5 research outputs found

    DNS in Computer Forensics

    Get PDF
    The Domain Name Service (DNS) is a critical core component of the global Internet and integral to the majority of corporate intranets. It provides resolution services between the human-readable name-based system addresses and the machine operable Internet Protocol (IP) based addresses required for creating network level connections. Whilst structured as a globally dispersed resilient tree data structure, from the Global and Country Code Top Level Domains (gTLD/ccTLD) down to the individual site and system leaf nodes, it is highly resilient although vulnerable to various attacks, exploits and systematic failures

    Table of Contents

    Get PDF

    Back Matter

    Get PDF

    Front Matter

    Get PDF

    Comparing the Effectiveness of Different Classification Techniques in Predicting DNS Tunnels

    Get PDF
    DNS is one of the most widely used protocols on the internet and is used in the translation of domain names into IP address in order to correctly route messages between computers. It presents an attractive attack vector for criminals as the service is not as closely monitored by security experts as other protocols such as HTTP or FTP. Its use as a covert means of communication has increased with the availability of tools that allow for the creation of DNS tunnels using the protocol. One of the primary motivations for using DNS tunnels is the illegal extraction of information from a company’s network. This can lead to reputational damage for the organisation and result in significant fines – particularly with the introduction of General Data Protection Regulations in the EU. Most of the research into the detection of DNS tunnels has used anomalies in the relationship between DNS requests and other protocols, or anomalies in the rate of DNS requests made over specific time periods. This study will look at the characteristics of an individual DNS requests to see how effective different classification techniques are at identifying tunnels. The different techniques selected are Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). The effectiveness of the different techniques will be measured and compared to see if there are statistically significant differences between them using a Cochran’s Q test. The results will indicate that DT, RF and SVM, are the most effective techniques at categorising DNS requests, and that they are significantly different to the other models. Key Words: DNS Tunnel, Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Cochran’s Q Test
    corecore