8 research outputs found

    Small molecules targeting histone H4 as potential therapeutics for chronic myelogenous leukemia

    Get PDF
    We recently identified a polyamide-chlorambucil conjugate, 1R-Chl, which alkylates and down-regulates transcription of the human histone H4c gene and inhibits the growth of several cancer cell lines in vitro and in a murine SW620 xenograft model, without apparent animal toxicity. In this study, we analyzed the effects of 1R-Chl in the chronic myelogenous leukemia cell line K562 and identified another polyamide conjugate, 6R-Chl, which targets H4 genes and elicits a similar cellular response. Other polyamide conjugates that do not target the H4 gene do not elicit this response. In a murine model, both 1R-Chl and 6R-Chl were found to be highly effective in blocking K562 xenograft growth with high-dose tolerance. Unlike conventional and distamycin-based alkylators, little or no cytotoxicities and animal toxicities were observed in mg/kg dosage ranges. These results suggest that these polyamide alkylators may be a viable treatment alternative for chronic myelogenous leukemia

    REPSA Directed Assessment of Native Cleavage Resistance of DNA to Type IIS Restriction Endonucleases and Modification of REPSA for High Temperature Application

    Get PDF
    We have modified the combinatorial selection method Restriction Endonuclease Protection and Selection Assay (REPSA) to work in high temperature conditions for the discovery of new DNA-binding proteins in thermophiles (HT-REPSA). We utilized Thermus thermophilus (HB-8/ATCC 27634/DSM 579) as a test organism due to its amenable nature in a laboratory setting and current status as a model thermophilic organism. We used a TetR Family (TFR) transcription factor SbtR as the model protein for optimization of HT-REPSA protocols, as data had previously been obtained regarding SbtR physical characteristics and DNA-binding properties. REPSA was conducted until a cleavage resistant species arose after 7 rounds. Massively parallel sequencing of the selected DNAs and bioinformatics analysis yielded a consensus binding sequence of 5\u27-GA(t/c)TGACC(c/a)GC(t/g)GGTCA(g/a)TC, a 20base pair palindromic site comparable to that described in the literature. Taken together, our data provide a proof-of-concept that HT-REPSA can be successfully used to identify the preferred DNA-binding sequences of transcription factors from extreme thermophilic organisms

    DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    No full text
    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight

    Molecular and cellular pharmacology of novel pyrrolo [2,1-c] [1,4] diazepine-based anticancer agents.

    Get PDF
    The pyrrolo 2,1-c 1,benzodiazepines (PBDs) are a family of naturally occurring antitumour antibiotics which includes anthramycin, DC-81, tomaymycin and sibiromycin. They exert their biological activity through covalent binding to the exocyclic N2 group of guanine in the minor groove of DNA and block transcription in a sequence-specific manner. These PBD monomers span three DNA base pairs and have a preference for binding to purine-G-purine triplets. The PBDs have been used as a scaffold to attach other moieties, leading to novel sequence-selective DNA minor groove alkylating agents. In addition, as part of a rational approach to producing more efficient and selective DNA interstrand crosslinking agents, two PBD monomers have been linked together to form PBD dimers. The research in this thesis is a study of the molecular and cellular pharmacology of several series of novel PBD-containing agents including novel PBD dimers with different linker lengths, PBD-nitrogen mustard conjugates, PBD-polyamide conjugates and C2-aryl PBD monomers. Cytotoxicity in human tumour cell lines, efficiency of DNA interstrand crosslinking in naked linear plasmid DNA, and DNA sequence specificity were assessed. DNA interstrand crosslink formation and repair in cells were also measured. Resulting from this work Q2lQT-exo-unsaturated PBD dimers have been characterised to be highly cytotoxic and efficient in producing interstrand crosslinks both in naked DNA and in cells that are not repaired up to 48 hours. Only two of the PBD-nitrogen mustard conjugates showed some interaction with DNA although several members of this group showed significant cytotoxicity. A PBD-tri-pyrrole conjugate was found to bind preferentially to the sequence 5'-AGATTATC. Novel C2-aryl PBD monomers were shown to bind selectively to 5'-purine-G-purine sequences and demonstrated significant cytotoxicity. In addition, a method utilizing fluorescently end-labelled oligonucleotides was developed and validated to screen libraries of PBD-containing molecules synthesised on beads by combinatorial chemistry. This method allowed the isolation and discrimination of beads containing compounds, which have a high affinity for specific DNA sequences
    corecore