6,134 research outputs found

    Power-Based Direction-of-Arrival Estimation Using a Single Multi-Mode Antenna

    Full text link
    Phased antenna arrays are widely used for direction-of-arrival (DoA) estimation. For low-cost applications, signal power or received signal strength indicator (RSSI) based approaches can be an alternative. However, they usually require multiple antennas, a single antenna that can be rotated, or switchable antenna beams. In this paper we show how a multi-mode antenna (MMA) can be used for power-based DoA estimation. Only a single MMA is needed and neither rotation nor switching of antenna beams is required. We derive an estimation scheme as well as theoretical bounds and validate them through simulations. It is found that power-based DoA estimation with an MMA is feasible and accurate

    Joint ML calibration and DOA estimation with separated arrays

    Full text link
    This paper investigates parametric direction-of-arrival (DOA) estimation in a particular context: i) each sensor is characterized by an unknown complex gain and ii) the array consists of a collection of subarrays which are substantially separated from each other leading to a structured noise covariance matrix. We propose two iterative algorithms based on the maximum likelihood (ML) estimation method adapted to the context of joint array calibration and DOA estimation. Numerical simulations reveal that the two proposed schemes, the iterative ML (IML) and the modified iterative ML (MIML) algorithms for joint array calibration and DOA estimation, outperform the state of the art methods and the MIML algorithm reaches the Cram\'er-Rao bound for a low number of iterations

    Target DoA estimation in passive radar using non-uniform linear arrays and multiple frequency channels

    Get PDF
    In this paper we present a robust approach for target direction of arrival (DoA) estimation in passive radar that jointly exploits spatial and frequency diversity. Specifically we refer to a DVB-T based passive radar receiver equipped with a linear array of few antenna elements non-uniformly spaced in the horizontal dimension, able to collect multiple DVB-T channels simultaneously. We resort to a maximum likelihood (ML) approach to jointly exploit the target echoes collected across the antenna elements at multiple carrier frequencies. Along with an expected improvement in terms of DoA estimation accuracy, we show that the available spatial and frequency diversity can be fruitfully exploited to extend the unambiguous angular sector useful for DoA estimation, which represent an invaluable tool in many applications. To this purpose, a performance analysis is reported against experimental data collected by a multi-channel DVB-T based passive radar developed by Leonardo S.p.A

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds
    • …
    corecore