝑛,𝑘

𝑡 ~𝒞𝒩(0,1 − 𝜌2) . The 

correlation 𝜌  is 𝐽0(2𝜋𝑓𝑑𝑇𝑠) that 𝐽0 designates as the first kind 
zero-order Bessel function, 𝑓𝑑  is maximum doppler frequency 

TABLE  I 
SUMMARY OF RELATED WORKS 

Ref. Objective Power allocation UE mobility Method 

[62] Minimization of Power consumption Discrete action Χ DQN with convex Optimization 

[22] Energy Efficiency   Discrete action Χ Double DQN with convex Optimization 

[63] 
Maximization of throughput by managing 

inter-cell interference  
Discrete action  

Χ 
distributed DQN 

[64] Maximization of overall network capacity Discrete action Χ DQFCNet 

[65] Improvement of SINR for anti-jamming IoT Discrete action Χ DQN 

[66] Maximization of data rate considering NLOS Discrete action Χ DQN with CNN 

[67] Maximization of throughput Discrete action Χ DQN that compared with GA 

[68] Maximization of long-term sum-rate  Continuous action Χ Multi agent DDPG 

[69] Maximization of weight sum rate Discrete action Χ Multi agent DQN 

[27] Maximizing the average sum rate  Discrete action Χ DQN 

[42] Maximizing the average sum rate Continuous action Χ DDPG 

Our Paper Maximizing the average sum rate Continuous action √ Twin delayed DDPG (TD3) 
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and 𝑇𝑠  represents as the time interval. According to the LTE 
standard, large scale fading can be stated as  

 𝛽𝑛,𝑘
𝑡 = 120.9 + 37.6 log

10
(𝑑𝑛,𝑘,𝑡) + 10log

10
(𝑤) dB  (8) 

where, 𝑑𝑛,𝑘,𝑡 is the distance between the 𝑛𝑡ℎ RRH and  𝑘𝑡ℎ UE 

at 𝑡  time slot and 𝑤  is the log-normal random variable 
𝑤~𝒩(0, 𝜎𝑤

2 )  with 𝜎𝑤
2 = 8dB .The equivalent signal to 

interference plus noise ratio (SINR) between the 𝑛𝑡ℎ RRH and 

𝑘𝑡ℎ UE at 𝑡 time slot can be stated as  

𝑆𝐼𝑁𝑅𝑛,𝑘
𝑡 =

𝑔𝑛,𝑘
𝑡 𝑝𝑛,𝑘

𝑡

∑ 𝑔
𝑛,𝑘′
𝑡

𝑘′≠𝑘 𝑝
𝑛,𝑘′
𝑡 +∑ ∑ 𝑔

𝑛′,𝑘′
𝑡𝐾

𝑘′=1𝑛′𝜖𝐷𝑛
𝑝

𝑛′,𝑘′
𝑡 +𝜎2    (9) 

where, 𝐷𝑛 is the set of interference cells around the 𝑛𝑡ℎ RRH, 

𝑝𝑛,𝑘
𝑡 denotes the 𝑛𝑡ℎ RRH distributed power to its 𝑘𝑡ℎ UE and,  

𝜎2  is the additional Gaussian noise power. The intra-cell 

interference is ∑ 𝑔𝑛,𝑘
𝑡

𝑘′≠𝑘 𝑝𝑛,𝑘′
𝑡  while inter-cell interference are 

denoted as ∑ ∑ 𝑔𝑛′,𝑘′
𝑡𝐾

𝑘′=1𝑛′𝜖𝐷𝑛
𝑝𝑛′,𝑘′

𝑡 . Additionally, the 

transmission rate with normalized bandwidth of assumed link at 

𝑡 time slot can be explained as  

 

𝐶𝑛,𝑘
𝑡 = log

2
(1 + 𝑆𝐼𝑁𝑅𝑛,𝑘

𝑡 )                                         (10) 

The goal of this research is to calculate the optimized allocated 
powers of each RRH for serving UEs in order to maximize the 
sum-rate objective function while complying to the maximum 
power limitation which can be expressed as  

𝑚𝑎𝑥
𝑝𝑡  𝐶(𝑔𝑡 , 𝑝𝑡)                                                           (11a) 

𝑠. 𝑡.   𝑜 ≤ 𝑝𝑛,𝑘
𝑡 ≤ 𝑃𝑚𝑎𝑥, ⦡𝑛,𝑘                                      (11b) 

where, 𝑃𝑚𝑎𝑥 is the maximum power; the power set 𝑝𝑡 =
{𝑝𝑛,𝑘

𝑡 |⦡𝑛,𝑘}, the channel gain set is 𝑔𝑡 = {𝑔𝑛,𝑘
𝑡 |⦡𝑛,𝑘} and the 

sum rate 𝐶(𝑔𝑡 , 𝑝𝑡) = ∑ 𝐶𝑛,𝑘
𝑡

𝑛,𝑘 . Due to the non-convex, NP-

hard, as well as high computational complexity of this problem, 

finding the best solution and practical implementation by using 

a model-based approach is challenging. In addition, the model-

oriented approach cannot guarantee diverse future requirements 

and unpredictable developing situations. Therefore, model free 

TD3 method that overcomes the overestimated bias limitation 

of DDPG has been proposed for this non-convex and NP-hard 

problem. Detailed notation descriptions are summarized in 

Table II. 

 

IV. TWIN DELAYED DDPG ALGORITHM   
 

 The proposed TD3 algorithm has been presented in Fig. 4 to 
calculate the emitting power by maximizing the sum-rate 
function where UE mobility is considered. In addition, the 
suitable state space, continuous action space, and reward 
function to solve the discussed optimization problem by TD3 
method are described below: 
State Space:  Three components have been aggregated to define 

the state space of the above discussed optimization problem 

namely [9]: i) the CSI 𝑔𝑛,𝑘
𝑡   ii) the allocated power 𝑝𝑛,𝑘

𝑡−1 and iii) 

the transmission rate  𝐶𝑛,𝑘
𝑡−1. CSI is the most important feature; 

however, it cannot be directly utilized in DNN because of the 

numerical complexity. According to [9], a logarithmic 

normalized expression of 𝑔𝑛,𝑘
𝑡  is examined which are presented 

as follows:  

𝛤𝑛,𝑘
𝑡 =

1

𝑔
𝑛,𝑘′
𝑡 𝑔𝑛,𝑘

𝑡  ⦻1𝑘                                                 (12) 

 

TABLE II 

SUMMARY OF NOTATION 

 
where,  ⦻ is the Kronecker product and 1𝑘  is defined as the 
vector filled with K ones. Furthermore, element of channel 
amplitudes is normalized with respect to channel gain. The 

dimension of 𝛤𝑛,𝑘
𝑡 is (|𝐷𝑛| + 1)𝐾 which is varied with respect 

tothe UE density. A sorting mechanism (�̃�, 𝑖 = 𝑠𝑜𝑟𝑡(𝑥, 𝑦)) is 
deployed to arrange three components in descending order, with 
the first 𝑦 elements chosen to form the new set �̃�. This leads to 

the definition of the final state space as  𝑠𝑛,𝑘
𝑡 =

{𝛤𝑛,𝑘
𝑡 , 𝑝𝑛,𝑘

~𝑡−1, 𝐶𝑛,𝑘
~𝑡−1 }.   

Action Space:  The action ( 𝑎 = 𝑝𝑛,𝑘
𝑡  ) space is the allocating 

power for transmission that is a non-negative continuous scalar 

limited and expressed by a scaled sigmoid function for TD3 

algorithm. 𝑃𝑚𝑎𝑥 is the maximum power allocation for each UE. 
 

𝑎 = 1

1+exp (−𝑧)
𝑃𝑚𝑎𝑥                                                     (13) 

Notation  Definition 

𝑁 RRH Number 

𝐾 UE in each cell 

𝑅𝑚𝑖𝑛 Minimum range of UE within cells 

 𝑅𝑚𝑎𝑥 Maximum coverage of RRH 

𝑣𝑘,𝑡−1,𝑡 Velocity of   𝑘𝑡ℎ UE at  𝛥𝑡 

𝛥𝛼𝑘,𝑡−1,𝑡 Direction of   𝑘𝑡ℎ UE at  𝛥𝑡 

𝑑𝑘,𝑡−1,𝑡 Travelled distance of   𝑘𝑡ℎ UE at  𝛥𝑡 

𝑑𝑛,𝑘,𝑡 Distance from 𝑛𝑡ℎ RRH to  𝑘𝑡ℎ UE at 𝑡 time slot 

ℎ𝑛,𝑘
𝑡    Small scale fading 

𝛽𝑛,𝑘
𝑡  Large-scale fading 

𝑔𝑛,𝑘
𝑡  Channel gain between the 𝑛𝑡ℎ RRH and  𝑘𝑡ℎ UE 

𝑓𝑑 Doppler frequency 

𝑇𝑠 Time Period 

 𝑃𝑚𝑎𝑥 Maximum Power per UE 

𝑃𝑚𝑖𝑛 Minimum Power per UE 

𝜎2 AWGN power   

𝑆𝐼𝑁𝑅𝑛,𝑘
𝑡  SINR from the 𝑛𝑡ℎ RRH to 𝑘𝑡ℎ UE in time slot  𝑡 

𝐶𝑛,𝑘
𝑡  Transmission rate with normalized bandwidth 

𝑤 Log-normal random variable 

𝐷𝑛 Number of Adjacent cells 

𝑠𝑛,𝑘
𝑡  State at time slot  𝑡 

𝑎 = 𝑝𝑛,𝑘
𝑡  Action at time slot  𝑡 

𝑟𝑛,𝑘
𝑡  Reward at time slot  𝑡 

 𝑄1and 𝑄2 Q value of critic network 1 and critic network 2 

𝑄𝑡 Target value of critic network  

𝛾 Discount factor  

𝜖 Noise  

𝜃𝑐 Critic parameter 

𝜃𝑎 Actor parameter 
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where, 𝑧 is the pre activation output.  

Reward: After an action𝑎𝑛,𝑘
𝑡 , DRL agent obtain the instant 

reward  𝑟𝑛,𝑘
𝑡  that is computed as:  

𝑟𝑛,𝑘
𝑡 =  𝐶𝑛,𝑘

𝑡 + 𝛼(∑ 𝐶𝑛,𝑘′
𝑡

𝑛,𝑘′≠𝑘 + ∑ 𝐶𝑛′,𝑘
𝑡

𝑛′∈𝐷𝑛
)           (14) 

where, 𝛼  is a weight coefficient of interference effect. The 
summation of immediate rewards is proportional to the sum-rate 

∑ 𝑟𝑛,𝑘
𝑡 ∝ 𝐶(𝑔𝑡 , 𝑝𝑡)𝑛,𝑘                                                  (15) 

The TD3 actor-critic method, which operates over continuous 
action spaces and is model-free, depends on the deterministic 
policy gradient. Additionally, the three key differences between 
the TD3 algorithm and conventional DDPG are discussed 
below: 

.i) Clipped double Q-learning with pair of critic networks: 

 Two actor networks consisted of two DNNs have been 
employed that are donated as 𝜃𝑎 (actor network) and  𝜃𝑎

′ (actor 
target). Additionally, two pairs of critic networks are taken in 
which one team is for the critic model, and the other is for the 
critic target, and both learnings co-occur. For every element, 

actor target network produces next action (𝑎𝑛,𝑘
𝑡+1) based on next 

state (𝑠𝑛,𝑘
𝑡+1). After that, Gaussian noise is added with next action. 

Two critic target networks utilize next state (𝑠𝑛,𝑘
𝑡+1 ) and next 

action ( 𝑎𝑛,𝑘
𝑡+1) as inputs and give two Q values that are denoted 

as  𝑄1 and 𝑄2 . The minimum of two Q values is taken as 
estimated value of critic target networks. Final target value is 
calculated as  
 

 𝑄𝑡 = 𝑟𝑛,𝑘
𝑡 + 𝛾 ∗ 𝑚𝑖𝑛(𝑄1, 𝑄2)                                     (16) 

 

where, 𝑟𝑛,𝑘
𝑡  is the reward and 𝛾 is discount factor. After that, 

two critic model networks return  𝑄1
𝑚  and 𝑄2

𝑚 where inputs are 

taken current state 𝑠𝑛,𝑘
𝑡    and current action 𝑎𝑛,𝑘

𝑡 . Critic loss is 

calculated according to mean squared error. Adam optimizer is 

employed to efficiently optimize the loss via back propagation 

over 5000 iterations as  

 
𝐶𝑟𝑖𝑐𝑡𝑖𝑐𝑙𝑜𝑠𝑠 = MSE(𝑄1

𝑚, 𝑄𝑡) + MSE(Q2
m, 𝑄𝑡)               (17) 

∇𝜃𝑎
𝐽(𝜃𝑎) = 𝑁−1 ∑ ∇𝑐 𝑄1

𝑚 𝛻𝑎𝑎𝑛,𝑘
𝑡                                   (18) 

ii) Delayed policy updates and target networks: 

 In TD3 algorithm, policy network is updated less frequently 
compared to Q value network according to the Polyak average 
model as follows:  

 
𝜃𝑐

′ ← 𝑡𝑎𝑢𝜃𝑐 + (1 − 𝑡𝑎𝑢)𝜃𝑐
′                                       (19) 

𝜃𝑎
′ ← 𝑡𝑎𝑢𝜃𝑎 + (1 − 𝑡𝑎𝑢)𝜃𝑎

′                                       (20) 

where, 𝑡𝑎𝑢 ≤ 1is an hyperparameter for tuning the speed of 
updating.  

iii) Target policy smoothing and noise regularization: 

  A learning target adopting a deterministic policy is 
especially prone to errors brought on by function approximation 
errors when updating the critic, which raises the variance of the 
target. For the study of all potential continuous parameters, this 
produced variance can be assuredly decreased through 
regularization. As a result, Gaussian noise has been added with 
next action for preventing the large actions which disturb to the 
state of the environment.  
 

𝑎𝑛,𝑘
𝑡+1 ← 𝑎𝑛,𝑘

𝑡+1 + 𝜖                                                    (21) 

𝜖  ~ 𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐)                                       (22) 

In order to promote exploration, the noise 𝜖  is clipped in a 
specific range of values from −𝑐 to 𝑐 and sampled according to 
Gaussian distribution with zero mean and 𝜎 standard deviation. 
We clip the additional noise to the range of possible actions (min 

Fig. 4. Architecture of proposed Twin delayed DDPG algorithm [36] 
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action, max action) to avoid the mistake of utilizing the 
impossible value of actions. Proposed TD3 algorithm is 
presented in Algorithm 1. 

Algorithm 1: TD3 algorithm  

 

Initialize actor   𝐴(𝑠; 𝜃𝑎) and 𝐶(𝑠; 𝜃𝑐) with random parameter 

𝜃𝑎 and 𝜃𝑐. 
For 𝑖 = 1 to 𝑁𝑒 do    

      𝑠1 = 𝑒𝑛𝑣. 𝑟𝑒𝑠𝑒𝑡() 

      For 𝑡 = 1 to  𝑇 do 

             𝑎𝑛,𝑘
𝑡 = 𝑒𝑛𝑣. 𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑝𝑎𝑐𝑒. 𝑠𝑎𝑚𝑝𝑙𝑒() 

             𝑠𝑛,𝑘
𝑡+1, 𝑟𝑛,𝑘

𝑡 = 𝑒𝑛𝑣. 𝑠𝑡𝑒𝑝(𝑎𝑛,𝑘
𝑡 ) 

             𝑎𝑛,𝑘
𝑡+1=𝑎𝑐𝑡𝑜𝑟_𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑛,𝑘

𝑡+1) 

              𝑎𝑛,𝑘
𝑡+1 ← 𝑎𝑛,𝑘

𝑡+1 + 𝜖 ,  
                𝜖  ~ 𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐) 

                𝑄1 = 𝑐𝑟𝑖𝑡𝑖𝑐_𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑛,𝑘
𝑡+1, 𝑎𝑛,𝑘

𝑡+1) 

              𝑄2 = 𝑐𝑟𝑖𝑡𝑖𝑐_𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑛,𝑘
𝑡+1, 𝑎𝑛,𝑘

𝑡+1) 

              𝑄𝑡 = 𝑟𝑛,𝑘
𝑡 + 𝛾 ∗ 𝑚𝑖𝑛(𝑄1, 𝑄2)  

              𝑄1
𝑚 = 𝑐𝑟𝑖𝑡𝑖𝑐_𝑚𝑜𝑑𝑒𝑙(𝑠𝑛,𝑘

𝑡 , 𝑎𝑛,𝑘
𝑡 ) 

              𝑄2
𝑚 = 𝑐𝑟𝑖𝑡𝑖𝑐_𝑚𝑜𝑑𝑒𝑙(𝑠𝑛,𝑘

𝑡 , 𝑎𝑛,𝑘
𝑡 ) 

              Critic_Loss=MSE(Q1
m, 𝑄𝑡) + MSE(Q2

m, 𝑄𝑡) 

              Backpropagation with Adam optimizer  

              if 𝑡%𝑝𝑜𝑙𝑖𝑐𝑦𝑓𝑟𝑒𝑞 == 0 then 

                    ∇𝜃𝑎
𝐽(𝜃𝑎) = 𝑁−1 ∑ ∇𝑐 𝑄1

𝑚 𝛻𝑎𝑎𝑛,𝑘
𝑡  

                    𝜃𝑐
′ ← 𝑡𝑎𝑢𝜃𝑐 + (1 − 𝑡𝑎𝑢)𝜃𝑐

′  

                    𝜃𝑎
′ ← 𝑡𝑎𝑢𝜃𝑎 + (1 − 𝑡𝑎𝑢)𝜃𝑎

′  

              end 

              𝑎𝑛,𝑘
𝑡 = 𝑎𝑛,𝑘

𝑡+1 

              𝑠𝑛,𝑘
𝑡 = 𝑠𝑛,𝑘

𝑡+1 

 

V. PERFORMANCE EVALUATION  
 

 We utilize TensorFlow 1.14.0 on Spyder IDE 3.3.6 in an 
11th Gen inter-core i7, 16 GB RAM, and RTX 3060 laptop GPU 
to demonstrate the simulation scenario presented in Fig. 5. 
Additionally, the mobility of UEs is a critical challenge in the 
real-world applications of IoRT. Channel conditions alter 
throughout time due to UE mobility. In this study, we have 
considered the two well-known mobility models 1) random walk 
and ii) modified GM. The path loss, shadow effect, and small-
scale fading caused always varied due to the UE's  position 
constantly shifting. As a result, the simulation scenarios 
illustrated in Fig. 5 for allocating power to maximize the average 
sum rate for each UE have been more realistic. The simulations 
have been performed for evaluating the proposed TD3 algorithm 
with respect to two DRL-based algorithms: traditional DQN[23] 
and DDPG [29], as well as two traditional algorithms: WMMSE 
[22] and FP [21] which are the benchmarks in order to evaluate 
our proposed TD3 algorithm. In the simulation, we have 
considered 25 RRHs with 1 Km serving ranger per RRH and the 
number of total UE from 25 to 125 that are equally distributed 
among RRHs. We have presented simulation results by 
considering three scenarios that are i) UEs are stationary, ii) UE 
moves according to the random walking model, and iii) UE 
moves based on Modified Gauss-Markov. In addition, we have 
considered 50-time slots, each time slot is 20ms, and the 
maximum velocity is 50 Km/h. Hence, the maximum travelled 
distance within the time slots is 14 m. As a result, UE association 
is considered with fixed RRH. The system parameters for 
simulations except the mobility model follow as [23,29] for 
ensuring the fair comparison, presented in Table 3. 

Fig. 5. Simulation environment with 16 cells and 32 UEs 
 

TABLE III  

SIMULATION PARAMETERS 

 

A. Simulation Results without Mobility Model  

 In Fig. 6, the x-axis shows the range of UE density from 1 to 
5, and the y-axis represents the average sum rate per UE (bps). 
In Fig 6(a), we have considered the maximum cell radius as 
1000m and the maximum power as 38dbm. The average sum 
rate per UE (bps) from the FP and WMMSE benchmark methods 
is 2.87 and 2.90 when only one UE per cell is accessible. DQN 
and DDPG offer about 8% and 16% in the same situation, but 
our suggested approach, TD3, produces 24% greater 
performance than the FP benchmark algorithm during the testing 
period. Furthermore, the performance of all methods decreases 
exponentially. Because of intra- and inter-UE interference, the 
performance of all approaches declines exponentially as UE 
density increases. Compared to other algorithms, TD3 offers the 
best rate per UE (1.743 bps) in the case of the highest density (5 
UE per cell). With TD3 obtaining the best average sum rate 
overall in the whole testing period, as shown in Fig. 6(a), the 
DQN, as well as DDPG approaches, seem to beat the other 
traditional methods (WMMSE and FP). In Fig 6(b), we have 
considered the maximum RRH cell radius  as 500m and the 
maximum power for each UE as 24dBm according to the small 
cell RRH dataset. The average sum rate per UE (bps) from 

Parameter  Value 

Number of RRH 𝑁 25 

Number of UEs per cell 𝐾 1 to 5 

Minimum coverage of RRH 𝑅𝑚𝑖𝑛 10 m  

Maximum coverage of RRH  𝑅𝑚𝑎𝑥 1000 m 

Velocity 10km/h to 50 Km/h 

Doppler frequency 𝑓𝑑  10 Hz 

Time Period 𝑇𝑠 20 ms 

Maximum power for each UE 𝑃𝑚𝑎𝑥 38 dBm 

Minimum power for each UE 𝑃𝑚𝑖𝑛 5 dBm 

AWGN power  𝜎2
 -114 dBm 

Log-normal random variable  𝑤 8 dB 

Number of Adjacent cells 𝐷𝑛 18 

Training episode 5000 

Test episode  100 

Time slot 50 
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proposed TD3 is 3.493, while 2.572 and 2.365 are from DDPG 
and DQN, respectively, for 25 UEs. The almost same pattern is 
followed as same as Fig 6 (a) for all methods in all UE per cell 
scenarios.  

 

(a) 

 

(b) 

Fig. 6. Average sum-rate per UE with respect to various UE densities when (a) 
maximum cell radius is 1000m and maximum power is 38dbm and (b) 

maximum cell radius is 500m and maximum power is 24dbm 

B. Simulation Results with Random Walking Model 

 UE mobility significantly impacts path loss, shadow effect, 
and small-scale fading of IoRT. The random walking model 
considers the average human speed in any direction. In Fig. 7, 
we have illustrated the average sum rate per UE concerning 
various UE densities when the random walk model is 
considered. When only 25 UEs served by 25 RRHs are available 
in the simulation scenario, the average sum rate per UE (bps) is 
2.428 and 2.441 for FP and WMMSE, respectively. In DQN, it 
is slightly higher than traditional methods. The proposed TD3 
algorithm generates 3.231 bps which is the highest among all 
algorithms. For three UE per cell, the result of WMMSE is 1.189 
bps, and DDPG is 1.409 bps, while TD3 generates 1.713 bps 
which is best. Overall, the proposed TD3 has outperformed 
DDPG, DQN and two traditional methods. Due to the mobility 
effect on the performance, all algorithms produce less average 
sum rate compared to the simulation results of stationary UE. 

 
 

Fig. 7. Average sum-rate per UE with respect to various UE densities when 

random walk model is considered 

 

C. Simulation Results with Modified Gauss-Markov 

 The GM mobility model is not stateless since it retains the 
memory of prior actions. Hence, it is suitable for mobile robots. 
In Fig. 8, we have presented the average sum-rate per UE with 
respect to various UE densities when modified Gauss-Markov is 
considered at a velocity of 10 km/h, which is higher than the 
average speed of the random walking model. The average sum 
rate per UE of proposed TD3 and DDPG are around 3 and 2.5, 
respectively, while other methods generate less when UE density 
is one per RRH, and the average speed of each UE is 10 Km/h. 
Due to the increment of UE density, the average sum rate is 
decreased for all algorithms as same as the previously discussed 
result. However, the Proposed TD3 gives a better simulation 
result in the modified GM mobility model.   

 

Fig. 8. Average sum-rate per UE with respect to various UE densities when 

Modified Gauss-Markov is considered at velocity 10 km/h 
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Fig. 9. Average sum-rate per UE with velocity variation.  

 

 In Fig. 9, the average sum rate per UE has been shown 
concerning the velocity range from 10 Km/h to 50 Km/h. 
Generally, the average sum rate per UE slowly decreases with 
respect to the velocity increment for all algorithms because of 
the mobility effects on the channel condition. The rate of change 
of reducing the average sum rate per UE with respect to velocity 
increment is increased for all methods. In addition, the proposed 
TD3 has shown clearly better simulation results for the velocity 
range from 10 Km/h to 50 Km/h among all algorithms.   

VI. DISCUSSION  

 An important challenge is the PA problem, which takes into 
account the IMAC for radio resource management in IoRT, 
which is non-convex as well as NP-hard problems. In addition, 
we have considered the UE mobility, which directly impacts all 
essential elements, for example, large-scale fading, shadow 
effect etc., in channel conditions between RRH and UE. As a 
result, simulation scenarios have been more realistic as well as 
complex. We have simulated three different scenarios for i) 
stationary UE, ii) random walk mobility model of UE that is 
memoryless and iii) modified GM mobility model of UE, which 
memorizes the previous position of UE and is suitable for mobile 
robots’ movement. Model-based algorithms such as FP and 
WMMSE are widely known for solving the PA issue. However, 
when more UEs with mobility are linked to the system, the 
mathematical complexity increases. Model-free ML/DL has 
recently been used but gathering relevant data sets for training 
the ML/DL is the main problem. To address the problem with 
the data set, researchers have begun to use RL/DRL. In addition, 
allocating the emitted power from RRH is a naturally continuous 
action space problem. In this research, we have studied TD3, 
which combines policy- and value-based RL and contains six 
networks, including two actors (one for the model and the other 
for the objective) and four critics (two for the model and two for 
the target). Combining networks makes it feasible to beat 
existing model-free methods for continuous action space 
consistently. For the dynamic PA issue of three different 
scenarios i) stationary UE, ii) random walk mobility model of 
UE, and iii) modified Gauss-Markov mobility in IoRT, our 
suggested TD3 algorithm have been outperformed model-based 
algorithms like FP and WMMSE as well as model-free methods 
DQN and DDPG in terms of simulation results. In future, we 

will investigate UE movement for an extended period. UE can 
be handover from the current RRH to another adjacent RRH 
when UE is in the edge or cross the coverage area of the current 
RRH cell. Consequently, selecting the UE connection with 
which RRH is called UE association will be a big challenge that 
will be investigated with the power allocation of RRH in future. 
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