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ABSTRACT 

DNS is one of the most widely used protocols on the internet and is used in the 

translation of domain names into IP address in order to correctly route messages between 

computers.  It presents an attractive attack vector for criminals as the service is not as 

closely monitored by security experts as other protocols such as HTTP or FTP.  Its use 

as a covert means of communication has increased with the availability of tools that 

allow for the creation of DNS tunnels using the protocol.   

One of the primary motivations for using DNS tunnels is the illegal extraction of 

information from a company’s network.  This can lead to reputational damage for the 

organisation and result in significant fines – particularly with the introduction of General 

Data Protection Regulations in the EU.   

Most of the research into the detection of DNS tunnels has used anomalies in the 

relationship between DNS requests and other protocols, or anomalies in the rate of DNS 

requests made over specific time periods.  This study will look at the characteristics of 

an individual DNS requests to see how effective different classification techniques are 

at identifying tunnels.  The different techniques selected are Logistic Regression (LR), 

Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). 

The effectiveness of the different techniques will be measured and compared to see if 

there are statistically significant differences between them using a Cochran’s Q test.  The 

results will indicate that DT, RF and SVM, are the most effective techniques at 

categorising DNS requests, and that they are significantly different to the other models. 

 

 

 

  

Key Words: DNS Tunnel, Logistic Regression, Support Vector Machine, Decision Tree, 
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1 INTRODUCTION 

The DNS protocol is used to resolve host names to IP addresses.  It acts much like a 

telephone directory for the Internet, without it users would need to remember the IP 

address of every server they send messages to.   Although not designed as a data 

communications channel, it can be used as such by individuals using a DNS tunnel to 

avoid paying for internet services, to access restricted sites, or to illegally extract 

information from a network.  Identifying DNS tunnels can be a difficult task as attackers 

become more creative in their design and implementation of tunnels, and take steps to 

avoid detection. 

This paper will briefly review the history of DNS and how it works, how it can be used 

as a covert channel, and the different techniques employed to identify DNS tunnels.  A 

number of different classification models will then be developed that can predict that a 

DNS request is part of a tunnel by looking at the characteristics of the request.  

Comparisons between the different models developed will be made to establish which 

one is the most effective at detecting tunnels and to see if any differences between them 

are significant. 

1.1 Background 

1.1.1 TCP/IP 

The TCP/IP protocol was first developed as part of ARPANET, and is used to reliably 

transmit messages between hosts on a network or networks.  TCP is used to create 

channels of communication between hosts, and determine how messages are divided up 

into smaller packets before they are transmitted from a source to a destination host.  IP 

is used as an addressing mechanism to ensure that messages are routed to the correct 

destination.  Each router on the network checks the message’s destination IP address to 

determine where it should be sent next (Mehta, 1999). 

An IP address is made up of a series of numbers that create a unique address that is used 

to identify different hosts on a network.  If someone wanted to transmit a message from 

host A to host B, they would need the IP address related to host B, and set that as the 
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destination for the message.  IP addresses can be difficult for people to remember, so 

instead host names are used which are automatically translated to IP addresses before 

the message is sent.  E.g. www.dit.ie is translated to 147.252.25.70 before any messages 

are sent to the server.  Initially, the host name translation was done by looking up a 

hosts.txt on the local filesystem.  Every time a new host was added to the network, the 

hosts.txt file would need to be updated and sent to all other hosts so that they could 

communicate with the new host using the name.  By the early 1980s, the number of hosts 

being added to the network was increasing exponentially, and modifying the hosts.txt 

file and updating the local file system on each existing server when a new host was added 

became impractical.  This led to the creation of DNS, a distributed naming system which 

is used to resolve host names to IP addresses (Pope, Warkentin, Mutchler, & Luo, 2012). 

1.1.2 Domain Name System 

DNS is a fundamental protocol on the Internet used to translate domain names to IP 

addresses.  It is a distributed hierarchical service with different DNS servers 

administering different parts of the database.  It is formulated as a tree structure, with 

each node on the tree (except the root node) having a label and parent node.  Figure 1.1 

DNS Tree Structure illustrates the basic setup. 

In this example, dit.ie is the fully qualified domain name of the “dit” node whose parent 

is “ie” and whose grand-parent is the root node.  Different zones within the database are 

maintained by different organisations.   

When a new node is added to a zone, the controlling organisation adds it to the database 

and updates multiple servers to make the node accessible to different clients on the 

network (Wright, 2012). 

When a DNS server receives a request for a domain it doesn’t know, it re-directs it to 

another DNS server to be resolved (Callahan, 2013).  For example, if a client on a 

network requests the IP address of www.dit.ie, it will first make a request to a local DNS 

server.  If the local DNS server does not have the IP address, it will send a message to 

another DNS server to resolve the request, e.g. the “root” DNS server. 

http://www.dit.ie/
http://www.dit.ie/
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Figure 1.1 - DNS Tree Structure 

root

ie com eu

dit dcu

If this server does not have the IP address and is not the authority for the sub domain, it 

will either forward the request to the relevant authority (e.g. “ie” domain) or send a 

message back to the local DNS server to indicate that they should re-direct to the 

authoritative server.  This continues until the request reaches the authoritative DNS 

server for the domain, at which point the IP address is returned to the client.  This is 

illustrated in Figure 1.2 DNS Lookup. 

Steps to Resolve IP Address: 

1. A client requests the IP of www.dit.ie.  

2. The local DNS server does not have the IP address and so forwards the request 

to the “root” DNS server.  The “root” server responds to the local DNS server 

indicating that they should direct the query to the “ie” DNS server. 

3. The local DNS server forwards the request to the “ie” DNS server.  The response 

indicates that they should go to the “dit.ie” DNS server. 

4. The local DNS server forwards request to the “dit.ie” DNS server that responds 

with the resolved IP address.  The local DNS server then responds to the client 

with the IP address. 

http://www.dit.ie/
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Figure 1.2 - DNS Lookup 

`

1.  Client Request

2. DNS Root 
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Lookup

  

1.1.3 DNS Tunnelling 

DNS was not built with security in mind and as a result it can be vulnerable to various 

attacks, such as DNS forgery and DNS tunnels, as the requests don’t usually receive the 

same amount of scrutiny from network security teams who are usually more focused on 

HTTP or FTP traffic.  This can leave the protocol vulnerable to attack from un-

authorised individuals looking to exploit the security weaknesses in the system (Wright, 

2012). 

The protocol cannot be simply switched off as it is ubiquitous in nature and is required 

by many other services to allow them to operate efficiently – for both legitimate and 

illegal activities.  As such, DNS requests are rarely blocked and have become a target 

for use in covert channels that use it to exfiltrate data from a network by setting up a 

DNS tunnel (Tien & Kavakli, 2008). 
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1.1.4 Data Exfiltration 

A DNS exfiltration attack works by installing malware on a computer that sends DNS 

requests for a domain controlled by an attacker.  The requested domain name contains 

data from the network gathered by the malware.  The network router does not recognise 

the domain, and so forwards the request to higher level DNS servers.   The request 

eventually reaches the attackers DNS server, at which point the data is extracted and a 

response sent to the client (Van Antwerp, 2011).  Only a relatively small amount of 

information can be extracted in each request but if left running over even a moderate 

amount of time, this can lead to significant data loss. 

Figure 1.3 - Data Exfiltration 
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1.1.5 Identifying DNS Tunnels 

Detecting DNS tunnels that have a high throughput can be easily achieved by observing 

a spike in DNS requests with no corresponding spike in HTTP or FTP traffic (Sheridan 

& Keane, 2015).  Normally, DNS requests would be made as a pre-cursor to other types 

of requests, such as HTTP or FTP.  Therefore, you would expect to see a correlation 

between DNS and other network traffic messages.  This is illustrated (using example 

requests) in Figure 1.4 – Spike in DNS Traffic, where there is an obvious increase in 

DNS traffic between 9:14 and 9:20 with no corresponding increase in HTTP or FTP 
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traffic.  This should be of concern to network security analysts who would then need to 

identify the source and destination of the DNS requests and determine if they are genuine 

or part of a DNS tunnel.  Once it is confirmed that they are part of a tunnel, rules can be 

put in place to prevent any further DNS requests being sent to that domain.   

Figure 1.4 - Spike in DNS Traffic 

Further investigation may then be required to determine what data was extracted from 

the network and if clients and regulatory bodies need to be notified e.g. if personal or 

bank details were extracted. 

Identifying DNS tunnels with a high level throughput by comparing network traffic 

protocols can be very effective, however if the attackers adopt a Low and Slow approach 

to data exfiltration, then this kind of identification becomes much more difficult.  For 

example, Figure 1.5 Low Level Throughput illustrates the existence of a tunnel between 

9:10 and 9:24, but it is much more difficult to observe a spike in DNS traffic.  In this 

instance, the increase in DNS traffic is much more subtle and reflects a Low and Slow 

approach to data exfiltration where the attacker keeps the number of DNS requests below 

a certain threshold to avoid detection.  Additionally, if the malware implementing the 

tunnel matches existing network traffic patterns, then real time detection can be even 

more difficult.  For example, if an attacker extracted information from a network over 

weeks or months, they could go undetected if they match existing traffic and stay below 

0
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detection thresholds (Kalutarage, 2013).  In these circumstances, simply monitoring 

DNS traffic and comparing it to HTTP and FTP traffic to identify tunnels can prove 

difficult.  This is particularly true on an organisation’s network that can generate large 

amounts of DNS and HTTP traffic.  Recording and analysing this amount of traffic to 

identify minor changes can be costly and time consuming. 

Figure 1.5 - Low Level Throughput 

 

Even if spikes in DNS traffic are identified, they can often be false positives.  For 

example, they can be caused by internet browsers that can generate DNS traffic without 

any corresponding HTTP traffic.  If you open Google Chrome and monitor the DNS 

traffic in Wireshark, you will see DNS requests from the browser even when the session 

is inactive. 

Figure 1.6 - Figure 1.6 - DNS Requests from Inactive Browser Session 

 

The approach this paper will take to identify DNS tunnels is to look at the characteristics 

of the individual requests and then to use different classification techniques, Logistic 
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Regression (LR), Decision Tree (DT), Random Forest (RF), and Support Vector 

Machine (SVM), to make predictions on whether or not the request is part of a tunnel.  

The models will be built from existing datasets of DNS requests that contain both 

legitimate and tunnel related traffic.  These datasets are publically available and 

represent typical DNS activity associated with the tunnelling tools Iodine and Powercat.  

The results from each model will then be compared to see if there are statistically 

significant differences in the predictions made between the various models. 

1.1.6 Research Project 

1.1.6.1 Research Question 

Is there a statistically significant difference in the prediction of DNS tunnels using the 

classification techniques Logistic Regression, Decision Tree, Random Forest, and 

Support Vector Machine? 

Comparisons between the various techniques will be made using the Sensitivity, 

Specificity, Accuracy, and Precision of the models produced.  These values will be 

calculated by creating a confusion matrix for the results – True Positive, True Negative, 

False Positive, and False Negative.   To compare the classification techniques used, the 

output of True Positive and True Negative will be examined using a Cochran’s Q test to 

see if there are statistically significant differences in the results obtained.   If the test 

indicates that there are significant differences between all of the models, then further 

tests between pairs of classification techniques will be carried out. 

The first step in creating the classification models will be to examine the candidate 

characteristics in the table below to see if they are appropriate predictive variables for 

use in classification models.  The justification for the inclusion of variables will be based 

on previous research and statistical analysis of the requests in the dataset. 

Once the predictive variables are identified from the candidate characteristics, the 

different classification models will be built to predict which requests are part of a DNS 

tunnel.   
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Table 1.1 - DNS Request Characteristics 

Name Description 

Length The length of the domain being requested 

Sub Domain Length The length of the first sub-domain in the request 

Sub Domain Count The number of sub domains in the request 

Character Distribution The number of different characters used in the request 

Entropy The min number of characters required to encode the request 

 

1.1.6.2 Logistic Regression 

LR models calculate the probability of an outcome based on either categorical or 

continuous predictor variables.  The first step is to create a boundary equation to separate 

the input data into multiple regions (two for binary logistic regression).  The goal is to 

create an equation that maximises the likelihood that the training data will be placed into 

the correct region.  From the boundary equation, the odds ratio is calculated using the 

exponential function ex, and from this the probability of and individual record being in 

the target region can be determined (Peng, Lee, & Ingersoll, 2002). 

For this research, the models will be built using the DNS request characteristics to 

develop a boundary equation to predict the probability that the request is part of a DNS 

tunnel.  The output from the model will be a boundary equation in the following form: 

output = b0 + (b1 x c1) + (b2 x c2) + …. + (bn x cn) 

 c1 to cn represent the score of the different characteristics of the DNS request 

being examined, e.g. length = 50 

 b1 to bn represent the impact those characteristics have on whether the request 

is part of a tunnel as predicted by the model, e.g. the weighting applied to the 

length of the request 

 b0 represents a constant for the likely outcome, e.g. the probability that a request 

is part of a tunnel regardless of the characteristics 

The output of the boundary equation could be positive or negative, lying somewhere 

between (-∞, +∞).  If the output is between (-∞, 0), then the result is negative (i.e. the 



10 

 

model will predict that the request is not part of a tunnel).  If the output is between (0, 

+∞), then the results are positive (i.e. the model will predict that the request is part of a 

tunnel).  If the output from the boundary equation is 0, then the model will not be able 

to predict if the request is part of a tunnel or not. 

Figure 1.7 - Binary Logistic Regression 

Characteristic 1

Characteristic 2

Characteristic n

ProbabilityBoundary Equation

…

  

The odds ratio (OR) is associated with the output from the boundary equation and is 

used to map that output to the probability that the request is part of a tunnel.  If P(X) is 

the probability of the request being tunnel related, then the odds ratio is calculated as 

follows: 

𝑂𝑅(𝑋) =
𝑃(𝑋)

1 − 𝑃(𝑋)
 

It is the ratio of the probability of a request being part of a tunnel, versus the probability 

of it not being part of a tunnel.  From this, we get the following equation for the 

probability: 

𝑃(𝑋) =
𝑂𝑅(𝑋)

1 + 𝑂𝑅(𝑋)
 

The relationship between the output from the boundary equation and the OR is defined 

as follows: 
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𝐿𝑜𝑔𝑒(𝑂𝑅(𝑋)) =  output 

so therefore 

𝑂𝑅(𝑋) =  𝑒𝑜𝑢𝑡𝑝𝑢𝑡 

where 𝑒 is the base of natural logarithms (approximately 2.7182818).  This gives the 

following equation for the probability: 

𝑃(𝑋) =
1

1 + 𝑒−𝑜𝑢𝑡𝑝𝑢𝑡
 

The output from the boundary equation above will result in values between (-∞, +∞), 

the odds ratio will have values that are in the range (0, +∞), and the probability will have 

values in the range (0, 1).  For this study, if a request has a probability above 0.5, then 

the prediction will be that it is part of a DNS tunnel.   

A binary logistic regression curve can give a visual representation of the probability of 

a request being part of a tunnel.  This can be useful in determining which predictive 

variables are likely to have the most impact on the model, and shows the cut-off point at 

which a request is more likely to be tunnel related.  The curve maps the probability 

function defined above and should produce an s-type curve if the variable if effective at 

categorising the data.  This can be useful to see how well a predictive variable separates 

the binary outcome regions in a logistic regression model. 

Figure 1.8 - DNS Curve 
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1.1.6.3 Decision Tree 

A DT is another technique that can be used in binary classification to predict which 

category a set of predictive variables belong to.  Each node on the tree represents a test 

on a characteristic (univariate), or a test on a set of multiple characteristics 

(multivariate), and each leaf represents a predicted outcome – tunnel Y/N.  For example, 

in Figure 1.9 – Decision Tree Illustration, if the Length of a DNS request is greater than 

100 and the Entropy is greater than 50, then the model would predict that the request is 

part of a tunnel.  Similarly, if the Length is less than 100, the Sub Domain greater than 

10, and the Entropy less than 15, then the model would predict that the request is 

legitimate. 

Figure 1.9 - Decision Tree Illustration 

If Length > 100

If Entropy > 50

Yes No

If Sub Domain > 10

If Entropy > 25

Yes No

If Entropy > 15

Yes No

True False

 

The DT algorithm operates in two phases, the first is to build an initial tree, and the 

second to prune the tree (Garofalakis, Hyun, Rastogi, & Shim, 2000).  During the build 

phase, the tree is grown until each node contains only a small number of child nodes.  

During the pruning stage, nodes that provide only redundant information are removed.  

This is done to improve the overall efficiency of the model and still maintain the 

accuracy of the predictions.  Unlike LR, the output from a DT is a prediction rather than 

a probability, but comparisons can be made using the actual and predicted values to 

determine which model is most effective. 
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1.1.6.4 Random Forest 

Overfitting can occur in a DT if too many variables are used with not enough sample 

data.   For example, if ten characteristics are used to examine DNS tunnels with only 

one hundred samples, then there is a risk that the algorithm will over fit the training data 

to produce the model and make the results unreliable.  If too few characteristics are used, 

then there may not be enough variance in them to produce an accurate model than can 

be used outside of the training set. 

RF is one technique that can be used to get around this problem.  The process uses 

multiple decision trees with different characteristics and training data, and then 

aggregates the results to produce an overall prediction.  This can have the effect of 

reducing errors due to overfitting, but also maintain the accuracy by including all 

variance in the data.  As with DT, the outcome from RF is a prediction rather than a 

probability. 

1.1.6.5 Support Vector Machine 

SVM can be used as a classification model based on a set of predictive variables.  It is a 

machine learning algorithm that tries to find a hyperplane that divides data into two 

distinct categories.  For example, Figure 1.10 SVM with Hyperplane (using example 

requests), illustrates how a scatter plot of length and entropy can be divided into 

legitimate and tunnel related requests.  The green line represents the hyperplane and the 

points closest to it are the support vectors.  The support vectors have the biggest impact 

on the hyperplane in terms of its slope and boundary.  This is referred to as a linear SVM, 

as a straight line can be drawn between the two different groups.  If no clear distinction 

between groups can be made, then it may not be possible to draw a linear hyperplane, as 

illustrated in the Figure 1.11 - SVM with no Linear Hyperplane.   

In this case, non-linear transformations are performed to add extra dimensions to the 

model using the predictive variables as inputs - this is referred to as Kernelling.  

Gaussian Kernel, Polynomial, and Radial Basis Function (RBF) are typical examples of 

the technique (Ben-Hur & Weston, 2010) (Mongillo, 2011).  Once the kernel is applied, 

the hyperplane is no longer a line but a plane - see Figure 1.12 - SVM with Kernelling. 
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Figure 1.10 - SVM with Hyperplane 

 

Figure 1.11 - SVM with no Linear Hyperplane 

 

Figure 1.12 - SVM with Kernelling 
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Similar to DT and RF, SVM models place the observation in one of the two groups – 

tunnel or legitimate request.  Comparisons between the different techniques will be made 

using the accuracy of the results obtained. 

1.2 Research Objectives 

1.2.1 Hypothesis 

H0 – There is no statistically significant difference (p<0.01) in the accuracy of the 

prediction of DNS tunnels using the classification techniques Logistic Regression, 

Decision Tree, Random Forest, and Support Vector Machine. 

Ha – There is a statistically significant difference (p<0.01) in the accuracy of the 

prediction of DNS tunnels using the classification techniques Logistic Regression, 

Decision Tree, Random Forest, and Support Vector Machine. 

1.2.2 Comparison of Classification Techniques 

The objective of the research is to create classification models to make an effective 

prediction that a request is part of a DNS tunnel.  Multiple classification models will be 

built and compared to each other to see which is the most effective at predicting tunnels.  

This comparison will be made by examining the True Positive and True Negative 

(accuracy) of each of the modes.  The significance of the differences between the 

different models will be examined using a Cochran’s Q test.  The research will use 

publically available datasets of network traffic, with individual requests previously 

categorised as being legitimate or part of tunnel.   

1.3 Research Methodologies 

1.3.1 Data Gathering and Preparation 

The research being undertaken is secondary in nature using existing datasets of DNS 

requests.  The sources for the data are the GitHub PCAP Samples, Wireshark Sample 

Captures, Penetration Tester Lab, and TCP Replay samples, which contain PCAP files 
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of DNS requests for legitimate and tunnel requests.  The tunnel related traffic was 

generated using the Iodine and Powercat tools. 

1.3.2 Validation of Inclusion of Characteristics in Model 

The first phase in the solution will be to generate descriptive statistics for each of the 

candidate predictive variables to determine if they follow a normal distribution.  The 

relationship between the predictive and the outcome variable will then be examined 

using an Independent t-test for parametric predictors, or Mann Whitney U test for non-

parametric predictors.  If statistically significant differences are not found for the 

predictor variable and the different outcome groups, then it will not be included in the 

model. 

The second phase will look at the assumptions that need to be satisfied for classification 

models to produce reliable results.  This will include looking at collinearity between the 

predictive variables using cross-tab reports.  If a strong collinearity is found (i.e. one of 

the candidate predictive variables is closely linked with another), then one of the 

predictive variables will need to be removed or replaced.  This can occur if two of the 

predictive variables are measuring the same variance in the data.  If they were both 

included, then this variance would have an undue influence over the model. 

1.3.3 Building Classification Model 

The third phase of the solution will be to build classification models using each of the 

different techniques to predict if a request is part of a DNS tunnel.  The first step will be 

to produce simple models with just one predictive variable as an input.  The other 

predictive variables will then be added to the models to see if they can improve the 

results. 

The different classification techniques being used are Logistic Regression, Decisions 

Tree, Random Forest, and Support Vector Machine.  Statistics will be generated on the 

models to show how well they predict which category the request belongs to, DNS 

tunnel or legitimate request, and then comparisons will be made to see which technique 

produces the best results. 
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1.3.4 Evaluation of Classification Models 

The models will be evaluated in terms of the Sensitivity, Specificity, Accuracy and 

Precision of the results obtained as calculated using the True Positive, True Negative, 

False Positive, and False Negative values. 

True Positive (TP): The total number of DNS requests correctly categorised as being 

tunnel related. 

True Negative (TN): The total number of DNS requests correctly categorised as not 

being tunnel related. 

False Positive (FP): The total number of DNS requests incorrectly categorised as being 

tunnel related. 

False Negative (FN): The total number of DNS requests incorrectly categorised as not 

being tunnel related. 

Sensitivity:  This tells us the percentage of tunnel related DNS requests that were 

correctly classified by the model and is calculated as TP / (TP + FN). 

Specificity: This tells us the percentage of non-tunnel related DNS requests that were 

correctly classified by the model and is calculated as TN / (TN + FP). 

Accuracy: This tells us the percentage of DNS request that were correctly classified as 

being tunnel or legitimate and is calculated as (TP + TN) / (TP + FP + FN + TN). 

Precision: This tells us the percentage of predicted DNS tunnel request that were correct 

and is calculated as TP / (TP + FP). 

Using these measures will allow the models to be evaluated during each step in the 

process (base model followed by additional predictors) and comparisons to be made 

between the techniques.  To determine if the differences in accuracy are significant, a 

Cochran’s Q test will be performed on the TP and TN results.  The statistic for the test 

is defined as follows: 
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where k is the number of models, mi is the number of correctly predicted requests per 

model, and ri is the number models that correctly predicted each request.  

Table 1.2 - Illustration of Cochran's Q Test 

Model / 

Request 

Model 1 Model 2 Model 3 Model 4 Total 

Request 1 0 0 1 1 2 

Request 2 0 1 1 0 2 

Request 3 1 1 0 1 3 

Total 1 2 2 2 8 

In this case q = 0.8181 

𝑞 = (3) ∗  
(4 ∗ (12 + 22 + 22 + 22) −  (1 + 2 + 2 + 2)2

4 ∗ (2 + 2 + 3) − (22 + 22 + 32)
 

The statistic has a 2 (chi-squared) distribution.  In this instance the p-value is 

approximately 0.85, which would mean we would fail to reject the null hypothesis that 

the predictions are the same. 

1.4 Scope and Limitations 

The scope of the study is to look at four classification techniques, Logistic Regression, 

Decision Tree, Random Forest, and Support Vector Machine, to see if there are 

statistically significant differences in their ability to predict DNS tunnel requests.  

Implementing the models in a production environment, or documenting the creation of 

DNS tunnels, is beyond the scope of this research.  

It can be difficult to find datasets of DNS requests with known tunnels without 

generating them yourself.  If you generate them yourself, then you have complete control 

over the nature of the request which could lead to invalid results as there would be a risk 

that you could control for the characteristics under investigation.   
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For this study, datasets available online with known DNS tunnels will be used.  The 

volumes of data available are small (2221 legitimate requests and 3425 tunnel requests), 

and so will need to be taken into account when interpreting the results.  Also, as the 

requests were produced in a test environment, the source IP address and responses were 

constant for tunnel and legitimate traffic, so these characteristics will not be used as 

predictive variables in the models.  The tunnel requests were generated from the DNS 

tunnelling tools Iodine and Powercat, and so may not have the variety required to 

produce a general purpose model that could be reliably used to help identify DNS tunnels 

in a real production environment. 

1.5 Document Outline 

 Chapter 2 – Literature review and related work 

The literature review chapter will briefly review the history of DNS and the steps 

required to create a tunnel using the protocol.  The various techniques used to detect 

tunnels in previous studies is also examined – in particular anomaly based systems 

and the detection of auto-generated domains.  The remaining section will review the 

potential gap in the existing research around the prediction of an individual request 

being part of a DNS tunnel and the evaluation of classification techniques. 

  

 Chapter 3 – Design and methodology 

The design and methodology used in the research followed the CRISP-DM (cross-

industry process for data mining) process to help ensure reliable results.  The steps 

followed were business understanding, data understanding, data preparation, 

modelling, evaluation, and deployment.  The steps required to obtain & prepare the 

data is explained, along with process required to select the predictive variables.  The 

different tuning methods used to improve the models are reviewed along with an 

explanation of how the effectiveness of the models will be measured. 

 

 Chapter 4 – Implementation and results 

This chapter will present the results from the research that includes summary 

statistics on the data and visual representations of how the data is distributed.  

Decision around which characteristics to include as predictive variables is also 



20 

 

outlined.  For each of the models produced with the different classification 

techniques, the results obtained at each stage are reviewed.   

 

 Chapter 5 – Analysis, evaluation and discussion 

The analysis chapter will summarise the results obtained in the study and put some 

context on the reliability of the models to be used as general predictors of DNS 

tunnels.  It will also review the strengths and weaknesses of the models and highlight 

any areas of concern with the results. 

 

 Chapter 6 – Conclusion 

This chapter will outline the process to complete the study, present a summary of the 

results obtained, and determine which binary classification techniques are most 

suitable for categorising DNS traffic as being legitimate or tunnel related.  It will 

also comment on the impact of the research and how it could be extended to be used 

in a production environment. 

 

 Chapter 7 – Bibliography 

This chapter details all the previous research referenced in this study. 

 

 Chapter 8 – Appendix 

This chapter contains of all the results obtained during the evaluation of the different 

classification techniques.  This includes results obtained when using one, two, and 

three predictive variables. 
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2 LITERATURE REVIEW AND RELATED WORK 

2.1 Introduction 

This chapter will give a brief history of the domain name system, how it can be exploited 

as a covert channel using a tunnel, the different detection techniques available to identify 

them using anomaly based detection and identification of auto generated domains, and 

the gaps in research in relation to the comparison of different classification techniques 

and their ability to classify an individual request as being legitimate or tunnel related 

based on the characteristics. 

2.2 Domain Name System 

The DNS protocol is a hierarchical, distributed database used to translate domain names 

that are human readable into IP addresses that are then used to transmit messages 

between hosts on a network.  Most security systems concentrate on preventing intruders 

gaining unauthorised access to systems and data on the organisations network.  

However, if malware gets installed onto a machine connected to the network, then it can 

be used to run commands on the network, spoof IP address, disrupt services, and extract 

information. 

DNS can be the focus of many different cyber-attacks due to the perceived lack of 

security in the protocol.  Wright (2012), in his paper on DNS in Computer Forensics, 

concluded that there were not enough security professionals who truly understand DNS 

and how vulnerable it can be to being exploited.  He demonstrated many of the different 

vulnerabilities in DNS and suggested some techniques that could be used in a forensic 

investigation, including DNS logging and looking at the history and behaviour of clients 

on a network.  However, logging DNS requests for even a moderate amount of time may 

be impractical as it would generate a large amount of data and could slow down the DNS 

service. 

There are many different type of attacks that can be based on the security vulnerabilities 

in DNS.  A denial of service attack (DoS) can be achieved by sending a large number of 

DNS requests that overwhelm a DNS server.  Hudaib and Hudaib (2014) suggest that 
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increasing the number of DNS servers can help in a DNS related DoS attack, but if the 

attacker employs DNS spoofing, then they can increase the volume of DNS requests and 

exhaust the servers.  In this scenario, the attacker sends out a small request, but the 

spoofed target address receives a much larger DNS response.  This type of attack can be 

blocked if the servers are capable of recognising a spoofed IP address.   

Another example of an attacker vector involving DNS is cache poisoning.  When a DNS 

server receives a request for a domain, it will search its own cache to find a response.  If 

it doesn’t find one, it can either forward the request to an authoritative server for the 

domain, or alternatively, it can respond to the client directing them to the authoritative 

server.  If an attacker forges a response to the DNS server, which looks like it comes 

from the authoritative server, and this is accepted by the DNS server, then this would 

result in the cache for the DNS server being poisoned (Son & Shmatikov, 2010).  Any 

future requests for the domain sent to the DNS server would result in the address defined 

by the attacker being returned to the client.  This could result in HTTP or FTP messages 

intended for a legitimate target ending up on the attacker’s machine.  The attacker could 

then search these requests to find sensitive information to conduct further attacks against 

the client or third parties. 

Figure 2.1 - DNS Poisoning 

1. Attacker sends DNS response 

for DIT domain with their server’s 

address, poisoning the DNS server

2. Client requests address of DIT domain 

but server responds with attackers address

3. All future messages intended for DIT 

server now go to attacker’s server
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The motivation behind these attacks are not solely financial, they can also be political, 

religious, state sponsored, industrial espionage, or just individuals trying to make a name 

for themselves.  Terrorism is another motivating factor that is sometimes considered a 

sub-class of religious or politically based attacks. Atkins (2013) in his thesis on Cyber 

Espionage, looked at the impact DNS vulnerabilities and internet protocols in general 

has had on terrorist activities.  He concluded that terrorist groups have adapted to the 

internet to take advantage of some of the security weaknesses in the protocols used.  He 

also looked at how technology could play a vital role in tracking the movements of 

terrorists, and highlighted the risks to privacy associated with such surveillance. 

DNS can also be used as a command-and-control (C&C) channel for botnets allowing 

attackers to send updates to bots or launch attacks against networks or servers.  The 

service is an ideal protocol for attackers to use as the high volume of DNS traffic on a 

network can help to hide the C&C requests, and the lack of security around DNS gives 

an attacker a potentially un-monitored median to send instructions to bots.  Xu, Butler, 

Saha, and Yao (2013), present a C&C strategy that uses DNS tunnels that match existing 

traffic patterns to help avoid detection.  They concluded that manipulating the DNS 

protocol was a very effective means to covertly create a C&C channel to control bots to 

conduct illegal activities.     

The fundamental nature of DNS, coupled with the lack of security and monitoring, has 

resulted in DNS becoming a target for individuals who use it unlawfully in different 

attacks and with different goals.  Those goals can sometimes include transmitting 

messages outside of an organisation’s network via a DNS tunnel. 

2.3 DNS Tunnels 

2.3.1 Creating a DNS Tunnel 

A DNS tunnel is the process by which the protocol is used to covertly communicate 

messages between computers.  The motivation to create DNS tunnels can be to avoid 

internet paywalls, exfiltrate data, act as a C&C channel, or to get around censorship 

rules.   Wolfgarten (2006), in his thesis on Investigating large-scale Internet content 

filtering, reviewed how DNS tunnels could be used to circumvent censorship laws as 
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used in the People’s Republic of China.  His conclusions at the time were that the process 

to create tunnels was too complicated for the average user and that alternatives were 

needed to avoid censorship.   

Since then, tools such as Iodine and Powercat have become available to make the 

process of creating a tunnel more straightforward not only to avoid censorship laws, but 

also for users trying to inflict harm on individuals or organisations.  This reduction in 

technical expertise required to create a DNS tunnel has made them much more accessible 

to the average user.  Reyes (2014), in his paper on Covert channel detection using flow-

data, describes the process of creating a DNS tunnel by embedding a message in the sub 

domain of a DNS request.  If an attacker controls the authoritative server for a domain, 

then they will receive the DNS request and be able to extract the message.  For example, 

if a host on a network sent a DNS request for the secretmessage.attackersdomain.com, 

the request would normally be allowed through the firewall as DNS requests are rarely 

blocked, and eventually be forwarded to the authoritative server for 

attackersdomain.com.  This server is controlled by the attacker who could then extract 

the message from the request.  The messages would normally be encrypted which can 

make it more difficult to detect that they are transmitting sensitive information. 

Figure 2.2 - DNS Tunnel 

`

1. DNS Request for 

secretemessage.attackersdomain.com

2. Authoritative server for 

attackersdomain.com

Attacker can now read the 

secret message and 

respond to the request.
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Data exfiltration via DNS tunnels is generally implemented in this way by installing 

malware on the client PC that collects information from the local network and then 

transmits it to the server controlled by the attacker via a DNS request (Raman et al., 

2013).  Once the message reaches that DNS server, the attacker can read the message 

and respond with a fake IP that directs the malware on the client to take a specific action, 

or it can simply send a null response. 

Llamas, Allison, and Miller (2005), in their overview of Covert Channels in Internet 

Protocols, described how DNS requests can be an attractive attack vector for anyone 

wishing to hide or disguise communication.  The continued evolution of hidden and 

anonymous communication channels has made it increasingly difficult for security 

teams to detect that a covert channel exists.  This is particularly true if the attacker is 

patient and has the time to adopt a Low and Slow approach to the communication.    

Middelesch (2015), in his thesis on Anonymous and Hidden Communication Channels, 

looked at the continued evolution of covert channels and discussed the use of DNS as a 

covert means of communication.  He concluded that there were many different options 

for hidden communication but that the Tor browser was probably the best. 

Hoffman, Johnson, Yuan, and Lutz (2012) describe a different technique to exploit the 

DNS protocol, by manipulating time-to-live (TTL) on DNS request, and to use that as a 

means to communicate covertly.  Although the throughput on this type of tunnel would 

be relatively small, over time it could still be very damaging financially or to the 

reputation of an organisation. 

As previously mentioned, the creation of DNS tunnels is now more straight forward than 

ever.  As a consequence they have become much more prevalent, and therefore it is more 

important for organisations to be able to detect DNS tunnels on their network to prevent 

data leakage. 

2.3.2 Detecting DNS Tunnel 

The detection of DNS tunnels has become a focus for organisations and individuals 

trying to prevent the exfiltration of data from their network.  Banking details are no 

longer the only target for criminal organisations trying to extract information from 
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personal or corporate networks.  Client data, personal data, intellectual property, or 

company secrets, are now all targets for criminals, which can cause both financial and 

reputational damage to organisations or individuals.   

Giani, Berk, and Cybenko (2006), in their paper on Data Exfiltration and Covert 

Channels, discussed some of the different techniques available to attackers to extract 

information from an organisations network.  They reviewed how organisations can 

sometimes find it difficult to know what information is leaving the network legitimately 

and what information is being leaked to unauthorised individuals or organisations.  They 

also looked at how sometimes it can be difficult to know if communication is occurring 

at all. 

As network security analysts develop different techniques to identify malware, attackers 

adapt their strategy to avoid being detected.  For example, the Conflicker worm received 

updates by creating 250 algorithmically generated domains (AGD) every three hours.  

They used the current date and time as a seed, ensuring that all the bots would generate 

the same names every day.  When the worm was reverse engineered, and the domains 

were identified and blocked, the later version of the malware switched to use any 500 of 

50K different AGD.  Identification of malware generated AGD is further compounded 

by the use of AGD for legitimate purposes by benign applications such as Internet 

browsers (Krishnan, Taylor, Monrose, & McHugh, 2013). 

2.4 Network Anomaly Based Detection 

Adapting a Low and Slow approach to data extraction can be an effective technique for 

attackers to use to avoid detection of their DNS tunnels.  Most Intrusion Detection 

Systems (IDS) will be able to identify high throughput tunnels by the rapid increase in 

DNS traffic relative to other network traffic protocols, but if the attacker has enough 

patience and time, and adopts a Low and Slow approach, then they can go undetected 

by an IDS.   

One of the main approaches to identify covert DNS channels adopting a Low and Slow 

approach is by using a network anomaly based IDS.  For example, Reyes (2014), 

suggests taking a base line for different protocols (including DNS) to establish normal 
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network traffic patterns, and using this as a comparison against future network traffic to 

identify suspicious activity.  The analysis concluded that the ratio between the number 

of requests sent and received, and the ratio between the size of the message sent and 

received, were key differentiators between normal and legitimate DNS traffic flow, and 

that a DNS tunnel could be detected using this technique.  The research looked at historic 

flow-data to identify the DNS requests and establish the normal behaviour thresholds.   

Nadler, Aminov, & Shabtai (2017), also looked at ways to detect low throughput DNS 

tunnels using entropy, request type, uniqueness of requests, time-to-live, size of request, 

length of sub-domain, and longest word length, as predictive measures for their models.  

Principle component analysis (PCA) was used to reduce these dimensions to a set of 

uncorrelated values used in the model.   

The approach was to use an SVM with an RBF kernel to build a one-class classifier, 

trained with legitimate DNS requests, to define what the normal behaviour was for the 

network.  An anomaly based rather than classification based technique was used due to 

the limited availability of known DNS tunnel datasets.  Nadler et al. (2017) viewed this 

lack of availability as having the potential to restrict the ability of a classification model 

to detect different patterns of DNS tunnel requests, and so developed an anomaly based 

system instead.  For their research, the authors determined that any requests outside of 

the normal behaviour was to be classified as suspicious.  As part of the process, they 

ignored DNS requests to what was deemed to be reliable services, in order to reduce the 

number of false positives.  Using this technique, they achieved a success rate of over 

80% for low throughput tunnels, with less than 1% false positives. 

Systems using this approach usually include a training phase when the system observes 

what is deemed to be normal behaviour for comparison during the operational phase.  

Satam, Alipour, Al-Nashif, and Hariri (2015), developed an DNS-IDS system that was 

trained with normal DNS traffic and then used this information to detect anomalies 

during the operational phase.  The process followed was to build a DNS finite state 

machine with legitimate DNS traffic, and then classify future DNS flows as abnormal if 

they didn’t follow the same pattern.  They concluded that their model, using supervised 

machine learning, was capable of detecting malicious DNS activity, for both known and 
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unknown attack vectors, with a 97% success rate and a false positive rate at around 

0.01%.     

Machine learning techniques can be applied to identify DNS tunnels with different goals 

– e.g. tunnels created for data exfiltration and ones created to avoiding paying for 

internet services.  In his thesis on DNS tunnels, Skow (2016) used the statistical 

differences between the characteristics of tunnels and normal DNS traffic to identify 

suspicious requests.  In this instance, the author was interested in identifying tunnels that 

were being used to avoid paying for services on mobile networks.  Similar to Nadler et 

al., they used a one-class SVM with a number of different kernels (including RBF) to 

identify normal patterns of request.  A K-Means classification model was also created 

to categorise the requests as either legitimate or being part of a tunnel.  The data used in 

the research was generated by the author using a DNS tunnel application, with the 

requests captured in Wireshark.  He concluded that the SVM model outperformed the 

K-Means classifier in its ability to detect DNS tunnels. The RBF kernel was 

recommended for use in a real network.  As with Reyes, Skow identified the size of the 

DNS request and response messages as the key characteristics most likely to identify a 

tunnel. 

During the operation phase of an anomaly based IDS, statistical analysis is conducted 

on the data to determine if the traffic is within the limits of normal behaviour.  Sarmah, 

Dey, and Kumar (2014) used a kernel density estimation (KDE) model to smooth out 

the data, and Pearson’s correlation coefficient, to help identify differences between 

normal and tunnel related DNS requests.  In the learning phase, for each IP address on 

the network, they measured the number of bytes sent and received in each 15 second 

interval for 5 days.  They then calculated the probability density function using a KDE 

model and compared the results in the operational phase using a Pearson correlation.   

They concluded that combining KDE with Pearson’s correlation coefficient improves 

the success rate in identifying abnormal behaviour which may indicate data exfiltration 

on a network. 

Using the relationship between network events (for example HTTP & DNS traffic) is 

another approach learning systems can use as a baseline for detecting anomalies.  This 

was illustrated by Zhang, Yao, and Ramakrishnan (2014), in their paper on detecting  
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malware that operates in stealth mode to avoid being picked up by an IDS.  In their 

paper, the authors estimated that over 25% of computers are infected with malware, and 

that if it was operating in a stealth mode, then frequency analysis based IDS may fail to 

detect it.  Instead, they looked at the relationship between different types of traffic as a 

means to identify malicious requests.  The first step in the process was to collect the 

attributes associated with different network events and then try and pair events that have 

a potential causational relationship.  The next step involved significant manual effort to 

label the data into different categories.  The authors then trained different classification 

models, Naïve Bayes, Bayesian Network, and SVM, and then compared the results using 

precision and sensitivity (recall).  Their conclusion was that relationships between 

events can be an effective means to identify abnormal behaviour on a network.  SVM 

appeared to give the better results of the three models used. 

Another strategy suggested by Paxson et al. (2013) in their paper on Surreptitious 

Communication Over DNS, is to limit the amount of data that can be extracted to an 

attackers domain by measuring the potential data leakage on all requests to a domain 

over a specified period.  When the potential data leakage through DNS requests to a 

specific domain reaches an upper bound limit, then an alert is created for the security 

analyst to determine if the requests are genuine or not.  The trade off with the approach 

is the risk of potential data leakage versus the number of false alerts generated for the 

analysts to look at.  The higher the upper bound limit on DNS requests to a domain, the 

higher the potential for data leakage, but there is also a reduced number of alerts that 

need to be investigated.  With only two parameters to tune, the model is relatively simple 

to implement, can be an effective way to reduce any potential data loss, and can also 

highlight specific domain requests that may need further investigation to determine if 

they are legitimate or not. 

Research by Born & Gustafson suggest that examining the character frequency of DNS 

requests can help distinguish between legitimate requests and those that are being used 

in a DNS tunnel (2010).  They examined strings of length one, two, and three, and 

compared the character frequency distribution of legitimate domains to randomly 

generated domains.  The authors maintained that tunnel traffic, if properly encrypted, 

would appear as if randomly generated.  The legitimate domains followed a distribution 
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similar to natural languages, while the randomly generated domains where more evenly 

distributed.  As the number of domains increased, the legitimate domains moved closer 

to natural language distribution, and the randomly generated domains moved further 

away.  The authors also note that entropy and character frequency are closely related, as 

entropy is directly impacted by the character frequency distribution of a language.  Using 

this method, the authors were able to create a fingerprint to identify anomalies in DNS 

traffic. 

Ellens et al. setup a tunnel on a network using Iodine to examine ways of identifying 

DNS tunnels (2013).  They looked at the use of DNS tunnels for data exfiltration, 

command & control, and web browsing, to give them a variety of attack vectors to 

examine.  They primarily measured the number of bytes in DNS requests and the 

frequency of request over different time periods throughout the day.  For legitimate DNS 

requests, they could identify distinct patterns between day time and night time traffic, 

for tunnel traffic, the patterns were not so obvious.  They proposed three different 

techniques to identify abnormal DNS traffic.  The first was by setting a threshold (for 

the time of day) above which the DNS activity would be considered suspicious.  The 

second was to calculate the average number of bytes for a time period and compare it to 

an earlier time period.  Any differences would again indicate suspicious activity.  If the 

threshold or average test fail to detect anything, then a third method using a Kolmogorov-

Smirnov normality test was used to identify differences.  Using these techniques, the 

authors demonstrated that the size and frequency of DNS requests were appropriate 

metrics to identify tunnels. 

The advantage anomaly based systems have over signature based systems is that they 

are capable of detecting zero-day attacks.  Signature based system cannot fulfil this role 

as they require a known pattern of behaviour in order to identify an attack.  The 

disadvantage for anomaly based systems is that they require a training phase and careful 

setting of thresholds in order to be effective.  Jyothsna, Prasad, and Prasad (2011), in 

their Review of Anomaly based Intrusion Detection Systems, looked at the issue of 

classifying normal traffic and setting rules to identify abnormal behaviour.  They 

concluded that once anomaly based systems define the rules of normal behaviour that 
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they can be effective at identifying malicious traffic, but if an attacker stays within the 

limits of what is deemed to be normal, then their activities can go un-detected. 

2.5 Auto-Generated Domains 

Auto-Generated Domains (AGD) are often used in DNS tunnels as part of the covert 

communication between servers.  If an AGD could be identified in a DNS request, it 

could indicate that the request is part of a DNS tunnel.  One approach is to reverse 

engineer AGD to see what domains it uses and blacklist them from any future DNS 

requests.  Liu et al. (2017) in their paper on Shadowed Domains, reported that attackers 

had started to use shadowed domains of legitimate apex domains to avoid this type of 

detection.  To detect shadowed domains used by attackers, the authors compared the 

host IP of the apex domain with the host IP of the shadowed domain.  When used 

legitimately, the hosts tended to be close together, when used maliciously, the host could 

be far apart, with the shadowed domain’s host having fewer security restrictions.  

Maliciously created sub-domains also tended to be created in bulk rather than 

incrementally, as is the case with legitimate shadowed domains.  The authors also 

observed similarities in the maliciously created shadowed domains across different apex 

domains.  A combination of these factors could then be used to detect the maliciously 

created shadowed domains and block them from transmitting information outside the 

network. 

Yadav, Reddy, Reddy, and Ranjan (2010), looked at the command & control of botnets 

using AGD as used in the Conflicker, Kraken and Torpig  botnets.  They considered the 

reverse engineering of malware to blacklist the set of domains was of limited use, as the 

malware adapted to use an increased number of potential domains.  However, they 

observed that the sub-domains of legitimate DNS traffic exhibited a more irregular 

distribution of characters than those created with an AGD, and that legitimate domains 

were more likely to be made up of proper words.  If an AGD used proper words, this 

would increase the chances of the domain already being registered which could restrict 

attacker’s ability to control the bots.  This allowed the authors to successfully identify 

an AGD using different techniques used to measure the character distribution.  The most 

successful technique they found was to use the Jaccard index.  This measures 
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similarities between two sets of data, and was used to compare the set of bigrams 

(character pairs) from legitimate and malicious traffic.  The Jaccard distance to measure 

the similarities between sets is related to the Entropy of a language used to determine 

the minimum number of characters required to encode a string (Parker, Yancey, & 

Yancey, 2016).  Even if the AGD was modified to generate domains that more closely 

resembled words, the model still had a high success rate in identifying generated names.   

Antonakakis et al. (2012) presented an alternative approach to detecting AGD by 

checking for null responses from the DNS requests.  Like Yadav et al., they looked at 

ways to identify AGD without having to reverse engineer the malware to blacklist the 

potential domains.  The difference with their paper was the premise that most domain 

generation algorithms (DGA) respond to the DNS request with a NXDOMAIN – domain 

does not exist message.  They were able to classify these requests into different groups 

based on the similarity of the domain names and the source of the requests.  From here 

they were able to identify previously known botnets in operation, as well as identifying 

new botnets.  However, this technique may be vulnerable to attackers who return 

spoofed IP addresses to the client in order to avoid detection.   

Butler, Xu, & Yao specifically looked at DNS tunnels being used as command & control 

for botnets (2011).  They noted that DNS was a particularly useful means to conduct 

covert communications due to the high volume of traffic associated with the service and 

the general lack of security provisions in place to protect against abuse of the channel.   

They gave an overview of different techniques used to setup a botnet to communicate 

over DNS, and then described the different strategies to avoid detection by an anomaly 

based IDS.  This included controlling the frequency of DNS requests to follow existing 

patterns, and piggybacking on the timing of legitimate requests by only sending covert 

messages when legitimate traffic has been detected.  Based on the fact that legitimate 

domains tend to have some meaning (i.e. made up of real words), and auto generated 

domains being used for tunnelling did not, they were able to show that there was a 

difference with the entropy associated with each group.  The authors observed that 

although this could allow suspicious DNS activity to be identified, it was unclear how 

effective it would be if an algorithm was created that could generate domains that had 

similar properties to natural language words. 
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2.6 Gaps in Research 

The above techniques demonstrate the problems related to DNS tunnels and the options 

associated with using statistical analysis to identify them.  The various strategies that 

can be used to improve the detection rate are also described along with the different 

properties that can be used as indicators of a tunnel.   

The gap in the research relates to the identification of which classification technique is 

the most effective at identifying DNS tunnels using only the characteristics of the 

individual request as predictive variables.  If an individual request could be identified in 

this manner, it could prevent tunnel related DNS requests ever leaving the network.   

2.7 Summary 

DNS is a lookup service used in the routing of messages between servers on the internet 

that converts domain names into an IP address.  It is one of the fundamental protocols 

used in computer networks and is not usually monitored for security breaches to the 

same extent as other protocols such as HTTP or FTP.  As a result, the DNS protocol has 

become a target to be used as a covert means of communication.  In the past, the creation 

of a DNS tunnel would require a level of technical expertise not found in the average 

user, but now with the availability of tools such as Iodine and Powercat, the creation of 

DNS tunnels has become a lot easier. 

The detection of DNS tunnels has become increasingly important for individuals and 

organisations as they try to prevent data from being exfiltrated from their network.  It is 

not possible to simply switch off the protocol as this would impact on legitimate 

activities as well as illegal ones.  One of the primary mechanism used to identify DNS 

tunnels is anomaly based detection systems.  In these systems, the strategy is for the 

system to learn what normal traffic looks like, and then alert if any anomalies are 

detected during the operational phase.  Character distribution, Entropy and Size of 

Requests, are common characteristics used in these models.  One-class classification 

models using different techniques, such as Support Vector Machine (SVM), can be used 

to determine that abnormal behaviour is occurring on the network.   
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Another common approach to detecting DNS tunnels is to look at the domain to 

determine if it was algorithmically generated.  Genuine domains tend to have some 

meaning and are made up of real words, whereas generated ones are more likely to be 

appear random.  Examining Jaccard index or character frequency distribution can help 

distinguish between a legitimate domain and an AGD.  Both of these attributes are 

closely related to the Entropy value. 

The goal of this study is to combine the characteristics defined in Table 1.1 – DNS 

request characteristics to develop binary classification models to determine if a DNS 

request is part of a tunnel, and then determine if different techniques give different 

results that are statistically significant.  Classification models using different techniques, 

LR, DT, RF and SVM, will be built and comparison made between the results.  Previous 

studies have demonstrated how the characteristics of DNS tunnel requests can differ 

from legitimate requests and how classification models can be applied to detect these 

differences.  In this study, the models will be trained with categorised DNS traffic 

(tunnel or legitimate request), and then tested on individual DNS requests to determine 

how effective they are at identifying tunnels. 

Table 2.1 - Summary of previous work contributing to this study 

Author(s)  Description 

Nadler et al. Using one-class SVM-RBF classifiers with Entropy, Length and 

Length of Sub Domain as predictor variables 

Skow Using one-class SVM-RBF classifiers with Length as a predictor 

variable 

Born, Gustafson Using Character Frequency / Entropy as differentiators between 

legitimate and tunnel related traffic 

Yadav et al. Using Logistic Regression techniques with Character Distribution 

/ Jaccard Index as predictive variables  

Zhang et al. Comparison of classification techniques using the relationship 

between DNS traffic and other protocols 
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3 DESIGN AND METHODOLOGY 

3.1 Introduction 

This chapter will review the steps required to carry out the study.  The CRISP-DM 

(cross-industry process for data mining) methodology will be used to structure the 

research in order to help achieve a successful outcome and ensure that the results are 

reliable and conclusions easy to follow and understand.    

The different tools used throughout the research are: 

 Wireshark 

 Excel 

 Databricks Community Edition – Python 

3.2 Business Understanding 

The first step in the process is to understand the goals of the project as defined in the 

Research Question.  In this instance, the goal is to see if statistically significant 

differences exist between classification techniques and their ability to categorise a 

request as being legitimate or tunnel related based on the characteristics of an individual 

request.  The different techniques being examined are: 

 Logistic Regression (LR) 

 Random Forrest (RF) 

 Decision Tree (DT) 

 Support Vector Machine (SVM) 

An overview of these techniques can be found in the Research Project section.  Each 

model produced will be capable of making predictions on whether a request is part of a 

tunnel, but the research should provide an indication of which technique is most effective 

in terms of the Sensitivity, Specificity, Accuracy, and Precision of the results obtained.  

To see if any differences are statistically significant, a Cochran’s Q test will be 

performed on the accuracy of the models produced.   
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3.3 Data Understanding 

The candidate predictive variables to be used in building the different classification 

models are listed in Table 1.1 - DNS Request Characteristics.  To justify their inclusion 

as predictive variables, a difference between legitimate and tunnel related requests 

should be demonstrated. To achieve this, descriptive statistics will be calculated for each 

characteristic highlighting the mean, standard deviation, median and inter quartile range 

for legitimate and tunnel related traffic.  This should give an indication of any 

differences between the two different categories.   

To determine if the differences are statistically significant, the normality of the 

distribution of the characteristics must first be tested.  If the variables follow a normal 

distribution, then a parametric test for difference can be used (Independent t-test), if not, 

a non-parametric test will be required (Mann Witney U test).  If no differences are found, 

then the characteristic should not be included as a predictive variable. 

The last step in determining the predictive variables will be to look at the correlation 

between the characteristics.  Multicollinearity between variables in a classification 

model can reduce the reliability of the results obtained and make the model very 

sensitive to small changes.  To eliminate it, correlation between all of the request 

characteristics needs to be calculated.  If a high correlation is found between 

characteristics, then only one should be included as a predictive variable in the models.  

This should not reduce the accuracy of the models as the variance associated with the 

eliminated variable should be included in the variable that remains.   

For each of the selected predictive variables, a logistic regression curve will be created 

to help demonstrate the impact that each of them will have in determining that a request 

is part of tunnel.  To achieve this, an individual LR model will be built and the boundary 

equation created for each of the variables.  The probability function (using the output 

from the boundary equation) will then be graphed to demonstrate the difference in that 

variable between tunnel and legitimate traffic.  The data will then be split into training 

(70%) and testing (30%) datasets.  The training set will be used to fit the models and the 

testing set will be used in the predictions. 
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3.4 Data Preparation  

This research is secondary in nature using publically available datasets of DNS requests 

already categorised as being legitimate or tunnel related.  The sources of the PCAP files 

used during the research are listed in Table 3.1- PCAP files used in the analysis.  Each 

of these PCAP files will need to be loaded in Wireshark and exported into CSV files.  

These files will then be loaded in Excel and merged into a single CSV file that will then 

be loaded into Databricks.   

All the requests in the dataset were created in a test environment for analysis purposes, 

so there is a consistency to certain characteristics across the different categories.  As 

such, these characteristics will not be used during the build of the classification models 

as they would yield unreliable results and not be representative of real traffic.  

Specifically, the DNS requests generated from PowerCat started with “dnscat”, and all 

the requests generated from Iodine ended with “pirate.sea”.  These strings were removed 

from the DNS requests as this is unlikely to occur in a real DNS tunnel.  Also, there is a 

Generate Descriptive Statistics 

Check the normality of the characteristics 

Conduct a difference test 

Examine the correlation between characteristics 

Eliminate correlated characteristics 

Eliminate characteristics with no difference between categories 

Figure 3.1 - Steps to Determine Predictive Variables 
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consistency to the response messages for the tunnel traffic and so they will not be used 

during the analysis.  The data from Skype and TCPReplay datasets had reverse DNS 

lookups included that also needed to be removed. 

Table 3.1- PCAP files used in the analysis 

URL File(s) Description 

https://github.com/elastic/examples/tree/mas

ter/Security%20Analytics/dns_tunnel_detect

ion 

dns-tunnel-

iodine.pcap 

Tunnelled traffic 

generated using 

Iodine 

https://wiki.wireshark.org/SampleCaptures#

Sample_Captures 

SkypeIRC.cap Capture of 

legitimate DNS 

traffic generated 

from Skype 

http://www.labofapenetrationtester.com/201

5/05/ 

 

powercat_dns.pca

png 

Tunnelled traffic 

generated using 

PowerCat 

http://tcpreplay.appneta.com/wiki/captures.h

tml 

smallFlows.pcap 

bigFlows.pcap 

test.pcap 

Capture of 

legitimate DNS 

traffic generated 

from various 

applications 

3.5  Modelling 

The goal of the research project is to determine how effective the different classification 

techniques, LR, DT, RF, and SVM, are at predicting that a DNS request is legitimate or 

part of a tunnel.  For each technique, the first step will be to build a model with a single 

predictive variable.  The remaining predictive variables will be added in subsequent 

steps to see what impact they have on the effectiveness of the model.  After each model 

is built, it will be evaluated in terms of the Sensitivity, Specificity, Accuracy, and 

Precision scores achieved.  To see if the differences are statistically significant, a 

Cochran’s Q test will be performed on the Accuracy of the results.  The test will only be 

completed when all predictive variables are included, as these models are likely to be 

https://github.com/elastic/examples/tree/master/Security%20Analytics/dns_tunnel_detection
https://github.com/elastic/examples/tree/master/Security%20Analytics/dns_tunnel_detection
https://github.com/elastic/examples/tree/master/Security%20Analytics/dns_tunnel_detection
https://wiki.wireshark.org/SampleCaptures#Sample_Captures
https://wiki.wireshark.org/SampleCaptures#Sample_Captures
http://www.labofapenetrationtester.com/2015/05/
http://www.labofapenetrationtester.com/2015/05/
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
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the most stable and should account for the greatest amount of variance in the request 

characteristics.  

For the LR, DT and RF classification techniques, the models produced will be tuned 

with a cross validator to try and improve the effectiveness and reliability of the results.  

The parameters used are listed in Table 3.2: Tuning parameters for LR, DT and RF 

models.  The values for these parameters were chosen to try and reduce the amount of 

overfitting of the models with the known data, and to set a maximum on the number of 

iterations allowed to stabilise the models.  Increasing the number of iterations can have 

a significant impact on the time required to create the models, but can also improve the 

reliability of the results.  For the SVM classification technique, models will be built 

using the RBF and Linear kernel techniques.   

Table 3.2 - Tuning parameters for LR, DT and RF models 

Parameter Description Values 

regParam Regularisation Parameter – This can help avoid 

overfitting of a model by reducing the influence of 

variables in the dataset that have a large impact 

[0.01,  

0.5,  

1.0] 

elasticNetParam Add random noise to the dataset to lessen the risk of 

overfitting in the models 

[0.0, 0.3, 

0.5] 

maxIter Set a maximum on the number of iterations permitted 

to stabilise the values of the coefficients 

[5, 7, 10] 

3.6 Evaluation 

To evaluate the models, the results will be examined to determine the Sensitivity, 

Specificity, Accuracy and Precision of each model.   

Sensitivity will measure the percentage of tunnel requests correctly predicted by the 

model.  Specificity will measure the percentage of legitimate requests correctly 

predicted by the model.  Accuracy will measure the percentage of requests correctly 

predicted.  Precision will measure the percentage of predicted tunnel requests that were 

correct.   
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The results in each category will be calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 TP (true positive) is the number of correctly predicted tunnel requests 

 TN (true negative) is the number of correctly predicted legitimate requests 

 FP (false positive) is the number of incorrectly predicted tunnel requests 

 FN (false negative) is the number of incorrectly predicted legitimate requests 

Split data into Training and Testing sets 

Build different classification models using the training data 

LR 

Tuned with Cross Validator 

Make predictions using the testing dataset 

RF DT SVM

 

RBF Linear 

Figure 3.2 - Steps to Build Classification Models 
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To calculate TP, TN, FP and FN, the results from the predictions from each model will 

be compared to the actual categories for all of the DNS requests in the test data.  For the 

models with all predictive variables included, a Cochran’s Q test will be performed on 

the TP and TN values to see if any differences between the techniques are significant. 

For the LR, DT & RF models, the AreaUnderROC (Receiver Operating Characteristics) 

and the AreaUnderPR (Precision and Recall) values will also be examined.  The 

AreaUnderROC curve tries to maximise the accuracy of the model by looking at the true 

positive rate and the false positive rate (note: this is equivalent to the sensitivity and 1 – 

specificity).  AreaUnderPR tries to maximise accuracy by looking at the precision and 

recall (sensitivity) of the model.  It is typically used in scenarios where there is a sizeable 

difference in the number of rows for each category in the sample.  In this research, the 

number of tunnel and legitimate requests are relatively equal, so AreaUnderROC may 

be a better measure of accuracy.  

3.7 Deployment 

The final phase of the CRISP-DM methodology is the deployment phase.  For this 

project, the deployment phase is the production of this report that will include the 

analysis of the results, any conclusions reached, and any future recommended research 

in the area to expand on the work carried out. 

3.8 Summary 

This research is designed to determine if binary classification techniques are equally 

effective at predicting if an individual DNS request is tunnel related, and if not, which 

technique gives the best results.  To achieve this, existing datasets of DNS requests, that 

are known to be either tunnel related or legitimate, will be used.  The characteristics of 

these requests will be examined to select suitable predictive variables to be used in four 

different classification techniques, Logistic Regression, Decision Tree, Random Forest, 

and Support Vector Machine.  Each of these models will then be evaluated in terms of 

the Sensitivity, Specificity, Accuracy, and Precision scores obtained.  Differences 

between the results obtained will be examined using a Cochran’s Q test to see if they are 

statistically significant. 
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4 IMPLEMENTATION AND RESULTS 

4.1 Introduction 

This chapter will review the results obtained during the analysis of the dataset being 

used and the effectiveness of the classifications models produced.  The differences in 

the average and variance across the various characteristics will be examined, along with 

the collinearity between them, in order to justify the inclusion or elimination of the 

characteristic as a suitable predictive variable for the models.  The effectiveness will be 

measured for all models produced under the different classification techniques, starting 

with one predictive variable and then adding the remaining variables.  The results show 

that each technique was effective at predicting tunnels with varying degrees of success 

across each of the measures.  The difference in accuracy between the classification 

techniques in the final models was shown to be statistically significant using a Cochran’s 

Q Test. 

4.2 Data Analysis 

4.2.1 Summary Statistics 

The first step in the process was to produce summary statistics for all the candidate 

predictor variables available for the models.  Table 4.1 - Summary Statistics shows the 

results of the analysis across all requests characteristics for legitimate and tunnel related 

traffic in the dataset.  (Note: there were 2221 legitimate requests and 3425 tunnel related 

requests in the dataset).  This helped indicate that differences existed for the value and 

distribution of the characteristics between the two categories.  For example, the median 

and inter quartile ranges of the length variable differs between the tunnel and legitimate 

traffic. 

4.2.2 Difference Test  

A Kolmogorov-Smirnov test for normality was then conducted for each characteristic 

per category.  The results in Table 4.2: Kolmogorov-Smirnov normality test indicate that 

none of the characteristics in either category followed a normal distribution.  As a result, 

a non-parametric test, Mann–Whitney U, was used to show that the distributions of the 
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characteristics was different between legitimate and tunnelled traffic.  The results can 

be seen in Table 4.3: Mann-Whitney difference test.  This suggests that each of the 

characteristics can be used to determine if a request is legitimate or part of a DNS tunnel, 

as there are significant differences between the categories. 

Table 4.1 - Summary Statistics 

Variable – Tunnel Y/N Min Max Mean SD Q1 Med Q3 

Length - N 6 72 21.25 9.10 15 20 24 

Length - Y 4 246 38.47 50.49 27 27 27 

Length of Sub Domain - N 1 53 6.81 5.78 3 5 9 

Length of Sub Domain - Y 4 62 4.91 6.27 4 4 4 

Sub Domain Count - N 1 9 3.43 1.11 3 3 4 

Sub Domain Count - Y 1 13 6.05 1.97 6 6 6 

Character Distribution - N 5 30 13.11 3.77 11 13 15 

Character Distribution - Y 4 107 11.34 5.78 10 11 12 

Entropy - N 2.25 4.71 3.50 0.36 3.25 3.48 3.69 

Entropy - Y  1.71 6.58 3.06 0.35 2.99 3.10 3.18 

 

Table 4.2 - Kolmogorov-Smirnov Normality Test 

Variable Tunnel Statistic P-Value 

Length No 0.15 < 0.01 

Length Yes 0.52 < 0.01 

Length of Sub Domain No 0.18 < 0.01 

Length of Sub Domain Yes 0.49 < 0.01 

Sub Domain Count No 0.25 < 0.01 

Sub Domain Count Yes 0.46 < 0.01 

Character Distribution No 0.15 < 0.01 

Character Distribution Yes 0.34 < 0.01 

Entropy No 0.06 < 0.01 

Entropy Yes 0.22 < 0.01 

 

 



44 

 

Table 4.3 - Mann-Whitney Difference Test 

Variable U-Value P-Value 

Length 1589705.5 < 0.01 

Length of Sub Domain 3125035.5 < 0.01 

Sub Domain Count 595366.0 < 0.01 

Character Distribution 2358067.0.0 < 0.01 

Entropy 985841.0 < 0.01 

4.2.3 Correlation 

The results of the correlation tests between the request characteristics indicate a strong 

correlation between the Length and the Sub Domain Count variables, and between the 

Entropy and the Character Distribution variables – see Table 4.4: Correlation between 

characteristics.  As a result, the Sub Domain Count and Character Distribution variables 

were eliminated from the model.  This should not impact on the reliability of the model 

as the variance associated with the eliminated variables should be accounted for in the 

Length and Entropy characteristics.  The remaining variables, Length, Length of Sub 

Domain, and Entropy, were all selected to be used as predictive variables in the model.  

Although only three predictor variables remain, they should contribute enough to the 

variance between categories to develop reliable classification models. 

Table 4.4 - Correlation between Characteristics 

Characteristics Length Sub Domain 

Length 

Sub Domain 

Count 

Char. 

Dist.  

Entropy 

Length n/a 0.099 0.724 0.45 -0.035 

Sub Domain Length 0.099 n/a -0.096 0.139 -0.144 

Sub Domain Count 0.724 -0.096 n/a 0.539 0.221 

Char. Dist. 0.45 0.139 0.539 n/a 0.772 

Entropy -0.035 -0.144 0.221 0.772 n/a 

4.2.4 Data Visualisation 

Classification models work by examining the differences in the predictive variables 

between different groups to derive a model that can accurately predict which category a 
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set of variables is more likely to belong to.  Visual representations of the differences 

between categories can give an indication of how the models can separate the groups. 

For this study, a number of graphs were created that show the distribution of the 

predictive variables between legitimate and tunnel related traffic.  Scatter plots of all the 

variables demonstrate how the different groups separate in a three dimensional graph, 

box plots and histograms give an indication of the distribution of individual variables 

between the categories. 

4.2.4.1 Scatter Plots 

This figure shows two scatter plots of the three characteristics to be used as input 

predictive variables in the classification models.  They are two views of the same scatter 

plot (with one rotated) to help highlight the differences between the predictive variables 

for tunnel and legitimate requests.     

Figure 4.1 - Scatter Plot of Predictive Variables 
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The goal of the classification models is to try and separate out the different categories 

into distinct regions to maximise the number of requests that are correctly predicted.  

The plots indicate distinct differences in the Length variable between legitimate and 

tunnel related requests, although some overlap does exist.  The higher values for Length 

of Sub Domain appear to be mostly related to tunnel requests, but there is a lot of overlap 

with legitimate requests for the lower values.  There does not appear to be any clear 

distinction for the Entropy variable between categories.  This gives an indication that 

the Length variable will be the dominant predictor for each of the classification models 

produced and that Entropy is unlikely to have much of an impact. 

4.2.4.2 Box Plots 

Box plots can give a visual representation of the median and inter-quartile range for 

small datasets and give an indication of how normally distributed it is.  In Figure 4.2 - 

Box Plot of Predictive Variables, the box represents the 1st and 3rd quartile of the data, 

the red line in the middle of the box represents the median, the dashed lines represent 

the variation outside the quartiles, and the individual points represent the outliers.  

Values above the 3rd quartile indicate the data is positively skewed, ones below the 1st 

quartile indicate negative skewness, and an even spread indicate a normal distribution. 

The number of outliers and position of the median line in the graphs suggests that the 

distribution of the predictive variables do not follow a normal distribution, although the 

Entropy values for legitimate traffic appears to be close to normal with some outliers.  

This supports the results of the Kolmogorov-Smirnov test presented earlier.  Comparing 

box plots between legitimate and tunnel related traffic demonstrates the difference in 

distribution between the two categories, which helps indicate how they can be separated 

by the classification models. 

Table 4.5 - Box Plot Distribution Results 

Predictive Variable Legitimate Tunnel 

Length Positively Skewed Positively Skewed 

Length of Sub Domain Positively Skewed Positively Skewed 

Entropy Near Normal Negatively Skewed 
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Figure 4.2 - Box Plot of Predictive Variables 

 

4.2.4.3 Histograms 

Histograms can give an accurate visual representation of the distribution of medium to 

large datasets.  If the data is normal distributed, you would expect to see a bell-shaped 

histogram, if not, it will be skewed to the left (negatively) or right (positively).  The 

results in Figure 4.3 - Histogram of Predictive Variables are broadly in line with the 

boxplot and Kolmogorov-Smirnov test results.  As with the boxplots, the distribution of 

the entropy value for legitimate requests appears to be approaching normal. 

Table 4.6 - Histogram Distribution Results 

Predictive Variable Legitimate Tunnel 

Length Positively Skewed Positively Skewed 

Length of Sub Domain Positively Skewed Positively Skewed 

Entropy Near Normal Negatively Skewed 
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Figure 4.3 - Histogram of Predictive Variables 

 

4.2.4.4 Individual Logistic Regression Curve 

For each of the predictive variables selected, an individual logistic regression model 

(without tuning) was created to indicate how much it contributed to the variance in the 

outcome variable (tunnel or legitimate request).  The output from the boundary equations 

equals the Intercept + Coefficient * Predictive Variable, and the probability of an 

individual request being part of a tunnel is defined as 

𝑃(𝑋) =
1

1 + 𝑒−𝑜𝑢𝑡𝑝𝑢𝑡
 

From this, individual regression curves were created showing the actual outcome along 

with the probability for each request.  As with the classification models, the data was 

split between training and testing sets (70:30).  Logistic regression models were then 

created for each predictive variable.  The intercept and coefficients are in Table 4.7: 

Individual predictive variable logistic regression.  For the dataset used in this analysis, 
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only the Length variable came close to the s-type curve associated with logistic 

regression.  As with the scatter plots, this suggests that Length will be the most effective 

in predicting tunnels. 

Figure 4.4 - Logistic Regression Curve of Predictive Variables 

 

Table 4.7 - Individual Predictive Variable Logistic Regression 

Characteristics Intercept Coefficient 

Length -1.2916 0.0653 

Length of Sub Domain 0.8247 -0.0658 

Entropy 3.0258 -0.9492 

4.3 Classification Models 

To create the models, the data was first split into Training and Testing sets 

(approximately 70:30).  The total number of requests in the Training set was 4019, and 

in the Testing set it was 1627.  All classification models will be evaluated by examining 

the Sensitivity, Specificity, Accuracy and Precision of the predictions as determined by 
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the True Positive, True Negative, False Positive, and False Negative values.  There are 

three predictive variables being used to create the models - Length, Length of Sub 

Domain and Entropy.  Each classification technique will first create a model using only 

the Length variable used as a predictor.  The remaining predictors will then be added, 

with the results for all models calculated at each stage.   

The Logistic Regression, Decision Tree, and Random Forest models, will be tuned using 

the variables in Table 3.2: Tuning parameters for LR, DT and RF models to see if the 

results produced can be improved.  For the Support Vector Machine, models using two 

different kernels will be created – Radial Basis Function and Linear, to see which one 

produces the best results.  

4.3.1 Logistic Regression 

LR calculates the probability of an outcome based on a set of predictive variables.  The 

outcome required for this study is a binary value to indicate if a DNS request is predicted 

as being legitimate or part of a tunnel (0 = Legitimate Request, 1 = Tunnel Related).  In 

this study, the probability threshold for predicting that a DNS request is tunnel related 

is set at 0.5.  

For the base LR models, the results were between 50% and 94% across all measures 

depending on the number of variables used.  When extra variables were added, the 

results increased by between 1% and 9% across all measures except sensitivity which 

dropped by 1%.  The detailed results can be seen in the Base Logistic Regression Results 

appendix.  When the LR models were tuned, the results with just one predictive variable 

were less than the base model, e.g. Specificity value was 16%.  However, when all three 

predictive variables were used, the tuned model outperformed the base model with all 

measures in excess of 80% (Sensitivity was at 99%).  See appendix Tuned Logistic 

Regression Results for detailed results. 

4.3.2 Decision Tree 

DT classifiers predict an outcome based on a series of input variables by creating a tree-

like graph with each node on the tree representing a test, and each leaf a prediction.  For 
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example, a node might be “if length > 10” and the leaf (or prediction) could be 

“tunnel=Y”.  Each node can have either a child node or a leaf attached. 

For this study, the DT techniques achieved close to 99% across all measures when all 

predictive variables were included.  The Length predictive variable alone achieved a 

minimum of 96% in all measures.  There was no material change when the model was 

tuned.  See appendix Base Decision Tree Results and Tuned Decision Tree Results for 

details on the results. 

4.3.3 Random Forest 

Overfitting in a DT can impact on the reliability of the results obtained.  It can occur if 

the sample size is small relative to the number of predictors.  To fix these errors, a series 

of DTs are created using subsets of the available predictors and test data.  The results 

are then combined into a single tree.  This type of classification is called a Random 

Forest. 

In this study, the base RF models and the tuned RF models gave very similar results as 

the DT models with no significant difference for any of the measures.  See Base Random 

Forest Results and Tuned Random Forest Results for details. 

4.3.4 Support Vector Machine 

SVM classification creates a hyperplane that divides data into two distinct categories 

based on a set of predictive variables.  The hyperplane is created using a kernel trick to 

map the data in different dimensions.  For this research, a Radial Basis Function (RBF) 

kernel and a linear kernel were created. 

The results for the RBF kernel were marginally better than the Decision Tree models, 

with every measure at 99% when all predictive variables were included.  The linear 

kernel was slightly less successful with results between 92% and 96%.  See SVM RBF 

Kernel Results and SVM Linear Kernel Results for details. 
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4.3.5 Statistical Significance 

When all predictive variables are included, there is a significant difference (Q = 1407, 

p-value<0.01) in the prediction scores from the set of classification techniques tested.  

In order to see if the differences between individual techniques was significant, pairwise 

tests were performed.  This demonstrated that the LR, Tuned-LR, and SVM-Linear 

models produced significantly different results to the other techniques (p-value<0.01).  

The differences between the DT, RF and SVM-RBF techniques were not significant.  

The following table highlights the q-test & p-value between pairs of classification 

models (note: tuned DT and tuned RF were excluded as they had the same results as the 

base DT and RF models): 

Table 4.8 - Cochran Q Test Results 

Models LR T-LR DT RF SVM-RBF SVM-Linear 

LR n/a q=118 

p<=0.01 

q=301 

p<=0.01 

q=300 

p<=0.01 

q=309 

p<=0.01 

q=196  

p<=0.01 

T-LR q=118 

p<=0.01 

n/a q=123 

p<=0.01 

q=120 

p<=0.01 

q=108 

p<=0.01 

q=195 

p<=0.01 

DT q=301 

p<=0.01 

q=123 

p<=0.01 

n/a q=1 

p=0.32 

q=0.33 

p=0.56 

q=77 

p<=0.01 

RF q=300 

p<=0.01 

q=120 

p<=0.01 

q=1 

p=0.32 

n/a q=0.08 

p=0.78 

q=74 

p<=0.01 

SVM -

RBF 

q=309 

p<=0.01 

q=108 

p<=0.01 

q=0.33 

p=0.56 

q=0.08 

p=0.78 

n/a q=63.75 

p<=0.01 

SVM -

Linear 

q=196 

p<=0.01 

q=195 

p<=0.01 

q=77 

p<=0.01 

q=74 

p<=0.01 

q=63.75 

p<=0.01 

n/a 

  

4.4 Summary 

The results from the data analysis indicated that differences existed between legitimate 

and tunnel related traffic across all request characteristics.  Correlation between the 

characteristics led to the elimination of the Sub Domain Count and Character 
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Distribution characteristics.  The three remaining characteristics, Length, Length of Sub 

Domain, and Entropy, were all selected as predictive variables for the classification 

models. 

Using these three variables, models were built using four different classification 

techniques – Logistic Regression, Decision Tree, Random Forest, and Support Vector 

Machine.  Three models were built using each technique, the first used only the Length 

variable, the second added the Length of Sub Domain, and the third added Entropy. The 

effectiveness of the models was then measured by calculating the Sensitivity, 

Specificity, Accuracy, and Precision, using a confusion matrix of True Positive, True 

Negative, False Positive, and False Negative scores obtained.  The results achieved for 

each technique demonstrated their effectiveness at predicting DNS tunnels based on the 

set of characteristics chosen as predictive variables.   

Overall, the difference in predictions between the classification techniques was 

statistically significant when all predictive variables were included.  Comparisons 

between pairs of techniques showed that the differences between DT, RF and SVM-RBF 

models were not statistically significant.  The differences in all the other models were 

statistically significant. 
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5 ANALYSIS, EVALUATION AND DISCUSSION 

5.1 Introduction 

This section will compare the results of each of the classification techniques and then 

look at the strengths and weaknesses of the study.  The strength of the study is in the 

demonstration of classification models to effectively predict tunnel related traffic and 

the identification of which models produce the best results, the weakness is in the 

variability of the data used to build the models. 

5.2 Comparison of Models 

5.2.1 Logistic Regression 

For the base LR model, the Specificity, Accuracy and Precision scores obtained 

increased as each predictive variable was added.  The Sensitivity score remained largely 

the same.  As more predictors were included and the variance in the data used to create 

the models increased, it is likely that the final model produced with all three predictive 

variables would be more reliable in a production environment. 

When the models were tuned, the Length variable produced an unusually low score for 

Specificity (16%).  This may be due to the noise added during the tuning.  Once all the 

variables were added, the score increased to over 80% along with significant increases 

for the other measures.  Tuning the model allowed the algorithm to try and avoid 

overfitting and increased the number of iterations in order to achieve a stable result.  As 

with the base model, the effectiveness of the tuned models increased with more 

predictive variables, and again gave potentially more reliable results because of the 

increased variability produced by using more characteristics.  Overall, the tuned LR 

models gave better results than the base LR models in predicting which category a 

request belonged to. 

5.2.2 Decision Tree 

The base DT models gave significantly better results than either LR model in predicting 

DNS tunnels.  The effectiveness of the base DT model with a single predictive variable 
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was above 96% across all measures, this increased to being above 98% with the 

introduction of the second and third predictive variables.  This could be interpreted as 

demonstrating the effectiveness of the technique, but there is also the risk that model 

over fitted the data (due to the lack of variance in the test data) and that it would not be 

as effective in a production environment. 

To try and reduce this risk of overfitting, the model was again tuned to add a level of 

random noise to the data and increase the number of iterations allowed to stabilise the 

results.  In this case the tuning had no impact on the results obtained.  This is potentially 

because the tuned model simply returned the best results which were obtained using the 

base model. 

5.2.3 Radom Forest 

The RF algorithm is used to avoid overfitting in decision trees by creating a series of 

trees with different predictive variables and test data, and then combining them to give 

an overall result.  For this data, neither the base nor the tuned RF models produced 

significantly different results to the DT models.  This was probably down to the number 

of predictive variables and the size of the dataset available.  If there were more predictive 

variables and data available to the model, then the RF technique may be more useful at 

increasing the reliability of the results. 

5.2.4 Support Vector Machine 

Two different SVM models were built for this research – one using an RBF kernel and 

one using a linear kernel.  The results for the RBF kernel were 99% across all measures 

once the second and third predictive variables were introduced.  Although there was no 

change when the third variable was introduced, it may make the model more reliable as 

there is an increased variance in the data taken into account.  These results were 

significantly better than the LR models, but equivalent to the DT and RF models. 

The linear kernel was less effective than the RBF kernel at predicting tunnels which 

reflects the restrictive nature of a linear separation of the data.  The results for a single 

predictive variable were between 62% and 94%.  The increases in scores when the 

second and third variable were added to the model was around 10% across most of the 
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measures.  The linear SVM did achieve better results than the LR models, but was less 

effective than the DT, RF, and SVM-RBF models. 

5.3 Strength of Results 

The strength of this study is in the demonstration of which binary classification 

techniques are the most effective at predicting if a single DNS request is tunnel related 

using only the characteristics of the request as predictor variables.  It describes how the 

selected techniques operate to categorise data and how their effectiveness can be 

measured and compared.  It also shows how to justify the inclusion of predictive 

variables and explains under what circumstances they should be eliminated.   

5.4 Limitations 

The dataset used in the research contained only a limited number of legitimate and tunnel 

related DNS requests, which were retrieved from existing sets of publically available 

PCAP captures.  Some consistencies in the test data meant that certain characteristics 

could not be used in the classification models – such as source IP address and DNS 

response.  The sources of the legitimate traffic were limited and only two tools were 

used to create the tunnel related traffic.  This will have restricted the variety of data in 

the research and could have had an impact on the results obtained. 

5.5 Summary 

The total number of DNS requests in the test set was 1627 (this excludes the data used 

to train the models).   This was made up of 963 (59%) tunnel related requests and 664 

(41%) legitimate requests.  All four classification techniques are capable of predicting 

that a single request is part of a DNS tunnel, based on the request characteristics, with 

varying degrees of success. 

The base LR model correctly classified 76% of requests with only the Length variable 

used as a predictor, the accuracy increased when more predictive variables were added.  

The tuned LR model achieved a 91% accuracy when all variables were added.     
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The DT models achieved a 97% accuracy with a single predictive variable, this increased 

to 99% when the second and third predictive variables were added.  There was no change 

in results when the DT model was tuned.  The results for the RF models were the same 

as the DT models. 

The SVM RBF model achieved a 98% accuracy with just the Length variable, a 99% 

success rate was achieved when the extra variables were added.  The SVM Linear 

models did not achieve the same success rate, 81% for a single variable, and 94% when 

all predictive variables were included. 

The following highlights the results for each model, using the values from the confusion 

matrix to calculate the percentages in each category.  The tuned DT models and RF 

models are excluded from the results as they matched the base DT model.  See Table 

5.1 - Confusion Matrix Percentages for Models for the results in a table format. 

Figure 5.1 - Pie Charts of Confusion Matrix Percentages for Models 
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Table 5.1 - Confusion Matrix Percentages for Models 

 

The high success rate in categorising a request as being tunnel related demonstrates the 

potential of classification models to be used to help prevent data exfiltration from a 

network.  The DT, RF, and SVM-RBF models gave the highest success rate among all 

the techniques.  This suggests that the differences in DNS request characteristics 

between tunnel and legitimate requests are not as easily separated using linear 

techniques, and that the outliers in the values of the predictive variables can be more 

easily managed using non-linear techniques.  The differences between DT, RF, and 

SVM-RBF techniques are not statistically significant when all three predictive variables 

were included.  The differences between them and the LR and linear SVM models were 

significant. 
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6 CONCLUSION 

A Cochran’s Q test on the accuracy of all the classification techniques indicate that there 

are statistically significant differences in accuracy between the models produced (Q = 

5944, p-value<0.01).  This allows us to reject the null hypothesis that there are no 

statistically significant differences in the prediction of DNS tunnels from the 

classification techniques used. 

The results of the study indicate that all the binary classification techniques used are 

effective at predicting if an individual request is part of a DNS tunnel, with the Decision 

Tree, Random Forest, and Support Vector Machine (with an RBF kernel)  techniques 

producing the best results.  These techniques had statistically significant differences to 

the Logistic Regression and Linear SVM models.  

6.1 Research Overview 

This research looked at the problem of data exfiltration from a private network using a 

DNS tunnel.  DNS is a fundamental protocol on the internet acting as an address book 

to transmit messages from one machine to another.  It is rarely monitored to the same 

extent as other protocols which makes it a target for anyone trying to avoiding internet 

paywalls, circumvent censorship laws, or extract information from a network.  The 

availability of tools such as Iodine and Powercat has made the creation of a DNS tunnel 

more accessible to individuals with only a limited technical know-how.   

The research reviewed the history of DNS and how it can be used as a covert channel, 

and then looked at the various techniques available to identify that a DNS tunnel exists 

on a network – primarily anomaly based detection.  Most of the existing research focuses 

on identifying tunnels by looking at anomalies in network traffic between protocols or 

over different periods of time.  The basis of this research was to determine if differences 

existed between binary classification techniques in their effectiveness at categorising an 

individual DNS request as being legitimate or tunnel related based on the request 

characteristics, and to see which of them were the most effective.  



60 

 

6.2 Problem Definition 

The problem this research tries to address is the ability of different classification 

techniques to identify individual requests as being related to a tunnel before the request 

leaves the network with the potential loss of data.  There are a number of different 

classification techniques available to categorise data, for this study Logistic Regression, 

Decision Tree, Random Forest, and Support Vector Machine were selected.  The 

classification techniques operated differently with some more suitable to non-linearly 

separable data than others.  The research looked at the four different techniques to 

determine how successful they were at predicting DNS tunnels, and if differences 

existed between the results obtained from each technique. 

6.3 Design/Experimentation, Evaluation & Results 

The data used in the experiment was sourced from existing datasets of DNS traffic that 

had previously being identified as being either legitimate or tunnel related.  From this, a 

number of characteristics were extracted and used as candidate predictive variables for 

the classification models.  For each candidate predictive variable, summary statistics 

were generated which indicated that differences existed for each of them between tunnel 

and legitimate traffic.  The correlation between the candidate variables was then 

examined in order to eliminate multicollinearity which can impact on the reliability of 

the models.  This resulted in three predictive variables being selected for the 

classification models – Length, Length of Sub Domain and Entropy.  

Models for each classification technique were first built using only the Length variable.  

The Length of Sub Domain and Entropy variables were added in subsequent models.  

For each model produced, the Sensitivity, Specificity, Accuracy, and Precision, were 

measured using a confusion matrix of True Positive, True Negative, False Positive, and 

False Negative scores obtained.   

The results demonstrate that a Decision Tree, Random Forest, and Support Vector 

Machine with an RBF kernel, are the most effective techniques to classify individual 

DNS requests as being legitimate or tunnel related. 
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6.4 Contributions and impact 

The study demonstrates the ability of LR, DT, RF, and SVM classification techniques 

at identifying tunnel related traffic using only the characteristics of an individual 

requests as predictor variables, and highlights the significant differences between them 

and how those differences can be measured.  It also helps demonstrate the process of 

selecting characteristics to be used as predictive variables and the impact they have on 

the models. 

6.5 Future work & recommendations 

The data for this research was obtained from sample PCAP files of DNS requests.  The 

only tools used for the tunnel related traffic were Iodine and Powercat.  Although the 

data was enough to demonstrate the effectiveness of the different classification 

techniques at identifying tunnels, there may not have been the variance in the data to 

distinguish correctly between the models produced.  This is particularly true of some of 

the request characteristics (such as source IP address) that needed to be excluded due to 

unrealistic consistencies between the two groups. 

An extension of the research would be to work with an organisation that has previously 

identified a DNS tunnel related data exfiltration attack, and then train the different 

classification models with this data to see which of them produces the best results.  This 

could potentially allow extra characteristics to be included and produce more stable and 

reliable models that could be compared to each other.  Recognising real words in a DNS 

request may also help differentiate between legitimate and tunnel related requests, 

although this should be reflected in the value of Entropy.  An increased number of 

legitimate and tunnel related requests available to train the classification techniques may 

show more significant differences in the values for some of the characteristics used as 

predictive variables.  
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8 APPENDIX 

8.1 Base Logistic Regression Results 

Table 8.1 - Base Logistic Regression Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 338 FP = 326 

Actual: Yes FN = 57 TP = 906 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 393 FP = 271 

Actual: Yes FN = 63 TP = 900 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 407 FP = 257 

Actual: Yes FN = 63 TP = 900 

 

Table 8.2 - Base Logistic Regression Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.79 0.88 0.93 

PR 0.65 0.76 0.95 

Sensitivity 94% 93% 93% 

Specificity 50% 59% 62% 

Accuracy 76% 79% 80% 

Precision 73% 76% 77% 
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Table 8.3 - Base Logistic Regression Boundary Equation 

Predictors Intercept Length Sub Domain Entropy 

Length -1.29 0.0654 N/A N/A 

Length & Sub Domain -0.93 0.117 -0.289 N/A 

Length, Sub Domain & Entropy 4.107 0.0959 -0.2445 -1.4412 

 

8.2 Tuned Logistic Regression Results 

Table 8.4 - Tuned Logistic Regression Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 109 FP = 555 

Actual: Yes FN = 57 TP = 906 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 232 FP = 432 

Actual: Yes FN = 63 TP = 900 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 538 FP = 126 

Actual: Yes FN = 6 TP = 957 
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Table 8.5 - Tuned Logistic Regression Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.79 0.88 0.96 

PR 0.65 0.76 0.96 

Sensitivity 94% 93% 99% 

Specificity 16% 34% 81% 

Accuracy 62% 69% 91% 

Precision 62% 67% 88% 

 

Table 8.6 - Tuned Logistic Regression Boundary Equation 

Predictors Intercept Length Sub Domain Entropy 

Length -0.45 0.0341 N/A N/A 

Length & Sub Domain -0.202 0.0559 -0.1378 N/A 

Length, Sub Domain & Entropy 9.43 0.0898 0.0425 -3.483 
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8.3 Base Decision Tree Results 

Table 8.7 - Base Decision Tree Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 641 FP = 23 

Actual: Yes FN = 14 TP = 949 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 1 TP = 962 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 3 TP = 960 

 

Table 8.8 - Base Decision Tree Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.99 0.99 0.99 

PR 0.99 0.99 0.99 

Sensitivity 98% 99% 99% 

Specificity 96% 99% 99% 

Accuracy 97% 99% 99% 

Precision 97% 99% 98% 
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8.4 Tuned Decision Tree Results 

Table 8.9 - Tuned Decision Tree Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 641 FP = 23 

Actual: Yes FN = 14 TP = 949 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 1 TP = 962 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 3 TP = 960 

 

Table 8.10 - Tuned Decision Tree Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.99 0.99 0.99 

PR 0.99 0.99 0.99 

Sensitivity 98% 99% 99% 

Specificity 96% 99% 99% 

Accuracy 97% 99% 99% 

Precision 95% 98% 98% 
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8.5 Base Random Forest Results 

Table 8.11 - Random Forest Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 641 FP = 23 

Actual: Yes FN = 14 TP = 949 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 1 TP = 962 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 4 TP = 959 

 

Table 8.12 - Base Random Forest Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.99 0.99 0.99 

PR 0.99 0.99 0.99 

Sensitivity 98% 99% 99% 

Specificity 96% 99% 99% 

Accuracy 97% 99% 99% 

Precision 97% 99% 99% 
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8.6 Tuned Random Forest Results 

Table 8.13 - Tuned Random Forest Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 641 FP = 23 

Actual: Yes FN = 14 TP = 949 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 1 TP = 962 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 4 TP = 959 

 

Table 8.14 - Tuned Random Forest Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

ROC 0.99 0.99 0.99 

PR 0.99 0.99 0.99 

Sensitivity 98% 99% 99% 

Specificity 96% 99% 99% 

Accuracy 97% 99% 99% 

Precision 97% 99% 99% 
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8.7 SVM RBF Kernel Results 

Table 8.15 - RBF Kernel SVM Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 651 FP = 13 

Actual: Yes FN = 5 TP = 958 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 5 TP = 958 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 660 FP = 4 

Actual: Yes FN = 5 TP = 958 

 

Table 8.16 - RBF SVM Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

Sensitivity 99% 99% 99% 

Specificity 98% 99% 99% 

Accuracy 98% 99% 99% 

Precision 98% 99% 99% 
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8.8 SVM Linear Kernel Results 

Table 8.17 - Linear Kernel SVM Confusion Matrix 

N = 1627 Predicted: No Predicted: Yes 

 

Predictive Variables - Length  

Actual: No TN = 413 FP = 251 

Actual: Yes FN = 57 TP = 906 

 

Predictive Variables – Length and Length of Sub Domain 

Actual: No TN = 544 FP = 120 

Actual: Yes FN = 62 TP = 901 

 

Predictive Variables – Length, Length of Sub Domain, and Entropy 

Actual: No TN = 612 FP = 52 

Actual: Yes FN = 34 TP = 929 

 

Table 8.18 - Linear SVM Evaluation Results 

Predictors / 

Measures 

Length Length & Length of 

Sub Domain 

Length, Length of Sub Domain 

& Entropy 

Sensitivity 94% 93% 96% 

Specificity 62% 81% 92% 

Accuracy 81% 88% 94% 

Precision 78% 88% 94% 
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