3,344 research outputs found

    Improving robustness of dynamic logic based pipelines

    Get PDF
    Domino dynamic circuits are widely used in critical parts of high performance systems. In this paper we show that, in addition to the functional limitation associated to the noninverting behavior of Domino gates, there are also robustness disadvantages when compared to inverting dynamic gates. We analyze and compare the tolerance to parameter and operating conditions variations of gate-level pipelines implemented with Domino and with DOE, an inverting dynamic gate we have recently proposed. Our experiments confirm that DOE pipelines are more robust and that improvements are due to its noninverting feature.Ministerio de EconomĂ­a y Competitividad FEDER TEC2013-40670-

    Improving robustness of dynamic logic based pipelines

    Get PDF
    Domino dynamic circuits are widely used in critical parts of high performance systems. In this paper we show that, in addition to the functional limitation associated to the noninverting behavior of Domino gates, there are also robustness disadvantages when compared to inverting dynamic gates. We analyze and compare the tolerance to parameter and operating conditions variations of gate-level pipelines implemented with Domino and with DOE, an inverting dynamic gate we have recently proposed. Our experiments confirm that DOE pipelines are more robust and that improvements are due to its noninverting feature.Peer reviewe

    California Methanol Assessment; Volume II, Technical Report

    Get PDF
    A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol. Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis

    The Data Acquisition System for the KOTO Experiment

    Full text link
    We developed and built a new system of readout and trigger electronics, based on the waveform digitization and pipeline readout, for the KOTO experiment at J-PARC, Japan. KOTO aims at observing the rare kaon decay KL→π0ΜΜˉK_{L}\rightarrow\pi^{0}\nu\bar{\nu}. A total of 4000 readout channels from various detector subsystems are digitized by 14-bit 125-MHz ADC modules equipped with a 10-pole Bessel filter in order to reduce the pile-up effects. The trigger decision is made every 8-ns using the digitized waveform information. To avoid dead time, the ADC and trigger modules have pipelines in their FPGA chips to store data while waiting for the trigger decision. The KOTO experiment performed the first physics run in May 2013. The data acquisition system worked stably during the run.Comment: 5 pages,12 figures, Transactions on Nuclear Science, Proceedings of the 19th Real Time Conference, Preprin

    Investment in Energy Infrastructure and the Tax Code

    Get PDF
    Federal tax policy provides a broad array of incentives for energy investment. I review those policies and construct estimates of marginal effective tax rates for different energy capital investments as of 2007. Effective tax rates vary widely across investment classes. I then consider investment in wind generation capital and regress investment against a user cost of capital measure along with other controls. I find that wind investment is strongly responsive to changes in tax policy. Based on the coefficient estimates the elasticity of investment with respect to the user cost of capital is in the range of -1 to -2. I also demonstrate that the federal production tax credit plays a key role in driving wind investment over the past eighteen years.electricity, wind power, production tax credits, tax subsidies

    The Gas Transportation Network as a ‘Lego’ Game: How to Play with It?

    Get PDF
    Gas transportation networks exhibit a quite substantial variety of technical and economical properties ranges roughly from an entrenched natural monopoly to near to an open competition platform. This empirical fact is widely known and accepted. However the corresponding frame of network analysis is lacking or quite fuzzy. As an infrastructure, can a gas network evolve or not from a natural monopoly (an essential facility) to an open infrastructure (a highway facility)? How can it be done with the same transportation infrastructure components within the same physical gas laws? Our paper provides a unified analytical frame for all types of gas transportation networks. It shows that gas transport networks are made of several components which can be combined in different ways. This very lego property of gas networks permits different designs with different economic properties while a certain infrastructural base and set of gas laws is common to all transportation networks. Therefore the notion of gas transportation network as a general and abstract concept does not have robust economic properties. The variety and modularity of gas networks come from the diversity of components, the variety of components combinations and the historical inclusion of components in the network. First, a gas network can combine different types of network components (primary or secondary ones). Second, the same components can be combined in different ways (notably regarding actual connections and flow paths). Third, as a capital-intensive infrastructure combining various specific assets, gas transportation networks show strong path dependency properties as they evolve slowly over time by moving from an already existing base. The heterogeneity of gas networks as sets of components comes firstly from the heterogeneity of the network components themselves, secondly from the different possibilities to combine these components and thirdly from the ‘path dependence’ character of gas network constructions. These three characteristics of gas networks explain the diversity of economic proprieties of the existent gas networks going from natural monopoly to competitive markets.
    • 

    corecore