6 research outputs found

    Improved bounds for the sunflower lemma

    Full text link
    A sunflower with rr petals is a collection of rr sets so that the intersection of each pair is equal to the intersection of all. Erd\H{o}s and Rado proved the sunflower lemma: for any fixed rr, any family of sets of size ww, with at least about www^w sets, must contain a sunflower. The famous sunflower conjecture is that the bound on the number of sets can be improved to cwc^w for some constant cc. In this paper, we improve the bound to about (logw)w(\log w)^w. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is tight up to lower order terms.Comment: Revised preprint, added sections on applications and rainbow sunflower

    From DNF Compression to Sunflower Theorems via Regularity

    Get PDF
    The sunflower conjecture is one of the most well-known open problems in combinatorics. It has several applications in theoretical computer science, one of which is DNF compression, due to Gopalan, Meka and Reingold (Computational Complexity, 2013). In this paper, we show that improved bounds for DNF compression imply improved bounds for the sunflower conjecture, which is the reverse direction of the DNF compression result. The main approach is based on regularity of set systems and a structure-vs-pseudorandomness approach to the sunflower conjecture

    Monotone circuit lower bounds from robust sunflowers

    Get PDF
    Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1–13, 2018), and recent advances on the Erdős-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an [Formula: see text] lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known [Formula: see text] due to Andreev (Algebra and Logic, 26:1–18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an [Formula: see text] lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an [Formula: see text] lower bound on the monotone circuit size of the CLIQUE function for all [Formula: see text] , strengthening the bound of Alon and Boppana (Combinatorica, 7:1–22, 1987)
    corecore