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ABSTRACT

The pyrrolo[2,l-c][l,4]benzodiazepines (PBDs) are a family of naturally occurring 

antitumour antibiotics which includes anthramycin, DC-81, tomaymycin and 

sibiromycin. They exert their biological activity through covalent binding to the 

exocyclic N2 group of guanine in the minor groove of DNA and block transcription in a 

sequence-specific manner. These PBD monomers span three DNA base pairs and have a 

preference for binding to purine-G-purine triplets. The PBDs have been used as a 

scaffold to attach other moieties, leading to novel sequence-selective DNA minor 

groove alkylating agents. In addition, as part of a rational approach to producing more 

efficient and selective DNA interstrand crosslinking agents, two PBD monomers have 

been linked together to form PBD dimers. The research in this thesis is a study of the 

molecular and cellular pharmacology of several series of novel PBD-containing agents 

including novel PBD dimers with different linker lengths, PBD-nitrogen mustard 

conjugates, PBD-polyamide conjugates and C2-aryl PBD monomers. Cytotoxicity in 

human tumour cell lines, efficiency of DNA interstrand crosslinking in naked linear 

plasmid DNA, and DNA sequence specificity were assessed. DNA interstrand crosslink 

formation and repair in cells were also measured. Resulting from this work CllCl'-exo- 

unsaturated PBD dimers have been characterised to be highly cytotoxic and efficient in 

producing interstrand crosslinks both in naked DNA and in cells that are not repaired up 

to 48 hours. Only two of the PBD-nitrogen mustard conjugates showed some interaction 

with DNA although several members of this group showed significant cytotoxicity. A 

PBD-tri-pyrrole conjugate was found to bind preferentially to the sequence 5 ’- 

AGATTATC. Novel C2-aryl PBD monomers were shown to bind selectively to 5’- 

purine-G-purine sequences and demonstrated significant cytotoxicity. In addition, a 

method utilizing fluorescently end-labelled oligonucleotides was developed and 

validated to screen libraries of PBD-containing molecules synthesised on beads by 

combinatorial chemistiy. This method allowed the isolation and discrimination of beads 

containing compounds, which have a high affinity for specific DNA sequences.
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CHAPTER 1 

INTRODUCTION

1.1 Cancer and Chemotherapy

1.1.1 Cancer

Cancer is one of the leading causes of death in the UK and approximately 

one in three people will be diagnosed with cancer during their lifetime. In the UK 65 

per cent of cases occur in those over 65 years of age, and this trend suggests that 

cancer will be of increasing importance throughout the world as the average life 

expectancy rises. More than 267,000 new cases of cancer were registered in the UK 

in 1999. There are around 200 different types of cancer but the four major types, 

lung, breast, prostate and colorectal, account for over half of all cases diagnosed. In 

the young, other cancers are more common i.e., leukaemia in children and testicular 

cancer in young men ages 20-39 (Statistics obtained from the Cancer Research UK. 

http://www.canceiTesearchuk.org).

Over the past 25 years, cancer research has seen tremendous development 

revealing a complex knowledge of cancer being a disease that involves dynamic 

changes in the genome (Hanahan and Weinberg, 2000). The progress of this 

knowledge is mainly due to breakthroughs in molecular biology that are focused on 

the characterisation, cloning and sequencing of various genes that account for the 

transformation of a normal cell to a malignant cell (Hill and Tannock, 1998).

Cancer is caused mainly by mutations in genes that normally regulate cell 

multiplication, collectively called oncogenes and tumour suppressor genes. The 

precise mutations vary depending on the type of cancer, but oncogenes are generally
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mutated to have gain-of-function and tumour suppressor genes to have Ioss-of- 

function. Oncogenes in normal cells (proto-oncogenes) control some aspect of cell 

growth and regulate a normal function, and are under the control of regulator genes. 

Following mutation, the oncogene can lose this control and become over-expressed. 

This can cause abnormal cell functions such as excessive cell growth leading to 

unrestrained proliferation, then cancer.

Tumour suppressor genes, such as retinoblastoma (Rb) and p53, control key 

cellular functions such as DNA repair and apoptosis (Kreidberg and Natoli, 2001). 

Cells with mutated tumour suppressor genes can multiply in the absence of the 

growth-promoting factors required for proliferation of normal cells and are often 

resistant to signals that normally program cell death (apoptosis). The primary 

tumour cells may invade adjacent tissues and enter the vasculature or lymphatics 

system. This process is followed by the release of individual cells or small emboli, 

which can subsequently settle in the capillary beds of distant organs where 

secondary tumours (metastases) then grow. Metastasis is the most clinically 

significant behavioural trait of malignant cancer (Hart, 2001) and it is the cause of 

90% of deaths from cancer (Hanahan and Weinberg, 2000).

It has been suggested that the majority, or perhaps even all types of cancer, 

share six common essential alterations in cell physiology that are required for 

malignant growth: 1) self-sufficiency in growth signals, 2) insensitivity to growth- 

inhibitory (antigrowth) signals, 3) evasion of apoptosis, 4) limitless replicative 

potential, 5) sustained angiogenesis, and 6) tissue invasion and metastasis (Hanahan 

and Weinberg, 2000).
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1.1.2 Treatment o f cancer

Surgery is the first treatment considered and is one of the main treatments for 

cancer. It is a local treatment to remove a primary tumour and also to remove a 

border of healthy tissue surrounding the tumour. After the surgery, chemotherapy 

and/or radiotherapy may be given to prevent any undetectable micrometastases 

(adjuvant treatment). Chemotherapy and/or radiotherapy are sometimes given before 

surgery to help shrink the cancer (neo-adjuvant treatment). However, when cancer 

has spread, other treatments such as chemotherapy, radiotherapy, immunotherapy or 

hormone therapy are given.

1.1.3 Principles and limitation o f current chemotherapy

Chemotherapy has been used in cancer therapeutics for almost 60 years and

is primarily used in three different aspects; 1) as the major curative therapy for 

several types of malignancies, such as Hodgkin’s disease and other types of 

lymphomas, acute leukaemia in children, and testicular cancer in men; 2) as a 

palliative treatment for many types of advanced cancers; and 3) as an adjuvant 

treatment before, during, or after local treatment (surgery and/or radiotherapy) in 

order to both eradicate undetectable micrometastases and to control the primary 

tumour. Such treatments usually involve a combination of drugs. Two of the most 

important factors in successful combination chemotherapy are 1) the ability to 

combine drugs at close-to-maximum tolerated doses with additive effects against 

tumours and less than additive toxicities to normal tissues and 2) to include at least 

one drug to which the tumour is sensitive. Also, the drugs are sometimes combined

19



because of the synergic interaction among the drugs, either based on a theoretical or 

experimental expectation (Tannock and Goldenberg, 1998).

Despite advances in chemotherapy, cancer remains a life-threatening 

problem in our society because current treatments have clear limitations and unmet 

needs (Gibbs, 2000). One of the limiting factors with current chemotherapy is the 

poor ‘therapeutic index’ of many drugs, i.e. side-effects of the given dose can 

outweigh the benefits to the patient. This is because most anti-cancer drugs are 

antiproliferative in nature and they are not inherently selective to cancer cells 

(Workman, 2001). For example, myelosuppression is one of the most common 

complications of cancer chemotherapy, causing bone marrow to slow production of 

white blood cells, red blood cells and plasma cells leading to patients becoming 

more sensitive to infection. Another factor limiting the effectiveness of current 

antitumour agents is the ability of cancer cells to acquire resistance towards the 

drugs even though a response may have been seen during an initial treatment 

(Garrett and Workman, 1999; Workman, 2001). The mechanisms of drug resistance 

will be discussed in section 1.3.

While a small range of cancers can be cured by current chemotherapy, 

effective cures for the major solid cancers (e.g., lung, colon) appear to be difficult 

prospects for the near future (Garrett and Workman, 1999).

1.2 Anticancer drugs

1.2.1 Drug discovery and development

The modern process of preclinical anticancer drug discovery and 

development begins with a lead discovery, which results from serendipitous
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observations, systematic screening, or drug design efforts. The process of systematic 

screening can include in vivo empirical screening, in vitro cytotoxicity screening and 

molecular-targeted screening. The latter two can make use of high-throughput 

screening technologies. Drug design efforts often revolve around chemical diversity 

created using synthetic combinatorial libraries, structural biology and molecular 

modelling. From lead discovery, the next step for preclinical drug development is 

lead optimisation. In this step, substantial chemical modification of the lead 

structure is undertaken in order to improve pharmaceutical properties, such as 

metabolic stability or tissue distribution. Following these modifications, extensive 

pharmacokinetic evaluations are made to determine the correct formulation. Once 

the formulation is accepted, formal pharmacokinetic and toxicology studies are 

performed to establish safe starting doses for clinical trials (Shoemaker and 

Sausville, 2001). The traditional steps for clinical development are; (1) Phase I 

clinical trial to define the maximum tolerated dose on a particular schedule of 

administration and to determine the toxic effects of the treatment, (2) Phase II 

clinical trial to establish efficacy (response rates) on regimen supported by the phase 

I results in various tumour types, and (3) Phase III clinical trial to optimise efficacy 

in specific application. This is followed by the filing of a new drug application 

(Shoemaker and Sausville, 2001).

1.2.2 History o f the first anticancer drugs

The first approaches to chemotherapy started in the World War II era where 

alkylating agents were chosen for the treatment of lymphoma and leukaemia. They 

were developed from an original observation with sulphur mustard gas used as a
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chemical weapon in World War I. This gas was observed to cause delayed 

myelosuppression and lymphotoxic symptoms in addition to the vesicant actions to 

the skin, conjuctiva and respiratory tract (Hartley, 2001). The disclosure of the 

clinical therapeutic activity of nitrogen mustards led to extensive research on 

alkylating agents and to the approval of several drugs in this class for use in 

chemotherapy in the late 1940s and early 1950s (Shoemaker and Sausville, 2001). 

Once insights into the biochemical mechanisms of action of antibacterial drugs such 

as sulphonamides were obtained, more research was performed using 

anti metabolites as potential antitumour drugs leading to the approval of 

methotrexate for clinical use in 1953 (Shoemaker and Sausville, 2001). In addition, 

the value of natural products as potential sources of new antitumour agents became 

apparent and plant products vinblastine and vincristine were approved for clinical 

use in 1961 and 1963, respectively (Shoemaker and Sausville, 2001). The details for 

these agents are discussed in Section 1.2.4.

1.2.3 Types o f  anticancer drugs

Anticancer drugs that are currently in clinical use can be divided into 

different general families according to their biochemical activities or their origins 

(Table 1.1). These main families are the alkylating agents, antimetabolites, and 

several types of natural products and their derivatives.
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Alkylating agents 

(classical)

(non-classical)

Nitrogen mustard (mechlorethamine)

Chlorambucil

Melphalan

Cyclophosphamide

Ifosfamide

Busulfan

Nitrosoureas : BCNU, CCNU, Methyl CCNU

Cisplatin

Carboplatin

Tetrazines: Dacarbazine, Hexamethylmelamine, 

Temozolomide

Antimetabolites Methotrexate

5-Fluorouracil 

Cytosine Arabinoside

6-Thioguanine 

6-Mercaptopurine 

Gemcitabine

Natural Products 
and their Derivatives

Anthracyclines: Doxorubicin, Daunorubicin, Epirubicin

Mitoxantrone

Mitomycin C

Actinomycin D

Bleomycin

Vinca Alkaloids: Vinblastine, Vincristine, Vindesine, 

Vinorelbine 

Etoposide (VP-16)

Camptothecins

Taxanes: Paclitaxel, Docetaxel

Table 1.1 Classes of commonly used anticancer drugs (Adapted from Boyer 
andTannock, 1998)
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When a new drug shows an anticancer activity, many closely-related 

analogues are synthesised and their biological activities are tested during the 

development process. A few alkylating agents that are currently used clinically were 

synthesised following the initial use of nitrogen mustard (mechlorethamine). Other 

drugs are heterogenous and include derivatives of naturally occurring species 

(antibiotics) and synthesised compounds (e.g., cisplatin) (Boyer and Tannock, 

1998).

1.2.4 Alkylating agents

Alkylating agents are the oldest class of anticancer drugs and have toxicities 

that include myelosuppression, alopecia, pulmonary fibrosis, leukaemogenesis, 

infertility, teratogenesis, renal injury (with BCNU) and cardiac toxicity 

(cyclophosphamide) (Tew, Colvin and Chabner, 1996).

12.4.1 Nitrogen mustards

Nitrogen mustard (mechlorethamine) was the first clinically used anticancer 

drug. In 1946, Gilman and Philips reported that side effects of the nitrogen mustard, 

such as nausea, vomiting and myelosuppression, were probably due to toxicity in the 

specific organs with the high proliferative tissues (epithelia of gastrointestinal tract 

and bone marrow cells) (Gilman and Philips, 1946). Hence, nitrogen mustards were 

used to treat leukaemias, lymphomas and Hodgkin’s disease, which also have high 

proliferative rates compared to most normal tissues. This was the beginning of 

cancer chemotherapy and led to numerous alkylating agents being synthesised and
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evaluated in attempts to obtain more effective and selective agents with less side 

effects (Hartley, 2001; Moore and Erlichman, 1998).

The group of drugs that derives from the original nitrogen mustard 

(mechlorethamine) includes four of the most commonly used alkylating agents 

cyclophosphamide, ifosfamide, melphalan, and chlorambucil. The common 

functional group of these agents is the bis-chloroethyl amino group. Figure 1.1 

shows the structures of these agents. The mechanism of action of the nitrogen 

mustards will be discussed in Section 1.5.2.

CHsCI

V s c h 2c h 2c i

Mechlorethamine

/ \  X^CH^I

\ _ /  N ) ^ ch2c.

Chlorambucil

| / \  X ̂ CH^I
HOOC------CHCHj,------ V

\ ____ /  XHaCHgCI

Melphalan

Ifosfamide Cyclophosphamide

Figure 1.1 Structures of nitrogen mustards.
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Mechlorethamine is still used clinically as part of the MOPP 

(Mechlorethamine, Vincristine, Procarbazine and Prednisone) treatment schedule for 

Hodgkin’s disease but has been largely replaced by other nitrogen mustards for 

treatments of other cancers. The chemical reactivity of this drug is very high with a 

half-life of a few minutes.

Chlorambucil is the phenylbutyric acid derivative of mechlorethamine. It is 

relatively stable in aqueous solution and enters cells by simple diffusion. 

Administration can be achieved orally because chlorambucil is a well-absorbed and 

tolerated agent It is used mainly against slowly progressive neoplasms such as low- 

grade lymphomas and chronic lymphocytic leukaemia (Hartley, 2001; Moore and 

Erlichman, 1998).

Melphalan (L-phenylalanine mustard) is the amino acid phenylalanine 

derivative of mechlorethamine. It is used for treating multiple myeloma and in some 

high-dose bone marrow or stem cell transplantation protocols for breast, ovarian and 

testicular cancers. This agent can be given both orally and intravenously and some 

patients have responded better to the drug given intravenously perhaps as absorption 

of this drug is low and highly variable after oral administration. Uptake of 

melphalan into cells is mediated by an active amino acid transport process and 

resistance may occur due to changes in this transport system (Hartley, 2001; Moore 

and Erlichman, 1998).

Cyclophosphamide is one of the most widely used alkylating agents and is 

part of the treatment protocols for many types of cancer (Tew, Colvin and Chabner, 

1996). It is an inert prodrug which requires metabolic activation to become a
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reactive nitrogen mustard. The mechanism of activation will be discussed in Section 

1.5.2.

Ifosfamide is an analogue of cyclophosphamide with one of the 2- 

chloroethyl groups moved onto the nitrogen atom of the oxazaphosphorine ring. It is 

also a prodrug and used for treatment of testicular, sarcoma, and lung cancer. 

Neurotoxicity may occur with high doses of ifosfamide, a side-effect not seen with 

cyclophosphamide (Hartley, 2001; Moore and Erlichman, 1998).

12.42 Nitrosoureas and other classical alkylating agents

The chloroethylnitrosoureas (Figure 1.2) -  BCNU (carmustine), CCNU 

(lomustine) and methyl-CCNU (semustine)- are lipid-soluble drugs that can 

decompose to form a number of reactive intermediates including the 

chloroethyldiazohydroxide species which can readily chloroethylate nucleophiles on 

DNA (Hartley, 2001; Moore and Erlichman, 1998). The mechanism of the 

breakdown is discussed in Section 1.5.2. BCNU is similar to the nitrogen mustards 

in that it has two chloroethyl groups, whereas CCNU and methyl-CCNU have a 

single chloroethyl group making them more lipophilic than BCNU. These drugs 

have limited clinical application because the concentration required to achieve 

cytotoxicity in cancer cells is too toxic for normal tissue. This class of drugs often 

cause prolonged myelosuppression, probably due to their direct effects on bone 

marrow stem cells.

Busulfan (Figure 1.2) is one of the alkylalkanesulphonate family of 

alkylating agents (Hartley, 2001; Moore and Erlichman, 1998). It has selective
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effects on some blood-forming cells and is used for treating chronic myelogeneous 

leukaemia.

o
CIHCHgCHgNCNH-CHgCHgCI CIHCHgCHgl

NO

\ l / “YCNH-( J CIHCHgCHjjNCNH-f

BCNU CCNU Methyl-CCNU

H3O 1
■ ?—O—(CH2) '— CH3

[ > 1A
Busulphan Thio-TEPA

Figure 1.2 Structures of nitrosoureas, busulphan and thio-TEPA.

Thio-TEPA (Figure 1.2) belongs to the aziridine family whose structure 

resembles intermediates produced by nitrogen mustards, but is less reactive (Tew, 

Colvin and Chabner, 1996). This family has no unique advantages but thio-TEPA is 

occasionally used for treating breast cancer.

12.43 Non-Classical Alkylating Agents and Platinum Agents

This class of agents bind to DNA in a different manner from that of the 

classical alkylating agents. They include bioreductive prodrugs and platinum based 

drugs (Figure 1.3).

Dacarbazine (DTIC) was originally synthesised as an antimetabolite to 

inhibit purine biosynthesis (Friedman, Averbuch and Kurtzberg, 1996). It requires
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metabolic activation in order to obtain monofunctional alkylating (methylating) 

properties. The active metabolite is produced by hepatic cytochrome P450 in the 

liver. It is mainly used for treatment of soft tissue sarcomas, Hodgkin’s disease and 

melanoma. The drug is administered intravenously and its dose-limiting toxicity is 

myelosuppression.

h 2n .

Dacarbazine

H2NOC,

Temozolomide

Cisplatin

o
Carboplatin

C c x
Oxaliplatin

x>

Figure 1.3 Structures of non-classical alkylating agents and platinum 
compounds.

Temozolomide also acts as a monofunctional alkylating agent. It was 

developed in the UK through the Cancer Research Campaign and generates the 

active metabolite of dacarbazine spontaneously so that it overcomes the relatively 

inefficient N-demethylation step in humans (Newlands et al.y 1997). This drug can 

be administered orally and has shown clinical efficacy in the treatment of a variety
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of malignant tumours. It has recently been approved for treating malignant glioma 

and various trials are being investigated (Chang et al. 2003).

Cisplatin (cis-diamminedichloroplatinum II) was first developed from the 

observation that an electric current delivered via platinum electrodes led to 

inhibition of bacterial growth (Rosenberg, et al., 1965). Cisplatin is one of the most 

commonly used anticancer agents with a very wide spectrum of activity (Judson and 

Kelland, 2001). It is used for testicular cancer and, in combination with other drugs 

for palliation of a variety of solid tumours. Its major dose-limiting toxicities include 

severe nausea and vomiting, damage to the kidneys, and loss of hearing and 

neurotoxicity after prolonged use. Many analogues of cisplatin have been 

synthesised in an attempt to retain the antitumour activity but decrease the side- 

effects. Of these only carboplatin and oxaliplatin are widely used clinically. The 

dose-limiting toxicity of carboplatin is myelosuppression (Judson and Kelland,

2001). The mechanisms of action of cisplatin will be discussed in section 1.5.2.

1.2.5 A ntimetabolites

These drugs resemble normal metabolites and can compete as substrates for 

enzyme activity. They particularly affect the synthesis of DNA required for 

replication. Unlike the alkylating agents, these drugs do not cause the later problems 

of carcinogenesis as they interact indirectly with DNA. The structures of some of 

these drugs are shown in Figure 1.4.

30



!—N

Folk acid

HN

cA - n
H

Uradl

HO.

G hi tamale

CHa
6 h 2

COOH

NH, Q 1

—COOH 

CH2

Methotrexate

O

(jH;'2
COOH

HN

Thymine

& H

5-Fluorouracil

NH.

HO.

OH F

Deoxycytidine Cytosine arabinoside Gemcitabine

Figure 1.4 Structures of antimetabolites and their corresponding metabolites.

Many of the clinically used agents are analogues of purine (e.g., 6- 

thioguanine, 2-chlorodeoxyadenosine) or pyrimidine (e.g., 5-fluorouracil, cytosine 

arabinoside). There are also antifolates (e.g., methotrexate). Agents either inhibit the 

formation of the normal nucleotides or inhibit cell division processes. Since most 

antimetabolites are cell cycle-specific and affect cell proliferation, the cytotoxic
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effect is primarily seen in high-rate proliferation cells such as bone marrow and 

gastrointestinal mucosa. With these types of drug, the duration of administration is 

often more important to inhibit an enzyme than the peak concentration, when given 

as a single administration (Peters and Jansen, 2001).

Antifolates are not nucleoside analogues, but act by inhibiting the formation 

of reduced folates that are required for the transfer of methyl groups in the 

biosynthesis of purines and in the conversion of deoxyuridine monophosphate 

(dUMP) to thymidine monophosphate (dTMP), a reaction catalysed by thymidylate 

synthase (TS). Methotrexate is an analogue of the vitamin folic acid and is a 

competitive substrate inhibitor of the enzyme dihydrofolate reductase (DHFR). This 

inhibition leads to cell death due to nonavailability of dTMP and / or purines (Chu 

and Allegra, 1996).

5-Fluorouracil (5-FU) resembles the pyrimidine bases uracil (RNA 

component) and thymine (DNA component) (Grem, 1996; Longley et al., 2003). It 

penetrates rapidly into cells where it is metabolised to nucleoside forms in reactions 

catalysed by enzymes that normally act on uracil and thymine. Phosphorylation then 

yields the active fluorinated nucleotides 5-FUTP and 5-FdUMP. 5-FUTP inhibits 

nuclear processing of ribosomal and messenger RNA and may cause other errors of 

base pairing during transcription of RNA. 5-FdUMP inhibits irreversibly the enzyme 

thymidylate synthase, leading to depletion of dTMP, which is required for DNA 

synthesis. 5-Fluorouracil is commonly used for treatment of breast and 

gastrointestinal cancers.

Cytosine arabinoside (ara-C) resembles the nucleoside deoxycytidine with an 

arabinose sugar moiety replacing a deoxyribose (Chabner, 1996). Ara-C enters cells
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rapidly by a carrier-mediated process usually reserved for deoxycytidine. It is 

phosphorylated in cells to ara-CTP, which is a competitive inhibitor of DNA 

polymerase, the crucial enzyme required for DNA synthesis, as it has a similar 

affinity for this enzyme as the normal substrate, dCTP. When ara-CTP binds DNA 

polymerase, DNA synthesis is arrested and cells are left in S-phase and subsequently 

die. Incorporation of ara-C into DNA is also a feature and may contribute to 

cytotoxic effects, possibly because of defective ligation or incomplete synthesis of 

DNA fragments.

Gemcitabine (2’2’-difluorodeoxycytidine) is another deoxycytidine analogue 

with proven activity in different solid malignancies (Sehouli, 2005). Its cytotoxic 

action is associated with a specific inhibition of DNA synthesis that requires 

intracellular phosphorylation to its triphosphate derivative dFdCTP (Heinemann et 

al., 1988; Huang et al., 1995). Other intracellular effects of gemcitabine include 

inhibition of ribonucleotide reductase, stimulation of deoxycytidine kinase which is 

the enzyme responsible for its activation, and inhibition of cytidine deaminase 

which is the primary enzyme responsible for its degradation (Huang et al., 1991). 

Gemcitabine is primarily used to treat lung (non-small cell), pancreatic, bladder, and 

breast cancers (http://www.cancerbackup.org.Uk/Treatments/Chemotherapy/ 

Individualdrugs/Gemcitabine).

1.2.6 Natural products

These agents (Figure 1.5) have a variety of mechanisms of action. They are 

either compounds isolated from plants, fungi, or bacteria or derivatives of such 

compounds.
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Figure 1.5 Structures of antitumour antibiotics

12.6.1 Antitumour antibiotics

Doxorubicin (adriamycin) is one of the most active anticancer drugs in 

current chemotherapy and belongs to the anthracycline family that intercalate into 

DNA (Doroshow, 1996). Doxorubicin has greater activity against many solid
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tumours than its parent drug, daunorubicin, which is a product of a Streptomyces 

species originally isolated from an Italian soil sample in 1958. Daunorubicin has 

high activity against acute leukemia and is used in many current protocols (Moore 

and Erlichman, 1998). The dose-limiting toxicity of doxorubicin is cardiotoxicity 

(Mohamed et al., 2004).

The success of doxorubicin has led to the synthesis and testing of hundreds 

of analogues, but only two are currently widely used, idarubicin and epirubicin. 

Idarubicin is an orally absorbed daunorubicin analogue which has a similar effect 

against acute leukaemia as doxorubicin. Epirubicin differs from doxorubicin in its 

three-dimensional configuration and has equivalent activity but with possibly less 

toxicity (Doroshow, 1996).

Bleomycin is a large complex structure consisting of a glycopeptide group 

and a DNA intercalating component (Lazo and Chabner, 1996). It is used mainly in 

combination chemotherapy for the treatment of testicular cancer and lymphomas. It 

has relatively little toxicity to bone marrow but with repeated dosing it may cause 

serious toxicity to lung tissues.

Mitomycin C is a quinone-containing compound that requires activation by a 

reductive mechanism to an alkylating metabolite. It is used in the clinical treatment 

of several malignancies, and its cytotoxicity to tumours is due to its interstrand 

crosslinking ability. It causes delayed myelosuppression and pulmonary toxicity 

(Tomasz, 1993). The mechanism of mitomycin C will be discussed in Section 1.6.
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12.62 Plant derivatives

The vinca alkaloid family (Figure 1.6) contain naturally occurring and semi­

synthetic compounds derived from the periwinkle plant. The family includes 

vinblastine, vincristine and vinorelbine. These compounds bind to the tubulin 

protein and inhibit its polymerisation thus preventing the formation of microtubules. 

Microtubules are crucial for cellular functions such as the formation of the mitotic 

spindle responsible for the separation of chromosomes, and the structural and 

transport functions in axons of nerves. Although they are similar in structures, these 

drugs have different clinical activities and toxicides (Rowinsky and Donehower,

sre)

Figure 1.6 Structures of plant derivatives.

1996).
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The taxanes paclitaxel (Taxol) and docetaxel (Taxotere) are plant alkaloids 

extracted from the bark and needles of the western yew tree. Taxanes, like vinca 

alkaloids, are antimicrotubular agents but bind to tubulin at a different site. Unlike 

the vinca alkaloids, taxanes inhibit microtubular depolymerisation leading to the 

prevention of normal cell growth by preventing the breakdown of microtubules, and 

hence inhibiting cell division (Rowinsky and Donehower, 1995; D’lncalci, 2001). 

They are active in particular against ovarian, breast and lung cancers. The dose- 

limiting toxicity of taxanes is a noncumulative myelosuppression, mainly 

neutropenia.

The epipodophyllotoxins VP-16 (etoposide) and VM-26 (teniposide) are 

semi-synthetic glycoside derivatives of the antimitotic agent podophyllotoxin, itself 

derived from the mandrake plant. Although podophyllotoxin binds to tubulin and 

inhibits polymerisation, VP-16 and VM-26 have been found to inhibit a different 

enzyme, topoisomerase II (Van Mannen et al, 1988). VP-16 is widely used while 

VM-26 has a more limited role in childhood hematological cancer (Moore and 

Erlichman, 1998). Topoisomearse II (topo II) is an enzyme that is indispensable for 

its ability to modify DNA tertiary structure without changing the primary structure. 

The enzyme catalyzes a transient breakage and reunion of double-stranded DNA 

during transcription and replication, and is also responsible for chromosome 

dysfunction during mitosis (Cuvier and Hirano, 2003, Valkov and Sullivan, 2003). 

There are two isozymes of topo II with molecular weights of 170 and 180 kDa, 

called topo Ila  and topo lip , respectively (Stacey et al., 2000). Although the 

biochemical activities of the two proteins are closely related, their cellular 

distribution and expression characteristics differ greatly. Topo II inhibiting drugs are
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used clinically against a wide range of tumours (Hande, 1998) and target both 

isotypes of topo II, although a broad range of evidence indicates that topo Ila  is the 

primary target (Burden and Osheroff, 1998).

HO

HO

Camptothecin Topotecan

HO

Irinotecan

Figure 1.7 Structures of the camptothecin family.

Camptothecin (Figure 1.7) is an extract of the tree Campotheca accuminata 

that exerts its antitumour activity through inhibition of topoisomerase I (topo I) 

(Rothenberg, 1997). Topo I is an enzyme that catalyses transient cleavage and 

resealing on a single strand of DNA during transcription and replication (Wang, 

1991). A number of water-soluble camptothecin semisynthetic derivatives have 

undergone extensive evaluation and have demonstrated significant clinical activity,
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and these include topotecan and irinotecan (CPT-11) (Rothenburg, 1997). The 

camptothecin family (Figure 1.7) acts as an uncompetitive inhibitor and structure- 

activity relationships have been demonstrated (Staker et al., 2002). Topotecan and 

irinotecan have well-established antitumour activities against various primary 

tumours (Wong and Berkenblit, 2004; Timur et al., 2005; Ajani, 2005).

1.3 Drug Resistance

Drug resistance is a central problem that is restricting progress of cancer 

treatment by chemotherapy. Resistance may be either intrinsic, where the tumour 

cells do not respond to drugs even in the initial treatment, and acquired, where a 

tumour responds initially but becomes resistant during / after the treatment (Jong et 

al., 2001). There is a wide range of metabolic or structural properties of cells that 

may lead to drug resistance (Tannock and Goldenberg, 1998), and elucidating the 

mechanisms of the drug resistance may allow the effectiveness of currently used 

drugs to be improved until better drugs are developed (Middleton and Margison, 

2003).

A summary of the major mechanisms of drug resistance to anticancer drugs 

that have been shown in vitro is shown in Table 1.2. These mechanisms include 

decreased cellular uptake, decreased drug activation, detoxification (e.g., formation 

of sulfhydryl-drug conjugates such as glutathione conjugates), and alterations to 

target enzymes (e.g., topoisomerase II). The relevance of many of these mechanisms 

in the clinical situation remains to be established.
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Mechanism Drugs

Decreased Uptake Methotrexate, nitrogen mustard, melphalan, cisplatin

Increased efflux Anthracyclines, Vinca alkaloids, etoposide, taxanes

Decrease in drug activation Many antimetabolites

Increase in drug catabolism Many antimetabolites

Increase/decrease in levels of 
target enzyme

Methotrexate, topoisomerase inhibitors

Alterations in target enzyme Methotrexate, other antimetabolites, topoisomerase 
inhibitors

Inactivation by binding to 
sulfhydryls (e.g., glutathione)

Alkylating agents, cisplatin, anthracyclines

Increased DNA repair Alkylating agents, cisplatin, anthracyclines, etoposide

Decreased ability to undergo 
Apoptosis

Alkylating agents, cisplatin, anthracyclines, etoposide

Table 1.2 General Mechanisms Associated with Resistance to Anticancer Drugs 
(Adapted from Tannock and Goldenberg, 1998)

Simultaneous resistance to various structurally and functionally unrelated 

chemotherapeutic drugs is termed multidrug resistance (MDR) (Gottesman et al.,

2002). MDR can result from changes that limit accumulation of drugs in cells by 

reducing uptake, enhancing efflux or affecting membrane lipids such as ceramide 

(Liu et al., 2001). These changes inhibit apoptosis that is activated by most 

anticancer drugs, activation of general response mechanisms that detoxify drugs and 

repair damage to DNA, and alterations in the cell cycle and checkpoints that make 

cells relatively resistant to the cytotoxic effects of drugs on cancer cells (Synold et 

al., 2001; Ambudkar et al., 1999; Borst et al., 2000). One of the major mechanisms 

of MDR has been shown in vitro to be due to over-expression of an energy-
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dependent drug efflux pump, known as P-glycoprotein (Pgp) or the multidrug 

transporter (Juliano & Ling, 1976, Kartner et al., 1983; Gerlach et al., 1986; Ueda et 

al., 1987; Gottesman, 1994). Pgp is a surface-membrane, ATP-dependent transport 

protein that can increase the efflux of many natural products and derivatives 

including many drugs from the cell, thus reducing the effective intracellular 

concentration at the target, and hence, inducing drug resistance. Pgp is the product 

of the MDR1 gene in the human (Chen et al., 1986), and is expressed in about 50% 

of human cancers at levels thought to be physiologically significant. Because tissues 

such as the colon, adrenal cortex, kidney, and liver normally express detectable 

quantities of Pgp, tumours from these organs often show inherent resistance to a 

range of anticancer drugs (Goldstein et al., 1989).

1.3.1 Specific resistance mechanisms to alkylating agents and cisplatin 

Although the exact resistance mechanisms evoked in response to DNA 

damaging agents have not yet been fully elucidated, a number of mechanisms of 

cellular resistance have been observed by various in vitro experiments (Jong et al., 

2001).

• Decreased drug uptake. This is one of the mechanisms of resistance to many 

alkylating agents that do not enter cells via passive diffusion and is due to 

reduced binding affinities of drug transport carriers resulting in decreased net 

cellular uptake of drugs (Tannock and Goldenberg, 1998; Hartley, 2001). For 

example, either altered or mutated active transport carriers such as amino acid 

and choline transporters have been observed in the cells resistant in vitro to 

either melphalan or mechlorethamine, respectively (Moscow, et al., 1993).
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• Decreased drug activation. This involves glutathione-mediated detoxification 

pathways and occurs when glutathione binds to the drug and prevents the 

formation of drug-DNA adducts. As an example, it is known that elevated 

glutathione levels correlate with cisplatin resistance (Green et al., 1993). The 

formation of a glutathione-drug conjugate can occur by direct reaction or is 

catalysed by specific glutathione-S-transferases (GST), a group of detoxifying 

enzymes (Green et al., 1993). However, overexpression of appropriate 

glutathione-S-transferase does not consistently induce resistance to cisplatin 

(Jong et al., 2001).

• DNA repair pathways have also been shown to be involved in the development 

of drug resistance. Such pathways can be characterised by elevated levels of p53 

protein, increased DNA nucleotide/base excision repair and decreased DNA 

mismatch repair. Decreased DNA mismatch repair may also lead to increased 

tolerance of DNA damage.

• 06-alkylguanine-DNA alkyltransferase (or ATase) is the DNA repair protein 

that plays an important role in a resistance mechanism against agents that 

alkylate at the 0 6  position of guanine, such as nitrosoureas. ATase directly 

removes drug-DNA adducts and it has been shown that the inactivation of this 

protein reverses the resistance to many 06-alkylating agents. Interestingly, drugs 

that inactivate ATase are now under-going clinical trials (Middleton and 

Margison, 2003). The alkylation mechanism of these agents will be discussed in 

section 1.5.

• Dysregulation of apoptosis. Suppression of drug-induced apoptosis is also a 

means of acquiring drug resistance. This could be mediated by the
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overexpression of Bcl-2 protein, which inhibits apoptosis, and/or inactivating 

mutations of p53 protein, which is involved in regulation of cell-cycle 

checkpoints (Reed, 1999). Mutations of these proteins can be found in the gene 

and may influence the sensitivity of tumour cells to cytotoxic drugs, resulting in 

drug resistance (Huang et al.t 2005).

1.4 DNA as a Target in Cancer Chemotherapy

1.4.1 DNA structure

Ever since its discovery by Watson and Crick over 50 years ago, the three- 

dimensional structure of DNA has been considered to be one of nature’s most 

magnificent constructions. Its critical role in heredity is responsible for the transfer 

of genetically determined characteristics from one generation to the next (Green et 

al., 1993).

DNA stores all the information required to construct the cells and tissues of 

an organism. It consists of two long helical strands coiled around a common axis to 

form a double helix. Each strand is composed of four different nucleotides. In 

protein-coding DNA these nucleotides are encoded to specify the amino acid 

sequence.

Each strand of a double helix presents a sugar-phosphate backbone on the 

outside of the helix and projects bases (purines and pyrimidines) into the interior. 

The adjoining bases in each strand stack on top of one another in parallel planes via 

phosphodiester bonds (Figure 1.8). Each DNA strand has a chemical orientation of 

5’ to 3’ and the synthesis of DNA proceeds in this direction. Purines (A and G) are 

larger than pyrimidines (C and T) and in order to maintain the geometry of the
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double helix structure, purines must pair with pyrimidines. The two strands are held 

by a regular base-pairing, with Adenine (A) pairing to Thymine (T) and Guanine 

(G) pairing to Cytosine (C) and are paired through two and three hydrogen bonds, 

respectively. As well as the presence of thousands of such hydrogen bonds in a 

DNA molecule, hydrophobic bonds and van der Waals interactions between stacked 

adjacent base pairs stabilise the double helix (Lodish et al., 1999).

Major groove

Minor groove

Figure 1.8 Structure of DNA.
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DNA can exist in at least four forms but is normally present in its B-form, a 

right-handed double helix. Other forms include A-DNA, Z-DNA, a triple- and a 

quadruple- stranded DNA. On the outside of B-form DNA, there are two helical 

grooves of different widths known as the major groove (= 12A) and the minor 

groove (= 6A).

The helix makes a complete turn every 3.4 nm, which is about every 10 base 

pairs with the stacked bases regularly spaced 0.34 nm apart along the helix axis 

(Lodish, 1999). The base sequence can, however, influence the structure. Indeed it 

has been known for some time that AT-rich sequences have narrower minor grooves 

than GC-rich sequences (Fratini et al., 1982; Alexeev et al.y 1987).

1.4.2 DNA as a target for anticancer drugs

DNA is the molecular target for many anticancer drugs, and interactions with 

DNA are considered to be critical for their biological and clinical activities. There 

are a number of both synthetic and naturally occurring small ligands that interact 

with DNA via several potential mechanisms of ligand-DNA interaction. These 

include covalent binding, non-covalent groove binding and intercalation between the 

base pairs of DNA (Figure 1.9). While alkylation results in binding covalently to 

DNA, non-covalent binding usually involves hydrogen bonding or van der Waals 

interactions between the ligand and DNA. Such interactions take place either in the 

major or minor groove of DNA, with some agents found to have preference for 

specific sequences. Detailed mechanisms of binding for different types of anticancer 

drugs will be discussed in the next section.
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DNA is full of potential targets for reactive ligands. Although the atoms 

involved in hydrogen bonding between base pairs are occupied in B-form of DNA, 

there are other hydrogen bond accepting and donating groups specific to each base, 

both in the major and minor grooves of the helix. In the major groove, the C6 amino 

group of adenine or C4 amino group of cytosine can act as hydrogen bond donating 

groups while the adenine N7, thymine 04, guanine N7 and 06  can act as accepting 

groups. The thymine methyl is a hydrophobic site. In the minor groove, the adenine 

N3, thymine 02, guanine N3, and the cytosine 02 can act as hydrogen bond 

acceptors while the C2 amino group of guanine can act as a donating group. 

Therefore both grooves have potential hydrogen bond atoms that can be used as 

targets in the design of sequence specific DNA binding compounds (Turner and 

Denny, 2000). Selectivity of such binding sites will be discussed in section 1.5.

Mono-adduct
Interstrand crosslink

Groove bindingIntercalating

Intrastrand crosslink

DNA-protein crosslink

Figure 1.9 Modes of binding to DNA (Adapted from McHugh et al., 2001).
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1.5 Mechanism of Action of Alkylating Agents

1.5.1 Base selectivity o f  alkylating agents

Almost all biological molecules contain electron-rich nucleophilic sites that 

are potential targets for alkylation. Drug molecules that do not react with water or 

with thiols (which protect cells from alkylation-induced damage), can damage 

biological macromolecules such as proteins and nucleic acids. The alkylation targets 

for DNA-reactive compounds are the oxygen and nitrogen atoms in the DNA bases 

and in the phosphodiester bonds between the bases.

The most frequent alkylation sites for simple alkylating agents are the N7 

and 0 6  positions of guanine and the N3 position of adenine. Guanine N7 and 06  

sites lie in the major groove and adenine N3 is found in the minor groove of DNA. 

The fact that these sites are most frequently alkylated is explained by the calculation 

that the regions of guanine N7 and adenine N3 show the most negative potentials 

amongst the bases. Guanine N7 is also considerably more negative than adenine N3 

(Pullman and Pullman, 1981). Therefore, most simple alkylating agents bind to 

guanine N7. However, not every guanine is alkylated to the same extent because the 

negative electrostatic potential of guanine N7 is affected by its local sequence. For 

example, a guanine flanked by other guanine residues has a highly negative 

electrostatic potential and will preferentially undergo electrophilic attack, whilst a 

guanine flanked by cytosines is the least susceptible to alkylation as the overall 

electrostatic potential of the guanine is less negative. Therefore, guanine-rich 

regions of DNA are preferentially targeted by simple alkylating agents, such as 

mechlorethamine, that form highly electrophilic carbocation intermediates (Mattes 

et al., 1988). Figure 1.10 shows the main alkylation sites in the DNA base pairs.
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Figure 1.10 Alkylation sites in DNA base pairs. The regions with the most 
negative potentials are indicated in blue.

There are several types of alkylating agent and they are classified by the way 

they alkylate DNA. Table 1.3 shows a list of alkylating agents with their most 

cytotoxic lesions in DNA (Hartley, 2001; Middleton and Margison, 2003).

Class of agent Examples of drugs Mechanism
Cyclophosphamide, 
melphalan, chlorambucil, 
ifosfamide
ThioTEPA, mitomycin C

Bischloroethylamines

Aziridines

2-Chloroethyl Nitrosoureas 

Tetrazines

Alkyl alkanesulfonates 

Platinum compounds

BCNU, CCNU 

Dacarbazine, temozolomide 

Busulphan

Cisplatin, carboplatin, 
oxaliplatin

N7-G / N7-G’ interstrand 
crosslinking

N7-G or N2-G alkylation, 
N2-G / N2-G’ crosslinking 
06-G / Nl-C crosslinking

06-G methylation

N7-G / N7-G’ crosslinking

N7-G / N7-A intrastrand 
crosslinking
N7-G / N7-G’ intra- and 
inter- strand crosslinking

Table 1.3 Classes of alkylating agents and their principal toxic lesion in DNA 
(Adapted from Middleton and Margison, 2003)
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7.5.2 Reaction mechanisms of alkylating agents

Alkylating agents react covalently with nucleophiles by two types of 

chemical mechanism (Figure 1.11). The first is an SN1 reaction where the rate- 

limiting step involves a cation intermediate that then reacts rapidly with an electron- 

rich nucleophile {i.e. an amino, phosphate, sulfhydryl, or hydroxy group). The 

reaction rate is therefore dependent on the concentration of the alkylating agent. The 

second reaction is an SN2 reaction, where an intermediate transition state involves 

two species so that the attack of a nucleophile on the atom displaces the leaving 

group of the atom (Loudon, 1995).

Alkylating agents containing a single alkylating group are categorised as 

monofunctional. Agents such as nitrogen mustards are bifunctional alkylating agents 

as they contain two alkylating groups and hence have the ability to alkylate twice 

(Hartley, 2001).

+ Y~
RX ► R* + X “  — ----- ► RY + X "

Sul

RX + Y ~  ► [ X - - R - - - Y  ] -------- ► X “ + RY

Sn2

Figure 1.11 SN1 and SN2 reaction mechanisms.

152.1 Nitrogen mustards

Nitrogen mustards alkylate via a chloroethyl arm by an SN2 mechanism 

(Figure 1.12) that involves the formation of a highly reactive aziridinium cation by 

the loss of a chloride ion. This cation can then attack an electron-rich nucleophile.
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The same reaction may be repeated with the other chloroethyl arm of the agent 

attacking a second nucleophile (Boyer and Tannock, 1998; Hartley, 2001). In place 

of the methyl group present in mechlorethamine, melphalan and chlorambucil have 

aromatic substituents that act as electron withdrawing groups. These slow down the 

loss of chlorine atoms and subsequently the aziridinium cation forms less readily 

making the agents chemically less reactive. Such agents are therefore more stable 

and easier to handle and may be administered orally (Hartley, 2001).

Figure 1.12 Alkylation mechanism of nitrogen mustards.

Additionally, some nitrogen mustards are administered as prodrugs eg. 

cyclophosphamide (Colvin, 2001). Cyclophosphamide is metabolised by hepatic 

microsomal enzymes into 4-hydroxycyclophosphamide, which exists in equilibrium 

with its acyclic isomer aldophosphamide. 4-hydroxycyclophosphamide enters cells 

and spontaneously decomposes to form phosphoramide mustard and a by-product, 

acrolein. Alternatively, 4-hydroxycyclophosphamide is detoxified by aldehyde 

dehydrogenase to form nor-nitrogen mustard. It is now apparent that the route of

N uc

N
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activation is not via the originally proposed mechanism but it is in the liver where 

enzymes cause primary activation rather than within tumours. Figure 1.13 shows the 

metabolism of cyclophosphamide.

H

Cyclophosphamide

Microsomal oxidation 
(Cytochrome P450)

Enzymatic oxidation

(aldehyde oxidase)

4-hydroxycyclophosphamide

C l

Cl V \ c*.o
H

A ldophosphami de

Enzymatic oxidation

(aldehyde
dehydrogenase)

Cl

Cl

\
o
L.MH2
"C * ^ - s - s

Phosphoramide mustard Acrolein

4-ketocyclophosphamide

Iv^ V _ L nh2

Carboxyphosphamide

»
Nor-nitrogen mustard

Figure 1.13 Activation mechanism of cyclophosphamide (adapted from Hartley, 
2001).
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1 5 2 2  06-alkylating agents

This class of agents have a different mechanism of action from most 

bifunctional alkylating agents. The cytotoxicity of these agents is related to their 

ability to alkylate at the 0 6  position of guanine to produce 06-alkylguanine 

(Middleton and Margison, 2003). The 06-methylguanine lesion is highly mutagenic 

and is able to base pair with both C or T, misleading the mismatch repair system into 

unnecessary rounds of mismatch removal and subsequent reincoporation of the 

wrong base by repair replication (Hoeijmakers 2001).

Tetrazines such as Dacarbazine and Temozolomide also form 06- 

methylguanine via a diazonium ion intermediate that shows its biological effects 

only after DNA replication (Figure 1.14). This is because 06-methylguanine causes 

the incorrect incorporation of thymine into the newly synthesised strand during 

DNA replication. These mispairs are recognised by the postreplication mismatch 

repair (MMR) process, which eventually leads to apoptosis. MMR activity also 

causes DNA strand breaks, sister chromatid exchanges, and chromosomal 

aberrations. Hence, the cytotoxicity of the tetrazines depends on an intact MMR 

pathway, and therefore cells deficient in MMR are likely to be resistant to damage 

caused by DNA methylation. However, the resistance of tumour cells to methylating

06-alkylating agents is not entirely contributed by the loss of MMR activity, as 06- 

alkylguanine-DNA-alkyltransferase (ATase) is also an important factor. ATase 

recognises and removes alkyl adducts from potentially cytotoxic 06-alkylguanine 

lesions. The alkyl group is transferred to a cysteine residue within the active site of 

the enzyme. This stoichiometric reaction inactivates the protein, which is then
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ubiquitinated and digested by proteasomes (Ayi et al. 1992; Humbert et al., 1999; 

Middleton and Margison 2003).

Figure 1.14 Metabolic activation (dacarbazine) or spontaneous degradation 
(temozolomide) mechanisms leading to DNA damage by formation of 
06-guanine (Modified from Middleton and Margison, 2003).

The methylating agent, A-methyl-A’-nitro-A-nitrosoguanidine (MNNG) was 

originally found to be active in the mouse L1210 leukaemia in 1960 at the National 

Cancer Institute before a new drug A-methyl-A-nitrosourea was found to have better 

activity (Middleton and Margison 2003). Several chloroethylnitrosoureas were 

developed from this original structure because the substitution of a chloroethyl

Dacarbazine Temozolomide

Methyldiazonium ion

Guanine

O 6-met hy 1 guani ne
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group showed increased activity. They have proved effective against both solid and 

intracranially implanted tumours in animals (Schabel 1963). N, Ar’-bis(2- 

chloroethyl)-A-nitrosourea (carmustine), A-(2-chloroethyl)-A’-cyclohexyl-AT- 

nitrosourea (lomustine), and AT-(2-chloroethyl)-J/V’-(diethyl)ethylphosphonate-^V- 

nitrosourea (fotemustine) are some of the agents used clinically (Middleton and 

Margison 2003) (Figure 1.15).

Figure 1.15 Structures of W-methyl-A-nitrosourea and 06-alkylating agents in

Nitrosoureas decompose in aqueous solution to give various reactive 

compounds including isocyanates and diazonium ions, the latter being crucial to 

their cytotoxicity.

Chloroethylnitrosoureas cause the formation of crosslinks between guanine and 

cytosine residues on opposite strands of DNA. The chloroethyl group initially 

attacks the guanine 06  to form the (96-chloroethylguanine intermediate which can

A-methyl-A-nitrosurea

ch3ch2̂ S

Carmustine Fotemustine

common clinical use.
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cyclyse to become the 1 -06-ethanoguanine intermediate, which then reacts with the 

cytosine N3 to form the crosslink (Figure 1.16) (Tong et al., 1982).

Cytosine Guanine

L

NH

dR

1
06-chloroethylguanine

h 2n  n  ^
dR

1 -06-ethanooguanine

dR
h 2n

dR

1 -(3-cytosiny l)-2-( 1 -guanosinyl)-ethane

Figure 1.16 Mechanism of DNA interstrand crosslink formation after 
chloroethylation of guanine in DNA. dR: deoxyribose residue 
(Adapted from Middleton and Margison, 2003).
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1 .523  Cisplatin

Although cisplatin and its analogues are not alkylating agents per se, they 

form DNA adducts and there are several steps involved. The first step, which is the 

rate-limiting step for DNA binding, is the hydrolysis of a chloride ligand that takes 

place once the drug passes through the cell membrane, forming cis- 

[Pt(NH3)2Cl(H20)]+. The second step sees the aquated cisplatin binding to guanine 

N7 in DNA, displacing the cisplatin-water molecule in a relatively fast reaction step, 

forming a mono-adduct. This is followed by a third step where the formation of a 

bifunctional adduct occurs due to hydrolysis of the second chloride ligand, where 

the re-aquated cisplatin binds another purine N7 (Figure 1.17) (Jamieson and 

Lippard, 1999).

H s \  / H 3

o f  N a

HgNN y j H g  H gN^ ^ N l+ ]

c r  H f o  N di

r— 1 ■ ...............  i
f

H3\  J n h ]  Hs N NH3
"►  Ptf --------►

\-fo  o l  *T)NA^

4X
GSH proteins GSH proteins

nucleus
- .  ---------------------------------------------------y

cytoplasm

Figure 1.17 Intracellular chemistry of cisplatin (GSH = glutathione) (Adapted 
from Comess and Lippard, 1993).
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1.5.3 DNA crosslinks and cytotoxic effects o f alkylating agents

Alkylation of DNA bases is considered to be the major mechanism involved 

in the cytotoxicity of alkylating agents. This is mainly due to either the formation of 

crosslinks in DNA by bifunctional agents, or single-strand breaks or damaged bases 

resulting from monofunctional agents. Most of the alkylating agents in current 

clinical use are bifunctional. The crosslink formation requires an initial alkylation to 

form a monoadduct followed by a second alkylation, which is often slow. 

Additionally, not all monoadducts go on to form cross-links and in many cases, the 

ratio of monoadducts to crosslinks is at least 20:1 and often higher (Brendel and 

Ruhland 1984). Such monoadducts are considered to be mutagenic and/or 

carcinogenic. There are three possible types of crosslink involving DNA; crosslinks 

on the same strand of DNA (intrastrand), between the two strands of DNA 

(interstrand), or between a base on DNA and a reactive group on a protein (DNA- 

protein).

DNA interstrand crosslinks and DNA-protein crosslinks can be detected in 

mammalian cells at pharmacologically relevant doses of bifunctional alkylating 

agents by the technique of alkaline elution developed by Kohn (Kohn et al. 1981). 

DNA intrastrand crosslinks have been measured indirectly (Chun et al. 1969). 

Although it is difficult to quantitate directly intrastrand crosslinks, among the three 

modes of crosslink formation, interstrand crosslinks are considered to be the critical 

cytotoxic lesion. For example, nitrogen mustards generally show a good correlation 

between the extent of interstrand crosslinking and the cytotoxicity of the drug 

(O’Connor and Kohn 1990). In the case of melphalan, chlorambucil and benzoic 

acid mustard, although the order of chemical reactivity, based on hydrolysis rate, is
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chlorambucil > melphalan > benzoic acid mustard, the order of cytotoxicity against 

human tumour cells in vitro was found to be melphalan > chlorambucil > benzoic 

acid mustard. This is the same order as the interstrand crosslinking efficiency of the 

compounds in the cells, or in naked DNA (Sunters et al, 1993).

Cisplatin has been shown to produce several adducts with DNA that each 

cause a distortion of the DNA (Jamieson and Lippard, 1999; Judson and Kelland, 

2001). The most common adducts identified are 1,2-intrastrand crosslinks between 

two adjacent guanines (c/s-GG) (60 to 65 per cent) or between an adjacent adenine 

and guanine (cis-AG) (20 to 25 per cent). Other identified adducts include 1,3- 

intrastrand crosslinks involving non-adjacent purines (cis-GNG and cis-ANG), 

monofunctional adducts, DNA-protein crosslinks and G-G interstrand crosslinks. In 

all cases, platinum binds to the N7 atom of purine bases. Although there still 

remains debate as to which of the above adducts on DNA are most efficient for 

killing tumour cells, different studies have supported both the predominant 1,2- 

intrastrand crosslink adduct and the interstrand crosslink adduct (Judson and 

Kelland, 2001). Support for the predominant 1,2- intrastrand crosslink comes from 

findings that the much less cytotoxic trans-isomer of cisplatin cannot form these 

adducts because of steric hindrance. Also, these adducts are relatively stable on 

DNA compared with 1,3-intrastrand and monofunctional adducts (Judson and 

Kelland, 2001). The other theory supporting the importance of interstrand crosslinks 

has been shown by studies showing relationships between cell killing to numbers of, 

or repair of, interstrand crosslinks (Comess and Lippard, 1993).
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1.5.4 Cellular responses to alkylating agents

One way in which cells respond to DNA damage is by activating DNA repair 

systems. The repair of alkylation damage is complex and heterogeneous within the 

genome, and different repair mechanisms can apply to different DNA adducts 

formed by the same drug (Hartley, 2001). The exact mechanism that causes 

apoptosis in tumours is still not fully understood in detail but several experiments 

have shown that the expression of p53 is critical to apoptosis in response to DNA 

damage by alkylating agents (Guchelaar et al., 1997; Zhou and Elledge, 2000). The 

inability to activate apoptosis by the p53-dependent pathway confers to mutant p53- 

containing cells a mechanism of drug resistance, however, it is difficult to 

definitively link p53 mutations in tumours and clinical resistance to antitumour 

agents (Valkov and Sullivan, 2003). Interestingly, when the anti-apoptotic gene bcl- 

2 is expressed, decreased sensitivity to chemotherapeutic alkylating agents may be 

seen (Reed et al., 1994).

Monoadducts on DNA cause different types of structural alteration to DNA 

resulting in blocking of DNA polymerisation and base ring openings. DNA single 

strand breaks can occur via depurination and when they are not repaired correctly 

further damage, such as base deletions or the formation of DNA double strand 

breaks (DSBs) as the result of endonuclease attack, can be produced (Friedberg et 

al., 1995). If this is allowed to persist, it can cause chromosomal rearrangements. In 

vitro experiments have demonstrated that the bulky DNA monoadducts and 

unrepaired DNA crosslinks, in particular, inhibit DNA replication and transcription 

by blocking DNA and RNA polymerases (Hartley, 2001).
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Unrepaired DNA interstrand crosslinks (ICLs) are known to be among the 

most toxic forms of DNA damage. As well as ICLs, DSBs induce cell-cycle arrest to 

allow DNA repair and prevent genetic instability (Dronkert and Kanaar, 2001). If 

DSBs are unrepaired and persist, they can cause chromosome fragmentation, loss of 

translocation, and possibly carcinogenesis (Kanaar et al., 1998; Khanna and 

Jackson, 2001). Because most alkylating agents are not cell-cycle specific, both fast 

and slow growing cells can be killed, although it is generally rapidly proliferating 

cells that are more sensitive.

1JSA.1 DNA repair mechanisms

There are a number of important DNA damage repair pathways that 

commonly operate in mammals (Hoeijmakers, 2001). They include 1) nucleotide- 

excision repair (NER), 2) base-excision repair (BER), 3) mismatch repair (MMR), 

4) homologous recombination, 5) non-homologous end joining, 6) transcription- 

coupled repair (TCR) and 7) direct reversal of damage (e.g. 06-methylguanine 

methyltransferase).

BER deals with small chemical alterations of mismatched bases but does not 

necessarily obstruct transcription and replication. Its reaction is initiated by specific 

DNA glycosylases which excise the damaged base. NER is the most versatile in 

terms of lesion recognition and is commonly involved with repairing helix-distorting 

lesions that interfere with base pairing and generally obstruct transcription and 

normal replication. Lesions repaired by NER and BER affect only one DNA strand 

where a damaged lesion is removed and the resulting single-stranded gap is filled in 

using the intact complementary strand as template.
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Although the repair of DNA interstrand cross-links is not understood fully in 

mammalian cells, it is considered to require components of both nucleotide excision 

repair (in particular XPF and ERCC1) and homologous recombination (De Silva et 

al., 2000; McHugh et al., 2001). A first model of ICL repair in E.Coli was proposed 

by Cole (1973). Further models have since been reported in higher organisms, such 

as yeast and some mammals (McHugh et al., 2001).
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Figure 1.18 Proposed model of ICL repair in S-phase human cells. 1) DSB 
formation at stalled formation fork. 2) Unhooking mediated by XPF- 
ERCC1. 3) Gap resection and recombination. 4) Resolution of 
recombination. 5) Second excision and resynthesis. (Adapted from 
McHugh etal., 2001)
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Homologous recombination and non-homologous end joining processes 

repair DSBs. TCR focuses on DNA damage that blocks elongating RNA 

polymerases, and 06-methylguanine methyltransferase removes non-native methyl 

or higher alkyl groups, such as chloroethyl, from guanine residues and transfers 

them from DNA to an internal cysteine of the enzyme. MMR removes nucleotides 

mispaired by DNA polymerases and insertion/deletion loops (ranging from one to 

ten or more bases) that result from slippage during replication of repetitive 

sequences, during recombination or by DNA damage.

A model for the repair of ICLs relevant to S-phase human cells has been 

proposed (Figure 1.18) (McHugh et al., 2001). In proliferating cells, one of the 

consequences of ICL DNA damage is the formation of DSB. DSB formation may be 

caused during DNA replication and synthesis by a stalled replication fork. This 

formation of DSBs initiates the DSB repair mechanism. The first step is a NER- 

dependent dual incision reaction. The NER endonuclease heterodimer, ERCC1- 

XPF, leads to the ‘unhooking’ of the crosslink (De Silva et al., 2000). Further 

nucleolytic processing may provide a gap for strand invasion, which is the initial 

step for homologous recombination (McHugh et al., 2001). This allows a template 

to replace the excision patch by homologous recombination repair, and resolution of 

recombination. A second excision reaction could then occur removing the 

crosslinked complementary strand. Finally the repair is completed by gap filling and 

ligation.
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1.6 Molecular Recognition of DNA by Small Molecules

It has been recognised that numerous synthetic and natural products that 

affect DNA chemically or structurally have precise functions determined by their 

mode of binding. This observation has driven recent interest in understanding the 

association of small molecules with duplex DNA. Such small molecules include 

intercalators, non-covalent and covalent major / minor groove binders.

Intercalators are noncovalent DNA binding agents. They bind by inserting a 

planar aromatic chromophore between adjacent DNA base pairs (Chaires, 1998). 

Such compounds are hydrophobic and effectively fill the space between base pairs 

formed when the helix is locally elongated and partially unwound. The interaction 

between intercalators and adjacent base pairs is primarily through van der Waals 

interactions and electrostatic stabilisation. Therefore, it is considered that polarisable 

compounds intercalate preferentially at GC rich regions as their dipole moment is 

greater than that of AT rich regions (Reynisson et al., 2003). Daunorubicin 

(Daunomycin) and doxorubicin (Adriamycin) are anthracycline antibiotics, which 

are among the most potent and clinically useful agents used in chemotherapy 

(section 1.2.3). Extensive studies of daunorubicin and its DNA interaction have 

become a foundation for the rational design of new anthracyclines targeted toward 

DNA (Chaires, et al., 1997).

Drugs such as cisplatin, chlorambucil and melphalan that are important 

clinical anticancer agents, induce interstrand crosslinks in the major groove of 

duplex DNA. Further research to find better agents that act by this mode of action 

still continues. Azinomycins (Figure 1.19) are natural products that fall into this 

group. Azinomycins are potent antiumour antibiotics that are able to form
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interstrand crosslinks between N7 of purines at 5-GXC or 5 ’-GXT sequences 

(Armstrong et al., 1992). However, due to the lack of stability and poor 

bioavailability, the natural products are unlikely to progress as therapeutic agents 

(Coleman et al., 2002). Therefore, extensive research has been focused on the 

design, synthesis and evaluation of novel analogous compounds that may potentially 

be more useful in clinical use (Casely-Hayford et al., 2005; LePla et al, 2005; 

Alcaro et al. 2005).

Figure 1.19 Structures of azinomycins.

Sequence-selective triple helix formation that occurs in the major groove is 

another approach. Triple-helix forming oligonucleotides (TFOs) bind as third 

strands to duplex DNA to form triplex DNA in a sequence specific manner (Figure 

1.20) (Frank-Kamenetskii and Mirkin, 1995). Triplex DNA contains the third strand 

in the major groove of duplex DNA containing polypurine / polypyrimidine tracts, 

and is stabilised by two Hoogsteen hydrogen bonds between the third strand bases 

and the purines in the duplex (Radhakrishnan and Patel, 1994; Fossella et al., 1993). 

The third strand may consist of pyrimidines (parallel triplex), or purines (antiparallel 

triplex), depending on the nature of the target sequences (Seidman and Glazer,

MeO

HO
Azmomycin A: X = CH2 
Azinomycin B: X = C=CHOH
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2003). In the pyrimidine motif, a homopyrimidine oligonucleotide binds in a 

direction parallel to the purine strand in the duplex with canonical base triplets of T- 

A:T and C-G:C. In the alternate purine motif, a homopurine strand binds antiparallel 

to the purine strand with base triplets of A-A:T and G-G:C (Letai, et al., 1988). Due 

to their stable binding characteristics and sequence specificity, TFOs have vast 

potential in gene modification, such as inhibition of gene expression, inhibition of 

replication, and induction of site-specific mutagenesis (Nagatsugi and Sasaki, 2004).

Triplex-forming

Figure 1.20 A diagram of a DNA triple helix with the third strand binding in the 
major groove (adapted from Seidman and Glazer, 2003).
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However, a number of cellular barriers still limit the ability of TFOs to 

inhibit target gene expression in living cells. These barriers include removal of the 

TFO by the DNA repair machinery or by DNA helicases (Brosh et al., 2001; 

Ziemba et al., 2003), insufficient nuclear accumulation and limited accessibility of 

the target site (Carbone et al., 2004). To overcome these problems DNA-interacting 

agents have been conjugated to TFOs so that it would potentially improve the 

stability of triplex formation within cells (Kutyavin et al., 1993; Zhilina et al.,

2004). These DNA-reactive agents include minor groove binders such as 

pyrrolobenzodiazepines (PBDs) (Zhilina et al., 2004) and intercalating agents such 

as daunomycin (Carbone et al., 2004).

Another approach using oligonucleotides is that of antisense 

oligonucleotides (ASOs) which target RNA. Antisense therapeutics have evolved 

significantly since they were first demonstrated in 1977. ASOs are now being 

widely evaluated for the treatment of many diseases including genetic disorders, 

hypertension and cardiovascular disease, and the development of ASOs remains an 

attractive strategy in cancer medicine since many critical targets driving cancer 

growth are difficult to target by small molecules or antibodies (Vidal et al., 2005). 

There are several antisense drugs that have been selected for clinical trials, eg. 

Genasense (G3139) that targets the BCL-2 gene (Kurreck, 2003).

ASOs are single strands of short deoxynucleotide sequence (usually around 

18-20 oligomers) that cause targeted transcript destruction by binding to the mRNA 

of a particular gene by Watson-Crick hybridisation. Once the oligonucleotide binds 

to the target RNA, multiple mechanisms can be exploited to inhibit the function of
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the RNA. Following the destruction of its mRNA, transcription of the corresponding 

protein cannot occur, resulting in cells becoming depleted of that protein (Crooke, 

1999; 2000). The best characterised antisense mechanism results in activation of 

endogenous cellular mucleases, such as RNase H, which are deployed to cleave the 

RNA and release the specific oligonucleotide (Dean and Bennett, 2003).

The important mechanisms for gene regulation include small double stranded 

RNA molecules that induce RNA degradation via a natural gene-silencing process 

called RNA interference (RNAi) (Meister and Tuschl, 2004). RNAi has become the 

most widely used approach for gene knockdown because of its potency (Dallas and 

Vlassov, 2006). Some ASOs exhibit non-catalytic antisense effects, such as the 

occupancy of target RNA causing translational arrest or the modulation of RNA 

splicing (Crooke, 1999).

Some of the major challenges for using ASOs in vivo are poor cellular 

uptake and delivery. Advances to improve stability and cellular uptake of ASOs 

have been made by covalent attachment or complexing with natural cell-penetrating 

peptide sequences (Pardridge and Boado, 1991; Oehlke et al., 2002)

Amongst the antitumour agents, minor groove binders have recently become 

one of the most widely studied classes. Increased interest in this group of 

compounds stems from their ability to interact in a sequence-selective fashion with 

relatively long stretches of DNA, and to discriminate binding sites that have 

mutations (Dervan, 1986). Minor groove binding often causes only small changes in 

DNA conformation, and DNA remains essentially in the native form (Neidle, 2001).
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1.6.1 Non-covalent minor groove binders

1.6.1.1 Netropsin and distamycin

Netropsin and its close relative distamycin are antiviral antitumour 

antibiotics isolated from Streptomyces species (Figure 1.21). Distamycin differs 

from netropsin by having an extra pyrrole ring and only one cationic guanidinium 

group.

CH3 o

CH, ONetropsin

c h 3

Distamycin

Figure 1.21 Structures of the natural products, netropsin and distamycin.

Although they are not used clinically, they have both been used as paradigms 

for extensive studies of base-specific, non-intercalative DNA-binding molecules. 

They interfere with both replication and transcription of DNA by binding tightly to 

DNA (Kopka et al. 1985a, b). They can bind reversibly within the minor groove of 

B-form DNA via van der Waals reactions with the groove walls and via hydrogen 

bonding to base groups such as the exposed adenine N3 and thymine 02  (Coll et al.y
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1987). It was originally discovered that these molecules bind DNA with a preference 

for AT-rich sequences (Kopka et al. 1985a). Furthermore, the DNA binding affinity 

is higher at continuous runs of A or T rather than alternating A/T sequences (Marky 

and Breslauer, 1987). The minor groove of B-DNA in AT-rich regions, being 

narrow, allows the drug molecule to sit squarely in the centre of the groove, with 

each of its pyrrole rings approximately parallel to the walls of the groove.

NMR study showed that distamycin could bind to DNA as a 1:1 or 2:1 

complex within the minor groove (Pelton and Wemmer, 1989). The 2:1 complex 

requires higher concentration of the drug and it is where the two molecules fit 

antiparallel within the minor groove. However, netropsin favoured a 1:1 complex 

and did not form a 2:1 complex, this may be due to the positive charges at both ends 

of the molecule. Figure 1.22 shows models for 1:1 netropsin-DNA and 2:1 

distamycin-DNA complexes.

In the case of netropsin, the two cationic ends of the drug are centred at the 

bottom of the minor groove each associated with an adenine N3 on the outer-most 

base pair of four. Additionally, an extensive set of hydrogen bonds to base edges at 

the bottom of the minor groove provides selectivity for AT-rich sequences (Neidle 

2001). The nitrogen atom of each amide group points into the groove, and each 

participates in a bifurcated arrangement with two consecutive AT base pairs (Neidle

2001).
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Figure 1.22 Structures for 1:1 netropsin-DNA complex (A) and 2:1 distamycin- 
DNA complex (B) (Taken from Dervan, 2001).

The discovery of base recognition by netropsin and distamycin has led to 

further research to discover molecules that can recognise the four base pairs of 

DNA. From such compounds it should be potentially possible to rationally design 

molecules that have sequence selectivity. Such compounds will be discussed in 

Section 1.8.

1,6.12 Hoechst 33258

Hoechst 33258 (Figure 1.23) is a bisbenzimidazole in which two 

benzimidazoles are linked head to tail and is similar to netropsin and distamycin in 

terms of the crescent shape and positioning of hydrogen bond donating groups 

(Reddy et al., 1999). It has showed some antitumour activity but is not generally 

used clinically due to its toxicity. It is primarily used as a fluorescent DNA stain 

(Neidle, 2001). It is readily taken into cells (Bontemps et al., 1975) and binds to
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DNA extremely tightly (Loontiens et al., 1990). The mechanism of cytotoxicity is 

not known, those suggested include inhibition of topoisomerase (Chen et al., 1993) 

and DNA helicase (Soderlind et al., 1999). Hoechst 33258 has been shown to have a 

strong preference for AT-rich sequences with a binding site size of 4-5 base pairs 

(Harshman and Dervan, 1985). X-ray crystallographic studies of Hoechst 33258 

located in the central AATT region of the minor groove have shown that a general 

preference for AT regions is conferred by electrostatic charge within the minor 

groove and by narrowing of the walls of the groove (Quinta et al., 1991). Also the 

binding preference for AT base pairs by the drug is the result of the close contact 

between the Hoechst molecule and the C2 hydrogen atoms of adenine. The nature of 

these contacts precludes the binding of the drug to GC pairs due to the presence of 

the 2-NH2 groups of guanines in the minor groove.

Figure 1.23 Structure of Hoechst 33258
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1.6.13 Diarylamidines

This group of compounds (Figure 1.24) are known to be effective as 

antiparasitic agents, and a large number of derivatives have been synthesised.

DAPI is a strong trypanocide but its clinical use has been limited due to its 

undesireable side effects. Hence, DAPI has become used mainly as a DNA probe or 

a staining agent since it causes fluorescence upon binding to DNA (Reddy et al., 

1999). A series of studies concluded that DAPI binds strongly to AT-rich sequences 

in the minor groove of DNA, and preferentially at three or four consecutive AT base 

pairs.

NH

NH

DAPI Berenil

Figure 1.24 Structures of diarylamidines.

Berenil is an aromatic diamidine and is an antitrypanosomal agent. It has 

charged terminal amino groups and hence the possibility of electrostatic and 

hydrogen bonding interactions with DNA was suggested (Portugal & Waring,

1987). Also, as berenil-DNA complexes are stable in high ionic-strength solutions, 

other types of binding may be involved. Berenil binds preferentially to AT-rich 

DNA sequences, where the binding site is a three base pair sequence (ATT) in the 

5’-PuPuATTPy-3’ sequence (Yoshida et al., 1990).
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1.6.2 Covalent minor groove binders 

1.62.1 CC-1065 and analogous agents

Cyclopropyl group
NH

OCH,A -rin g
C-ring

B-ring

Figure 1.25 Structure of (+)-CC-1065

CC-1065 (Figure 1.25) is an antitumour antibiotic first isolated from 

Streptomyces Zelenis (Hanka et al., 1978; Reynolds et al., 1985), and is one of the 

most potent antitumour agents known. It consists of three indole units. The A-ring 

cyclopropylindole (CPI) subunit alkylates DNA, and the other subunits enhance the 

DNA-binding affinity and selectivity (Wang, et al., 2003). It was found to exert its 

biological activity through selective alkylation of adenine N3 in the minor groove of 

B-form DNA. The N3-adenine-CC-1065 adduct was isolated and identified by NMR 

studies, and also X-ray crystallographic studies. Both showed that CC-1065 has a 

right-handed twist that can snugly fit into the DNA minor groove (Hurley et al., 

1984; Needham-VanDevanter et al., 1984). The drug inhibits gene transcription by 

interfering with binding of the TATA box binding protein to its target DNA (Chiang 

et al., 1994). Molecular modelling studies predict CC-1065 to span about five base 

pairs. The molecule was shown to have sequence specificity for 5’-AAAAA and 5’-
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PuNTTA (alkylated bases are underlined) (Reynolds et al., 1985). However, CC- 

1065 is too toxic to be used clinically as it causes delayed death in mice (McGovren 

et al., 1984). Therefore various analogues with an improved therapeutic index have 

been synthesised and evaluated. They include adozelesin, bizelesin and carzelesin 

(Figure 1.26), which all have highly effective antitumour activity in vivo and have 

under gone clinical trials (Bhuyan et al., 1992a, b; Li et al., 1991, 1992; Carter et 

al., 1996; Baraldi et al., 2001).

Carzelesin

Adozelesin

His

H (
Bizelesin

Figure 1.26 Structures of CPI analogues of CC-1065.
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Bizelesin is a bifunctional alkylating agent, which shows more antitumour 

efficacy both in vitro and in vivo, and is generally 20- to 30- fold more toxic than the 

monofunctional adozelesin (D’Incalci and Sessa, 1997). Bizelesin produces 

interstrand crosslinks between two N3 groups of adenines, spanning six to seven 

base pairs (Sun and Hurley, 1993), and was also found to produce region-specific 

damage to AT islands in tumour cells. Region-specific targeting implies not only the 

ability to damage a desired critical target that may have distinct structural and/or 

functional properties, but also could potentially cause limited collateral damage 

elsewhere in the genome (Woynarowski, 2002).

1.62.2 Duocarmycins

>Me'Me

'MeMe

(+)-duocarmycin A (+)-duocarmycm SA

iMe

'Me

KW-2189

Figure 1.27 Structures of natural products duocarmycins and a synthetic 
derivative, KW-2189.
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(+)-duocarmycin A and (+)-duocarmycin SA (Figure 1.27) are also 

exceptionally potent antitumour antibiotics that derive their biological effects 

through a reversible, stereochemically controlled sequence selective adenine N3 

alkylation of DNA (Asai et al., 1994). The alkylation occurs at the least substituted 

carbon of the activated cyclopropane (Boger et al.y 1994). Duocarmycins show high 

sequence selectivity for AT-regions with preferred sequences constituted by three 

base pairs in the order of 5’-AAA > 5’-TTA > 5’-TAA > 5’-ATA (alkylated bases 

are underlined) (Boger and Johnson, 1995). Boger and coworkers have studied a 

series of natural and unnatural agents that contained structural modifications in the 

alkylation subunit, and established the steric and electronic factors influencing the 

reactivity (Boger et al., 1997; 2001). This has led to extensive investigation on a 

series of heterocyclic analogues of duocarmycins that showed increased biological 

activity in some cases. These compounds include KW-2189, which showed 

improved antitumour activity and better water solubility than the parent compound. 

KW-2189 was selected for clinical trials (Kobayashi et al., 1994; Alberts et al., 

1998). However, the lack of significant antitumor activity of KW-2189 and its 

associated toxicity suggested that further testing is not warranted (Markovic et al.,

2002).

1 .633  Mitomycin C

As described in Section 1.2.3, mitomycin C belongs to a class of potent 

antitumour antibiotics. Mitomycin C requires reductive activation in cells and it 

covalently binds to N7 and N2 of guanine in the major and minor grooves of DNA, 

respectively. It forms either monoadducts or crosslinks (Tomasz et al., 1987; Basu et
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a/., 1993). Interstrand crosslink selectively occurs at a 5’-CG-3’ sequence and 

intrastrand crosslinking at a 5 ’-GG-3’ sequence (Warren and Hamilton, 2001). 

Interstrand crosslinks constitute 5-13% of all adducts (Warren et al., 1998). While 

the interstrand crosslinking does not cause significant perturbation in the DNA 

(Tomasz et al., 1995), intrastrand crosslinks result in distortion (Kumar et al., 1992).

1.62.4 Distamycin and netropsin analogues

Tallimustine (Figure 1.28) is a benzoyl nitrogen mustard derivative of 

distamycin A, and shows high sequence specificity for alkylation to some AT-rich 

sequences, in particular 5’-TTTTGA sequence. This represents the highest sequence 

specific interaction observed for a small molecule interacting with DNA. Although 

it has a benzoyl nitrogen mustard group, tallimustine showed alkylation at adenine- 

N3 in the minor groove, instead of producing guanine-N7 alkylation, and binding 

was found to 5’-TTTTGA-3’ (alkylated base is underlined) (Broggini et al., 1995). 

Tallimustine has progressed into clinical trial (Cozzi, 2003).

(CCHzCHgJsN

Figure 1.28 Structure of Tallimustine



1.62.5 Pyrrolo [2J-c][l,4] benzodiazepines (PBDs)

Re

Anthramycin: R8=CH3, R9=R1=R2=H  
Mazethramycin: R8=Ri=CH3, R9=R2=H 
Porothramycin B: Rg=H, R9=R ,=R 2=CH3

Tomaymycin: R7=CH30 ,  Rg=OH, R=CH3 
Prothracarcin: R7=Rs=H, R=CH3 
Sibanomicin: R8=H, R7=sibirosamine pyranoside 

as in Sibiromycin, R=Et

HO

C H 3

HO,

Sibiromycin

H ^?C H 3

O / VR3' R3
Neothramycin A: R3=H, R3.=OH  

B: R3=OH, R3.=H 
D C -81: R3=R3 =H

O
Chicamycin A

Abbeymycin

Figure 1.29 Structures of members of the PBD family

The pyrrolo [2,l-c](l,4] benzodiazepines (PBDs) (Figure 1.29) are a family 

of naturally occurring antitumour antibiotics produced by various Streptomyces 

species and their precise mode of interaction with DNA has been extensively 

studied. The first member of the family was discovered in 1965 when Leimgruber

78



and co-workers isolated anthramycin from Streptomyces refuineus (Leimgruber et 

al., 1965a,b). Other members of the family include abbeymycin (Hochlowski et al.,

1987), chicamycin (Konishi et al., 1984), DC-81 (Japanese Patent, 1983; Thurston 

et al., 1990; Bose et al., 1992a), mazethramycin (Kunimoto et al., 1980), 

neothramycins A and B (Takeuchi et al., 1976), porothramycin (Tsunakawa et al.,

1988), prothracarcin (Shimizu et al., 1982), sibanomicin (DC-102) (Hara et al., 

1988; Itoh et al., 1988), sibiromycin (Leber et al., 1988) and tomaymycin (Arima et 

al., 1972). The PBDs will be described in more detail in the next section.

1.6.3 Antitumour activity o f the PBDs

Many members of the PBD family such as anthramycin, neothramycins A 

and B, sibiromycin and tomaymycin have significant cytotoxicity in vitro and have 

been used experimentally in the treatment of cancer. For example, anthramycin 

shows antitumour activity against a wide range of transplanted tumours (Grunberg et 

al., 1966; Nishioka et al., 1972; Brazhnikova et al., 1972; Takeuchi, 1976). 

Anthramycin, sibiromycin and neothramycin have all reached various stages of 

clinical trials, but have failed due to their dose-limiting cardiotoxicity, and in the 

case of anthramycin and sibiromycin, tissue necrosis at the site of injection. 

Neothramycins A and B, although showing no cardiotoxicity, lacked efficacy 

(Hurley, 1977; Thurston and Bose, 1994).

1.6.4 Structure and mechanism of action of PBDs

The different PBD molecules vary in the number, type and position of 

substituents on both the aromatic A ring and the pyrrolo C ring (Figure 1.30). The C

79



ring can also have a degree of saturation that can be either fully saturated or 

unsaturated at either C2-C3 (endocyclic) or C2 (exocyclic).

Figure 1.30 The PBD ring system.

The potent activity of PBDs is considered to be due to the possession of either an 

amine or a carbinolamine methyl ether at the N10-C11 position that acts as an 

electrophilic centre in the DNA alkylation reaction (Lown and Joshua, 1979). This 

N10-C11 moiety may exist, depending on the structure of the compound and the 

method of isolation or synthetic work-up, in the hydrated carbinolamine or 

carbinolamine methyl ether form (Figure 1.31). For example, DC-81 and 

anthramycin exist in the imine form and carbinolamine methyl ether form as solids 

or oils, respectively (Thurston, 1993). The carbinolamine form is rarely isolated 

(Leimgruber et al., 1965b) although NMR experiments show that it exists when 

dissolved in aqueous solution (Miyamoto et al., 1977).

All of the natural compounds are able to produce a snug fit when binding 

into the minor groove of B-form DNA without detectable distortion of the DNA 

because of their (S)-configuration at the chiral C l la  position. This gives the 

molecule a right-handed twist and a three dimensional shape for isohelicity when 

viewed from the C-ring towards the A-ring (Hurley and Petrusek, 1979). 

Stereochemistry at the Cl la position of the PBDs influences their DNA binding
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affinity and biological activity. A synthetic PBD with (R)-configuration at Cl la  has 

been found to lack both DNA binding affinity and in vitro cytotoxicity. In this case, 

DC-81 with (R)-configuration showed no binding to DNA whereas the (S)-isomer 

showed significant binding and biological activity (Hurley et al., 1988).

MeOH

Me OH
O O

Figure 1.31 Three interconvertible forms of a PBD molecule.

With all PBD compounds, the biological potency is generally attributed to 

their ability to bond covalently to DNA (Kohn, et al., 1974; Petrusek, et al., 1981). 

PBD molecules have shown specificity towards guanine in double stranded DNA, 

and do not show any reaction with RNA or protein (Kohn and Spears, 1970; Hurley 

et al., 1977). These early studies examined the formation of anthramycin-DNA 

adducts by using indirect techniques such as UV spectroscopy, thermal denaturation, 

dialysis, gel filtration and alcohol precipitation, but later the employment of 

fluorescence spectroscopy (Maruyama et al., 1981; Barkley et al., 1986, 1991; 

Cheatham et al., 1988; Boyd et al., 1990b), high-field NMR (Graves et al., 1984,
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1985; Cheatham et al., 1988; Krugh et al., 1989; Boyd et al., 1990a, b) and 

molecular modelling (Barkley et al., 1986, 1991; Rao et al., 1986; Remers et al., 

1986; Zakrzewaka and Pullman, 1986; Cheatham et al., 1988; Boyd et al., 1990a, b; 

Rao and Remers, 1990) has led to a more detailed analysis. NMR experiments 

confirmed the mechanism of covalent adduct formation (Graves et al., 1984). In this 

case, the PBD molecule interacts with DNA through the formation of an aminal 

bond by nucleophilic attack of the guanine N2 at the electrophilic C ll  position 

(Barkley et al., 1986; Hurley et al., 1988). The proposed mechanism of action of the 

PBDs is shown in Figure 1.32.

The PBD molecules have been shown to inhibit the cleavage activity of 

restriction endonuclease Bam HI with the recognition sequence of 5’-GGATCC-3’ 

(Puvvada et al., 1993) as well as bacteriophage T7 RNA polymerase transcription 

(Puvvada et al., 1997).

DNA
HN

NH
DNAR

Figure 1.32 Mechanism of formation of an aminal bond between a PBD molecule 
and the N2 position of guanine.
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1.6.5 Sequence selectivity o f  PBDs

From the numerous NMR studies on the PBD-DNA adducts, anthramycin 

was found to bind exclusively with C l l  in the (^-configuration, and with a 

preference for orientation of the aromatic A ring towards the 3’ end of the strand to 

which the drug is bonded (S3’ adduct) (Thurston, 1993). This was supported by 

molecular modelling suggesting that the S3’ adduct is more energetically favourable 

than S5’. It was also demonstrated by footprinting experiments that the preferred 

binding sequence is 5 ’-PuGPu over 5’-PyGPu ~ 5’-PuGPy > 5’-PyGPy (where Pu = 

purine and Py = pyrimidine) (Hertzberg et al., 1986; Hurley et al., 1988), and for a 

5 ’-GGG sequence S5’ and (R)-adducts are highly disfavourable over S3’ adducts 

(Zakrzewska and Pullman, 1986). Another study that supported the sequence 

preference is a concentration-dependent inhibitory effect of the PBDs on in vitro 

transcription. This study aimed to identify the DNA sequences that may be 

responsible for blockage of transcription (Puvvada et al., 1997). The results 

demonstrated that the PBD-DNA adducts formed primarily at 5’-AGA sequences on 

the transcribed strand resulted in the transcription blockage.

However, other molecular modelling studies on tomaymycin and 

neothramycin did not support the sequence preference for 5’-PuGPu although all 

agree that the S3’ adduct is the most energetically favoured regardless of the 

sequence (Boyd, 1990b; Rao and Remers, 1990). This led to further studies to 

elucidate the relationship between the individual structure of the drug and its 

influence on the binding site sequence. In order to investigate the non-covalent 

interaction of PBD molecule with DNA, Thurston and co-workers studied a series of 

pyrrolo[l,2-c][l,4]benzodiazepine-5,10-diones (dilactams) (Figure 1.33) that do not
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have the N10-C11 imine moiety (or its equivalent) responsible for covalent bonding 

as described above (Jones et al., 1990). Only two compounds out of 15 dilactams 

showed any significant binding to DNA.

Figure 1.33 Example of a dilactam molecule.

From these results it was concluded that the C2-OH and the A-ring 

substituents are important in the binding process and that, apart from the N10-C11 

carbinolamine moiety, other features such as the A- and C-ring substituents only 

participate in non-covalent interactions with DNA bases. One of the compounds in 

which the C8-OH was replaced by a benzyl substituent did not show any binding. 

This indicated that either the proton of C8-OH may be involved in a hydrogen bond 

or that any bulky substituent placed here may cause an undesireable steric hindrance 

for binding. Similarly, free-hydroxy groups at C2- and C8- positions are also 

required for binding. A further requirement is the (/^-configuration at C2 because it 

is able to stabilise the hydroxy group hydrogen bonding.

1.6.6 Structure-activity relationship (SAR) o f PBD molecules

Based on previously published reviews and data, the most significant 

structure-activity information on PBD molecules has been summarised.

O
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1 An imine, carbinolamine or carbinolamine methyl ether at N10-C11 position is 

essential for biological activity (Thurston and Hurley, 1983). However, there are 

compounds without this moiety that show biological activity (e.g., dilactams) 

possibly due to a completely different mechanism of action, and metabolism 

could be also involved (Jones et al., 1990).

2 (S)-configuration at Cl la is required to give the molecule the correct three- 

dimensional shape to snug fit into the minor groove of DNA (Hurley et al.,

1988).

3 Endocyclic or exocyclic unsaturation at C2 enhances DNA binding affinity, 

cytotoxicity and in vivo antitumour activity. A fully saturated C-ring leads to 

complete loss of DNA-binding and cytotoxicity (Hurley et al., 1988).

4 Only small substituents, such as a hydroxy group at the C3 position of 

neothramycin, are tolerated to retain DNA-binding affinity, cytotoxicity and in 

vivo activity (Thurston 1993).

5 The sugar moiety at C7 of sibiromycin appears to enhance DNA-binding affinity 

compared to similar structure compounds without the sugar moiety (such as 

anthramycin) (Thurston 1993).

6 Electron donating substituents on the A-ring influence DNA binding affinity and 

cytotoxicity, although they are not a prerequisite for DNA binding (Hurley et al.,

1988). Additionally, the C7-methoxy / C8-hydroxy pattern of substituents show 

optimal fit into the DNA minor groove due to flexibility within the compounds 

(Thurston 1993).

7 Bulky substituents at N10 inhibit binding to DNA and abolish biological activity 

(Thurston and Hurley, 1983).
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1.7 Development of Novel DNA Interacting Agents

The knowledge of the pathophysiology of different forms of cancer at the 

molecular level (i.e., cell signalling, cell-cycle regulation, apoptosis, telomere 

biology and angiogenesis) has grown considerably over the past 20 years and 

continues to do so at an ever-increasing rate (Hanahan and Weinberg, 2000). As a 

result of this, the approach to drug development has recently been shifted from the 

employment of random screening methods to a target-based approach in order to 

develop drugs that specifically block the pathogenic mechanisms which account for 

malignant transformation with the aim of producing an improved efficacy, reduction 

of toxicides and prevention of drug resistance (Fox et al, 2002; Gibbs, 2000).

1.7.1 DNA as a target o f small molecules

Through improved understanding of established DNA-binding agents, a 

large number of novel compounds with higher sequence selectivity and DNA 

binding affinity have been synthesised (Chaires, 1998).

1.7.1.1 Base recognition of small molecules

As mentioned in Section 1.6, the discovery of the base recognition ability in 

netropsin and distamycin led researchers to explore analogues in an attempt to alter 

the A/T binding specificity of these compounds (Dervan, 2001). Distamycin has 

three pyrrole (Py) rings linked by carboxyamides, of which the amines point toward 

the minor groove floor of the DNA making hydrogen bonds with the AT and TA 

base pairs (N3 of A and 02  of T) as 1:1 and 2:1 ligand-DNA complexes (Kopka et 

al., 1985; Pelton and Wemmer, 1989).
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Lexitropsins are analogues of netropsin and distamycin that were synthesised 

and evaluated in order to achieve added recognition of G/C base pairs. Modification 

of netropsin or distamycin by replacing a pyrrole ring with N-methylimidazole gives 

the potential to recognise the exocyclic N2 atom of guanine in the minor groove 

(Kopka et al., 1985). A series of lexitropsins were synthesised containing imidazoles 

(Lown, et al., 1986; Krowicki & Lown, 1987), thiazoles (Rao et al., 1990), furans 

(Lee et al., 1989), and triazoles (Rao et al., 1991). Figure 1.34 shows the model of a 

lexitropsin in comparison with netropsin.

Figure 1.34 Models for netropsin recognising AT base pairs (A) and a lexitropsin 
containing an imidazole in place of a pyrrole to give added 
recognition of G/C base pairs (B) (taken from Dervan, 2001).

A

♦ '

B
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The novel polyamide ImPyPy when one of the pyrrole (Py) is replaced with 

imidazole (1m), has been shown to bind to the sequence of 5’-(W)G(W)C(W)-3’ 

(where W=A or T) instead of the 5’-WGWWW-3’ sequence, which would be 

expected for a 1:1 polyamide-DNA complex (Dervan, 2001). In addition, in terms of 

the formation of a 2:1 polyamide-DNA complex (Figure 1.35), it was subsequently 

rationalised, and verified by NMR (Mrksich et al., 1992), that ImPyPy can bind as 

an antiparallel dimer with pairs of Im/Py recognising G*C, Py/Im recognising OG 

and Py/Py recognising A»T or T*A (Wade et al., 1992). This discovery gave a new 

paradigm of unsymmetrical ring pairs for the specific recognition of the DNA minor 

groove (Dervan and Edelson, 2003).

Py / Im targets O G
NH

Py / Py targets A*T and T*A

I m/ Py  targetsG*C

5*-T G T C A -3 '
• O C X *zoom

y - A  C A G A -5 '

Figure 1.35 Model for antiparallel dimer ImPyPy binding 5’-TGTCA-3\ 
Unsymmetrical pair Im/Py distinguishes GC from CG and both from 
AT and TA (taken from Dervan, 2001).
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Extensive studies on the Im/Py pair have confirmed the existence of a 

hydrogen bond between the Im nitrogen and the exocyclic amine of G. Also, 

energetic preference for a linear hydrogen bond, coupled with the unfavourable 

angle to an Im over the cytosine side of the base pair, provides a basis for the ability 

of an Im/Py pair to discriminate specifically G*C from O G  (Kielkopf et al.y 1998a).

Furthermore, the /V-methyl-3-hydroxypyrrole (Hp) monomer was designed 

as a thymine-selective recognition element when paired across from Py (White et 

al., 1998). High-resolution crystallographic data has determined two different Hp- 

containing polyamides as 2:1 complexes with DNA (Kielkopf et al. 1998b; 2000). 

Hp was chosen for reasons of size and the possibility to form two hydrogen bonds 

between the hydroxyl and the 02  of T, along with shape-selective recognition of an 

asymmetric cleft between the 02  of T and C2 of A. Indeed, Hp/Py disfavours A 

over T due to steric destabilisation against A, also Hp-OH tightly fits the cleft 

formed between the 02  of T and C2 of A. Hp polyamides have lower binding 

affinity than their Py counterparts (White et al., 1998), but the structural basis of the 

difference remains to be found. One recent suggestion is that desolvation of the 

hydroxyl group upon insertion into the minor groove accounts for the energetic 

penalty (Wellenzohn et al., 2003). This nevertheless resulted in success for 

completing the recognition of all four base pairs; Im/Py is specific for G»C and 

Hp/Py for T»A. These interactions can be conveniently described as ‘pairing rules’ 

(Table 1.4) (Kielkopf et al. 1998b; Dervan and Edelson, 2003).
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Pair G*C C*G T*A A*T

Im/Py +
Py/Im +
Hp/Py +
Py/Hp +

Table 1.4 Pairing code for minor groove recognition.
Favoured (+), disfavoured (-).

1.7.2 Affinity and specificity

In order to achieve increased affinity and specificity, Dervan and coworkers 

linked the antiparallel dimers covalently (Mrksich and Dervan, 1994). The standard 

motif is the eight-ring hairpin (Figure 1.36), in which a y-aminobutyric acid (y-tum) 

linker connects the carboxylic terminus of one polyamide to the amino terminus of 

another. Hairpin polyamides containing eight heterocyclic groups bind 6 bp and 

show approximately 100-fold higher affinity compared to the unlinked homodimers. 

The y-tum demonstrates selectivity for A, T over G, C base pairs and it is suggested 

to be due to the steric hindrance with the exocyclic amine of G (Mrksich et al. 

1994).

Other types of linked polyamides are H-pin and U-pin polyamides. They are 

linked via the ring nitrogens with an alkyl spacer that projects away from the minor 

groove (Mrksich and Dervan, 1994; Mrksich et al., 1994). The H-pin motif is where 

the antiparallel heterodimers were coupled with a short methylene linker across the 

back bone, and the U-pin motif is where the dimers were coupled at the amino- and 

carboxy- termini through an aliphatic amino acid (y). The U-pin motif has higher 

binding affinity and specificity towards the minor groove compared with the H-pin
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motif. From this finding, an ImlmPyPy dimer was synthesised to recognise a GGCC 

core sequence (Kielkopf et al., 1998b). High resolution X-ray analysis of the 2:1 

(ImImPyPy)2-DNA complex revealed that the Im/Py pair makes three specific 

hydrogen bonds to a G*C base pair. Furthermore, there was an energetic penalty due 

to the polyamides being overcurved. To eliminate the problem, the (y)-amino acid 

linkage was replaced by (B)-alanine because of its flexibility allowing the crescent­

shaped ligand to match the curvature of the DNA helix (Kelly et al., 1996; Keilkopf 

et al., 1998b; Trauger et al., 1996). Tandem hairpin polyamides, linked either tum- 

to-tum or turn-to-tail (Weyermann and Dervan, 2002; Herman et al., 1999), can 

recognise large DNA sequences (up to 10 base pairs) with good specificity and 

excellent binding affinity (Weyermann and Dervan, 2002; Kers and Dervan, 2002).

Figure 1.36 The hairpin motif. The amino and carboxy terminus of the 
antiparallel dimers are connected by y-aminobutyric acid (taken from 
Dervan, 2001).

Py Hp targets A» T

<£zzd Hp/Py targets T* A

< = i  Im/Py targets G*C
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As a result of this breakthrough, a major effort has been undertaken to use 

the hairpin polyamides to effect the expression of specific genes. One of the 

approaches to modify gene expression involves inhibition of key transcription factor 

(TF)-DNA complexes in a designated promoter so that it interferes with the 

recruitment of RNA polymerases. As there are significantly fewer oncogenic TFs 

than potentially oncogenic signaling proteins, TF inhibition represents a uniquely 

promising approach to cancer treatment (Darnell, 2002). As a first target, the 

transcription factor TFIIIA was selected because it regulates a small number of 

genes and also the contacts between the nine zinc finger protein and the minor 

groove had been established. A polyamide bound in the recognition site of TFIIIA 

suppressed transcription of 5S RNA genes by RNA polymerase III in vitro and in 

cultured Xenopus kidney cells (Gottesfeld et al., 1997). Polyamides were also used 

to target viral genes transcribed by RNA polymerase II (Dickinson et al., 1998).

Novel hairpin polyamide-conjugates have been synthesised by combining 

with alkylating agents based on analogues of the natural product CC-1065, PBDs 

and chlorambucil (Wurtz and Dervan, 2000; Kumar and Lown 2003a, b; Wang et 

al., 2003). A polyamide-chlorambucil conjugate was shown to possess the sequence 

selectivity of a polyamide and the enhanced DNA reactivity of chlorambucil (Wang 

et al., 2003). It was demonstrated that the conjugate binds and alkylates DNA in 

vitro at the designated polyamide-binding site. In addition, it arrests cells in the 

G2/M phase and inhibits cell growth and DNA replication. Gottesfeld and co- 

workers have established that a polyamide-chlorambucil conjugate significantly 

downregulated a key component of chromatin, the histone H4c gene, however, the
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downregulation did not lead to large global changes in gene expression (Dickinson 

et al., 2004).

1.7.3 Limitations

Because of the sequence-dependent microstructure of double helical DNA, 

the pairing code will not allow targeting all 524,800 ten base-pair sequences of 

DNA with the criteria of high affinity and good specificity. However, having 

synthesised and characterised more than 250 polyamides, Dervan estimated that it is 

now possible to target as much as 50% of the DNA sites on any promoter which will 

be sufficient to target most important transcription factors (Dervan, 2001).

The size of binding site may be critical for biological application because 

longer sequences would be expected to occur less frequently in the genome. The 

number of base pairs that has been effectively recognised is up to 11 base pairs so 

far (Dervan and Edelson, 2003). Even both types of tandem polyamides that can 

recognise large DNA sequences with high affinity, specificity (expressed in terms of 

affinity for a match site over single base pair mismatch sites) is often poor and 

remains a challenge (Dervan and Edelson, 2003).

Another key concern is the accessibility of the DNA minor groove in 

chromatin. “The development of chemical approaches for the regulation of gene 

expression in cell culture requires that sequence-specific DNA binding small 

molecules be cell permeable, transit to the nucleus, and access specific target sites in 

chromatin” (Dudouet et al., 2003). Several gene regulation studies using polyamides 

in cell culture provided both indirect and direct evidences for access to nuclear 

chromatin (Gottesfeld et al., 1997; Dickinson et al., 1998; Dudouet et al., 2003).
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These studies include the examination of the cellular uptake and localisation of 

polyamide-dye conjugates in a variety of living cells, in which the conjugates 

localised mainly in the cytoplasm and not in the nucleus with the exception of 

certain T-cell lines (Belitsky et al., 2002). Another study using polyamide- 

fluorescein conjugates reported that the conjugate was shown to accumulate in the 

nuclei of HCT-116 colon cancer cells, suggesting that the fluorophore itself might 

play a role in cellular uptake (Crowley et al., 2003). Based on this finding, a set of 

polyamide-fluorophore conjugates was synthesised and their nuclear uptake profiles 

in 13 live mammalian cell lines was tested (Best et al., 2003). The results concluded 

that nuclear uptake does not correlate with molecular weight or with the number of 

imidazole residues of polyamide, although the positions of imidazole residues affect 

nuclear access properties significantly.

However, it is still unclear how the sequence-specific binding of polyamides 

is affected by both higher-order chromatin structures and the large excess of 

competing genomic DNA sites in the cell nucleus. Also the mechanism of inhibiting 

gene expression in cells is to be fully elucidated. “It will be of particular interest to 

understand why some genes can be switched off by polyamide treatment, while the 

expression of other genes that also bear the polyamide binding site are not affected” 

(Ebbinghaus, 2003).

1.8 Rational Design of Novel PBD Compounds

1.8.1 Biological activity o f PBD based DNA crosslinking agents

In an attempt to enhance DNA-binding affinity, sequence selectivity and 

antitumor activity of the PBD molecules, a series of linked PBD agents have been
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synthesised and evaluated. Among these are included C7- (Farmer et al., 1988, 

1991) or C8- (Bose et a l 1992a, 1992b; Thurston et al., 1996) linked PBD dimers 

and mixed imine-amide PBD dimers (Kamal et al., 2004a). According to molecular 

modelling and NMR techniques C8-linked PBD dimers have greater isohelicity with 

the minor groove of DNA compared to C7-linked PBD dimers (Jenkins et al., 1994).

Figure 1.37 C8-linked dimer based on DC-81, DBS-120 (n = 3).

Thurston and co-workers synthesised a series of C8-linked dimers with 

linkers of various lengths (e.g., n = 3 -  6) (Figure 1.37), that comprises two DC-81 

molecules linked through their C8 positions via a flexible inert alkyldioxy linker, 

and demonstrated a direct correlation between DNA interstrand cross-linking 

efficiency and cytotoxicity across a number of cell lines (Bose et al., 1992a, b; 

Jenkins et a l 1994; Thurston et a l 1996). All four dimers showed significant 

cytotoxicity against three murine and one human tumour cell line in vitro (Bose et 

a l 1992b). DSB-120 showed the highest DNA crosslinking efficiency, followed by 

n = 5 > 6 > 4 which correlates the order of cytotoxicity in several cell lines (Bose et 

al., 1992b). It also showed enhanced DNA-binding affinity and sequence-specificity 

compared to the monomer DC-81 compound (Bose et al., 1992b). The efficient and 

irreversible interstrand crosslinking ability of this dimer accounts for the improved
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biological activity (Thurston et al., 1999). It is approximately 50- and 300-fold more 

efficient in crosslinking than cisplatin and melphalan, respectively (Smellie et al., 

1994). The cellular pharmacology of this series of dimers was examined in a range 

of human tumour cell lines (Smellie et al., 1994). The results revealed (i) rapid and 

highly efficient formation of interstrand DNA crosslinking with no evidence of 

single-strand breaks, (ii) poorly repaired crosslinks, and (iii) drug-induced arrest at 

the G2/M phase of the cell cycle typical for crosslinking agents. However, the levels 

of glutathione and p i70 glycoprotein influenced the cellular sensitivity, suggesting 

that resistance may reflect partial inactivation of the drug by GSH binding or by 

increased activation of drug efflux, respectively. DSB-120 lacked significant 

antitumour activity against human tumour xenographs in vivo (Walton et al., 19%).

1.8.2 PBD conjugates

As well as PBD dimers, a large number of PBD conjugates have been 

synthesised and evaluated (Figure 1.38). They include PBD-oligopyrrole hybrids 

(Baraldi et al., 1999), C8-alkylamino-PBD (Kamal et al., 2002a), C8-linked PBD 

naphthalimide hybrids (Kamal et al., 2002b), chrysene-linked PBD hybrids (Kamal 

et al., 2003), C8-linked PBD-benzimidazole conjugates (Kamal et al., 2004c) and 

PBD C8 cyclic amine conjugates (Masterson et al., 2004).

In the C8-alkylamino substituted DC-8 Is, the propane linkage was selected to 

enhance lipophilicity. The results indicate that the incorporation of an amino 

functionality appears to improve water solubility profile of the compound. They 

exhibit cytotoxic activity in some cancer cell lines and further studies are undergoing 

(Kamal et al., 2002a). In the case of PBD-oligopyrrole hybrids, all hybrids exhibited
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different DNA-binding activity with respect to the parent compounds distamycin A 

and DC-81. Also it was found that the higher number of pyrrole rings (up to n = 4) 

present in the hybrids led to an increase of in vitro cytotoxicity (Baraldi et al., 1999). 

In addition, bis-PBD-pyrrole and imidazole polyamide conjugates have been 

synthesised and evaluated, which will be described in chapter 4 (Kumar and Lown, 

2005).

Among the PBD C8 cyclic amine conjugates, although all the compounds 

were significantly cytotoxic in vitro, the isoindoline analogue (Figure 1.38; Rj) was 

the most cytotoxic and had the highest DNA-binding affinity with promising 

anti tumour activity (Masterson et al., 2004). Mixed imine-amine PBD dimers do not 

produce crosslinks, however, they exhibited significant DNA minor groove binding 

ability with promising in vitro antitumour activity in a number of human cancer cell 

lines (Kamal et al., 2004a). Some of the C8-linked PBD naphthalimide hybrids 

(Kamal et al., 2002b) and PBD benzimidazole conjugates (Kamal et al., 2004c) have 

also shown significant DNA binding affinity as well as in vitro cytotoxicity.

Other PBD conjugates synthesised and evaluated by Kamal and coworkers 

include C8-linked PBD-acridone/acridine hybrids (Kamal et al., 2004e), 

fluoroquinolone-PBD conjugates (Kamal et al., 2005), C2-ejco-fluorounsaturated 

PBD dimers (Kamal et al., 2004d), alkoxyamido-linked PBD dimers (Kamal et al., 

2004f), PBD-anthraquinone conjugates (Kamal et al., 2004b) and piperazine-linked 

PBD dimers (Kamal et al., 2006). All of these compounds exhibited significant DNA 

binding affinity and promising anticancer activity in vitro.
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Figure 1.38 Structures of PBD conjugates.
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A C8-linked DC-81 epoxide (Figure 1.39) was also designed and synthesised 

by Thurston and co-workers (Wilson et al., 1999). The compound possesses 

electrophilic epoxide and imine functionalities, and it exhibits interstrand cross- 

linking efficiency and spans two adjacent [(GC) / (CG)] pairs or an analogous 

arrangement with a further spanned base pair [(GC) / N / (CG)]. The compound 

alkylates guanine residues on opposite strands. The C8-substituted epoxide overcame 

the problem of steric hindrance, which was the problem with a C7-substituted 

compound. An epoxide group was selected because they have been shown to have 

base selectivity for guanines, interacting at either the N7 or C2-NH2 position in the 

major or minor grooves, respectively.

O

Figure 1.39 C8-linked DC-81 epoxide.

1.8.3 Sequence selectivity o f PBD dimers

NMR spectroscopy and molecular modelling studies showed that DSB-120 

forms a symmetric interstrand crosslink with double-stranded DNA involving a four 

base pair bonding site but spanning six DNA base pairs overall with a preference for 

5’- PuGATCPy or 5’-PyGATCPu sequences with minimal distortion of the helix, 

and that it actively recognises the embedded d(GATC)2 motif (Figure 1.40) (Bose et 

al., 1992a; Jenkins et al., 1994).
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Figure 1.40 Proposed sequence selectivity of DSB-120.

Sequence selectivity studies confirmed, within the homologous PBD dimer 

series (n = 3 -  6), that the n = 3 and 5 (i.e., odd n) homologoues are the most 

efficient crosslinking agents (Smellie et al., 2003). The interaction energies for the 

interstrand crosslinking of the four dimers determined that only the dimers with n = 

3 and 5 form energetically favourable adducts with the DNA hosts, and that the 

reactivity is inherently dictated by the spatial distribution of the PBD subunits. On 

the other hand, the dimers with n = 4 and 6 have poor geometry in the diether 

linkage which mitigate effective crosslinking of the guanines. This causes distortion 

to the host DNA and a poor conformation adopted by the ligand molecules, hence 

unfavoured in energy. The dimer with n =3 cannot tolerate an additional base pair 

between the two separate guanines on opposite strands (i.e., 5’-GATC), whereas the 

extended PBD dimer with the n = 5 can crosslink a longer 5’-GATTC tract. This n = 

5 compound can also crosslink, although not as efficiently, the shorter 5’-GATC 

sequence (Smellie et al., 2003). With the dimer n = 5, the diether linkage group is 

snugly fit into the hydrophobic walls of the DNA minor groove in the case of 5’-
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GATTC, but is partly displaced away from the helix and compacted by internal 

conformational rotation to achieve cross-linking within the shorter 5’-GATC tract.

1.8.4 Analogue ofDSB-120: SJG-136

Subsequent in vivo studies of DSB-120 were disappointing partly due to the 

reaction of the molecule with cellular thiol-containing molecules before reaching the 

tumour site (Walton et al., 1996). As a result, a series of derivatives with either 

different C2/C2’ substitutions and / or unsaturation in the C-rings have since been 

synthesised and evaluated (Gregson et al., 2001a). The unsaturation at the C2 of the 

ring is thought to be important for PBD monomers to be more biologically potent 

than molecules with C2-saturated c-rings. This can be explained by the fact that C2- 

unsaturation can lower the electrophilicity at the N10-C11 position, giving the agent 

greater availability to the target DNA sequence without reacting with thiol 

containing proteins. For example, tomaymycin is considerably more cytotoxic than 

DC-81 and binds more efficiently to DNA although it is less electrophilic overall 

(Morris et al., 1990; Gregson et al., 2001a). For this reason, a novel C2-exo- 

methylene PBD dimer, SJG-136, with unsaturation at the C2/C2’ positions was 

synthesised (Figure 1.41) (Gregson et al., 1999).

Figure 1.41 Structure of SJG-136.
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SJG-136 is a more efficient crosslinking agent to naked DNA than DSB-120 

and is 440-fold more efficient than the major groove cross-linking agent melphalan 

under identical conditions (Gregson 2001a). Molecular modelling of SJG-136 

interstrand crosslinks revealed that they are relatively nondistorting for the DNA 

helix (Gregson et al., 2001b). In vitro cytotoxicity assays in various human tumour 

cell lines have shown that SJG-136 is significantly more potent than either DSB-120 

or the clinically used antitumor agent cisplatin (Gregson et al., 1999,2001b).

SJG-136 also showed significant in vivo activity and it has been selected for 

clinical trials (Hartley et al., 2004, Alley et al., 2004, Pepper et al., 2004). The mean 

bar graph profiles of SJG-136 were compared by pattern recognition analysis 

(COMPARE) with 60,000 compounds tested in the NCI 60 cell line screen and it 

indicated that the SJG-136 has some similarity to other DNA binding agents. 

However, SJG-136 had a different activity pattern to three PBD monomers, and also 

the mean graph activity pattern of the agent did not fit within the clusters of any 

known chemotherapeutic agents. These results suggest that SJG-136 may possess a 

biologically distinct mechanism(s) of action (Hartley et al., 2004).

SJG-136 forms interstrand crosslinks rapidly which persist in human tumour 

cells in vitro, compared with those produced by conventional DNA crosslinking 

agents such as the nitrogen mustards (Hartley et al., 2004). However, in the case of 

SJG-136, the cellular sensitivity is much less dependent on XPF-ERCC1, and the 

homologous recombination factors XRCC2 and XRCC3, than the nitrogen mustard, 

melphalan (Clingen et al., 2005). This indicates that SJG-136 may have activity in 

tumours that are resistant to conventional DNA crosslinking agents.
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In conclusion, SJG-136 is the initial lead clinical candidate in a novel class of 

compounds that produce unique sequence selective G-G crosslinks in the minor 

groove of DNA and it is currently undergoing clinical trials in the UK and USA 

(Hartley et al., 2004).

1.9 Aims of the Experimental Work

The aims of this study were to elucidate the molecular and cellular 

pharmacology of a series of novel PBD-based agents, which consisted of PBD 

dimers and PBD conjugates. The DNA interstrand crosslinking ability of PBD 

dimers, both in naked DNA and in cells, and their cytotoxicity were compared. The 

repair of ICLs induced by these agents was also investigated. For all the compounds, 

sequence selectivity was tested using DNA sequencing-based assays.

Methods for screening combinatorial libraries of PBD-containing compounds were 

also developed and studied. The methods allow solid phase ‘multi-bead per 

compound’ or ‘one-bead per compound’ libraries to be screened against target 

sequences of DNA using an appropriately labelled synthetic oligonucleotide, and 

hence the compound that bound to DNA could be selected. Some of the novel PBD 

conjugates that had been tested in the solution phase, were synthesised in the solid 

phase and screened against target DNA sequences for comparative determinations.

103



CHAPTER 2

MATERIALS AND METHODS

2.1 General Materials

2.1.1 Investigational compounds

Compounds were kindly provided by Professor David Thurston, School of 

Pharmacy, University of London, UK. Each compound was dissolved in methanol at 

a lOmM stock concentration and stored at -20°C until use. Dilutions were freshly 

prepared for each experiment in distilled water.

2.1.2 Plasmid DNA

pBR322 and pUC18 plasmid DNAs were obtained from Northumbria Biologicals 

(NBL) and was stored in lOmM Tris-HCL (pH 7.8), ImM EDTA at -20°C.

2.1.3 Radioisotope

[y-32P]-ATP (5000 Ci/mmol, 10 mCi/ml) was purchased from GE Healthcare, 

Amersham, UK.

2.1.4 Cell culture

The cell lines, K562, A2780 and U937, were purchased from ECACC. Medium, 

foetal calf serum (FCS) and glutamine were purchased from Autogen Bioclear, 

Caine, UK. The human chronic myeloid leukaemia K562 and the human Caucasian
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histocytic lymphoma cell lines U937 were grown as a suspension in RPMI 1640 

medium, the human ovarian carcinoma cell line A2780 was grown as a monolayer 

in DMEM medium. Media was supplemented with 10% foetal calf serum (FCS) and 

2 mM glutamine (Gin). The cells were incubated at 37°C in a 5% COz atmosphere in 

the dark and maintained at a concentration of between 5 x 104 and lx 106 cells/ml, 

within log phase growth. Cells were passaged using conventional procedures and 

screened regularly for mycoplasma.

2.2 MTT Cytotoxicity Assay

2.2.1 Materials 

Chemicals

Thiazolyl blue tetrazolium bromide (MTT) and phosphate buffered saline (PBS) 

were purchased from Sigma. Dimethyl sulfoxide (DMSO) was purchased from 

BDH.

2.2.2 Methods

This assay was previously described by Twentyman & Luscombe (1987). The assay 

is based on the ability of viable cells to reduce a yellow-coloured MTT solution into 

an insoluble purple coloured formazan precipitate. Following centrifugation at 270g 

for 5 mins, the cells were resuspended in the appropriate amount of medium (20 ml 

per experiment) to give 5 x 104 cells/ml. Cells were divided into 10 tubes (2 ml 

each), 8 drug treated and 2 controls, and incubated for 1 h at 37°C in a 5% C 02 

atmosphere in the dark. Cells were then centrifuged at 270g for 5 min at 4°C and the
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supernatant discarded. Cells were resuspended in 2 ml drug-free medium and plated 

out in a transparent 96-well plate (round bottom for suspension cell lines and flat 

bottom for adherent cell lines), 8 wells per sample, 200 pi per well. The plates were 

then incubated for 4 days at 37°C in a 5% C 02 atmosphere in the dark. After the 

incubation, 20 pi of 5 mg/ml solution of MTT in sterile PBS was added to each well 

and then the plates were incubated at 37°C in a 5% C 02 atmosphere in the dark for 

further 5 h. The plates were centrifuged at 270g for 5 min at 4°C to pellet the cells at 

the bottom of the well. The medium was removed with care being taken not to 

disturb the pellet, leaving 10 to 20 ja\ in the well. 200/zl of DMSO was added per 

well and the pellet was carefully dissolved, so as not to introduce air bubbles in to 

the wells. The absorption spectra of the wells were collected at a wavelength of 540 

nm on a Tecan plate reader. The absorbance readings, an average of the 8 wells per 

sample, were then plotted as percentage of control untreated cells to determine the 

IQo for each drug where 10^= dose causing 50% inhibition of cell growth in treated 

cultures relative to untreated controls.
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2.3 Detection of DNA Interstrand Crosslinking in Cells Using the 

Single Cell Gel Electrophoresis (Comet) Assay

This method was previously described by Spanswick et al. (1999). All procedures 

were carried out on ice and in subdued lighting.

2.3.1 Materials 

Chemicals

Tris-hydroxymethyl-methylamine (Tris), tris-hydroxymethyl-methylamine 

hydrochloride salt (Tris-HCL), ethylenediaminetetraacetic acid disodium salt 

(Na2EDTA), sodium chloride (NaCl), sodium hydroxide (NaOH), propidium iodide 

dye, Triton X-100, Type 1-A agarose and LGT agarose were purchased from Sigma. 

Buffers

Lysis buffer: 100 mM Na2EDTA, 2.5 M NaCl, 10 mM Tris-HCl, pH 10.5 

Alkaline buffer: 50 mM NaOH, 1 mM Na2EDTA, pH 12.5 

Neutralisation buffer: 0.5 M Tris-HCl, pH 7.5

2.3.2 Methods

Exponentially growing K562 cells (5 x 104 cells/ml) were incubated in medium with 

drug at various concentrations (total volume of 2 ml per sample) for 1 h at 37°C in a 

5% COz atmosphere in the dark. Following the drug incubation, the samples were 

centrifuged at 270g at 4°C and washed twice with cold medium. Cells were then 

diluted to a density of 2.5 x 104 cells/ml and kept on ice. Immediately before 

analysis, drug treated samples and one control were irradiated with 12.5 Gy X-ray to 

deliver a fixed number of random DNA strand breaks. Another control remained

107



unirradiated. Following irradiation, 0.5 ml of sample was mixed with 1 ml of molten 

1% type-VII agarose (kept at 37°C) and spread over a precoated microscope slide 

and a cover slip was placed on top until the agarose was set. All the slides were 

prepared in duplicate per dose. Cover slips were removed and slides were incubated 

in ice-cold lysis buffer containing 1% triton X-100, added immediately before use, 

for 1 h in the dark. Slides were then washed every 15 min in ice-cold distilled water 

for 1 h. The slides were then transferred to an electrophoresis tank containing ice- 

cold alkaline buffer and incubated for 45 min in the dark followed by 

electrophoresis in the same buffer for 25 min at 18 V (0.6 V/cm), 250mA. Slides 

were rinsed with neutralisation buffer for 10 min then PBS and allowed to dry 

overnight at room temperature. Slides were stained with 2.5 /*g/ml of propidium 

iodide for 30 min, and rinsed with water and dried. Images were visualised using a 

Nikon DIAPHOT TDM inverted epi-fluorescent microscope (consisting of a high 

pressure mercury-vapour light source, a 580 nm dichromic mirror, 510-560 nm 

excitation filter and 590 nm barrier filter) at 20 x magnification. 25 cells were 

analysed per slide using Komet Assay Software version 4.0.2 (Kinetic Imaging, 

Liverpool, UK). The tail moment for each image was calculated by using the Komet 

Analysis software as the product of the percentage DNA in the comet tail and the 

distance between the means of the head and tail distributions, based on the definition 

of Olive et al. (1990).

The degree of DNA interstrand crosslinking present in a drug treated sample 

was determined by comparing the tail moment of the irradiated drug treated samples 

with irradiated untreated samples and unirradiated untreated samples. The level of 

DNA interstrand crosslinking is proportional to the decrease in tail moment in the
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irradiated drug treated sample compared to the irradiated untreated control. The 

percentage decrease in tail moment was calculated using the following formula:

% decrease in tail moment = [ 1 - (TMdi - TMcu) / (TMci - TMcu) ] x 100 

where TMdi; tail moment of drug treated irradiated sample; TMcu; tail moment of 

untreated unirradiated control; and Tmci; tail moment of untreated irradiated 

control.

2.4 Detection of DNA Interstrand Crosslinking in plasmid DNA

This method was previously described by Hartley et al. (1991). The agarose gel 

electrophoresis assay was carried out using pUC18 or pBR322 plasmid DNA.

2.4.1 Materials 

Chemicals

Concentrated hydrochloric acid (HC1, 12M), acetic acid were purchased from VWR 

International Ltd. Ultrapure agarose was purchased from Bethesda Research 

Laboratories (BRL). Triethanolamine, chloroform/isoamyl alcohol, sodium acetate 

(NaOAc), tRNA, bromophenol blue, sucrose and xylene cyanole 25:24:1 

phenol:chloroform:isoamyl alcohol were purchased from Sigma. X-Omat Kodak 

film was purchased from Anachem.

Buffers

lOx buffer: 6mM Tris-HCl (pH 7.5), 6mM MgCl2, lOOmM NaCl.

BAP (5x) buffer: 50mM Tris-HCl (pH 8.0), 600mM NaCl.

Forward reaction (5x) buffer: 200mM Tris-HCl (pH 8.0), 75mM 2-mercaptoethanol, 

50 mM MgCl2, 1.65pM ATP.

Stop Solution: 0.6M NaOAc, 20mM Na2EDTA, lOOpg/ml tRNA.
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TEOA buffer: 25mM triethanolamine, lmM Na2EDTA, pH 7.2.

TAE agarose gel electrophoresis buffer: 40mM Tris, 20mM acetic acid, 2mM 

Na2EDTA, pH 8.1.

Strand separation buffer: 30% DMSO, lmM Na2EDTA, 0.04% bromophenol blue 

and 0.04% xylene cyanol in distilled and deionised water.

Sucrose loading buffer: 0.6% sucrose, 0.04% bromophenol blue and 0.04% xylene 

cyanol in distilled and deionised water.

Enzymes

Hind III: 10 U/pl in in 50mM Tris-HCl (pH 7.5), 200mM KC1, 0.5mM EDTA, lmM 

DTT, 0.5mg/ml BSA, 50% (v/v) glycerol, 0.1% (w/v) Triton X-100. Purchased from 

BRL.

Bam HI: 10 U/pl in in 50mM Tris-HCl (pH 7.5), 200mM KC1, 0.5mM EDTA, lmM 

DTT, 0.5mg/ml BSA, 50% (v/v) glycerol, 0.1% (w/v) Triton X-100. Purchased from 

BRL.

Bacterial alkaline phosphatase (BAP): 100 U/pl in lOmM Tris-HCl (pH8.0), 0.12 M 

NaCl, 50% v / v glycerol. Purchased from InVitrogen.

T4 polynucleotide kinase (PNK): 5 U/pl in 50mM Tris-HCl (pH 7.5), 25mM KC1, 

5mM DTT, 0.1 pi ATP, 50% v / v glycerol, 0.2 mg/ml BSA. Purchased from 

InVitrogen.

2.4.2 L inearisation o f plasm id DNA

20 pg of the closed circular plasmid pUC18 DNA or pBR322 DNA was incubated 

with 10 x aqueous buffer, Hindlll (30 units) or Bam HI (30 units), respectively, and 

distilled water (30 pi final volume) at 37°C for lh. One tenths volume of aqueous
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NaOAc (3M) and 3 volumes of EtOH (95%) were added and chilled in dry ice bath 

for 10 min and then centrifuged for 10 min at 1200g in a microfuge at 4°C. After 

centrifugation, the supernatant was removed and the DNA pellet was lyophilised to 

remove all ethanol. The lyophilised sample was then resuspended in 40 /d of 

distilled water ready for dephosphorylation.

2.4.3 Dephosphorylation o f Linearised DNA

5 yg  of the linearised DNA was incubated with BAP buffer, BAP (75 units) and 

distilled water (100 y\ final volume) at 65°C for 1 h. Following the incubation, 1 

volume of chloroform/isoamyl alcohol was added, vortexed thoroughly and 

centrifuged for 5 min at 1200g in a microfuge at 4°C. The organic layer was 

removed, and the aqueous layer was washed twice with 100 \i 1 aliquots of 25:24:1 

phenol:chloroform:isoamyl alcohol. The organic layers were back extracted with a 

50 \A aliquot of distilled water, the aqueous layers containing DNA were combined. 

One tenths volume of aqueous NaOAc (3M) and 3 volumes of EtOH (95%) were 

added to the DNA and chilled in dry ice bath for 10 min and then centrifuged for 10 

min at 1200g in a microfuge at 4°C. After centrifugation, the supernatant was 

removed and the DNA pellet was lyophilised to remove all ethanol. The DNA was 

resuspended in 40 /d of distilled water.

2.4.4 5 -End Labelling o f the dephosphorylated DNA with [y-32PJ-A TP

5 jig of the dephosphorylated DNA was incubated with 5x forward reaction buffer, 

[y-32P]-ATP (40 y d )  and T4 polynucleotide kinase (10 units) and distilled water (20
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pi\ final volume) at 37°C for 45 min. 1 volume of aqueous NH4OAc (7.5M) and 3 

volumes of EtOH (95%) were then added and the mixture was chilled, centrifuged 

as described in section 2.4.3. The supernatant was removed and the DNA pellet was 

resuspended in 50 jA of distilled water. One tenths volume of aqueous NaOAc (3M) 

and 3 volumes of EtOH (95%) were added to the DNA and chilled, centrifuged and 

lyophilised as described in section 2.4.3. The DNA was resuspended in double 

distilled water at a concentration of 1 pig I 8/d.

2.4.5 Reaction protocols

Approximately 100 ng of 5’-end labelled DNA was used for each experimental 

point. Reactions were performed with each compound at various concentrations (50 

pi\ final volume) in 25mM triethanolamine/lmM EDTA at pH 7.2 and 37°C. After 

2hr, the reactions were terminated by the addition of 50 jA of stop solution. After 

precipitation with 3 volumes of EtOH (95%), the samples were chilled and 

centrifuged, supernatant removed as described in section 2.4.3, and 75 /d of EtOH 

(70%) was added. The samples were centrifuged for another 10 min, supernatant 

removed and the DNA pellet was lyophilised as described in section 2.4.3. Samples 

to be denatured were resuspended in 10 pi of strand separation buffer, then 

denatured at 95°C for 3 min, and chilled immediately on ice prior to loading. The 

non-denatured control was dissolved in 10 pi of sucrose loading buffer and loaded 

directly.
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2.4.6 Electrophoresis and Autoradiography

The samples were loaded onto a 20 cm horizontal submerged 0.8% agarose gel (25 x 

20 x 1 cm) and electrophoresis was performed at 20V for 16 hr using 1 x TAE gel 

running buffer. After electrophoresis the gel was placed onto a layer of Whatman 

3mm filter paper and a layer of DE81 anion exchange paper and dried using a Bio- 

Rad model 583 gel dryer connected to a vacuum. Autoradiography was performed 

with X-Omat Kodak film for 8 h at room temperature using a DuPont-Cronex 

lightingplus intensifying screen. Densitometry was carried out on a BioRad GS-670 

densitometer infrared with a 7100/60 PowerPC.

2.5 Detection of DNA Interstrand Crosslinking in Synthetic 

Oligonucleotides

This method was previously described by Hartley et al. (1993).

2.5.1 Materials 

Chemicals

Tetramethylenediamene (TEMED), acetonitrile were purchased from Sigma. 

Formamide and methanol were purchased from VWR International Ltd. The 

polyacrylamide gel used was the SequaGel™ Sequencing System from National 

Diagnostics. This was supplied as a three part ready to use system: SequaGel 

Concentrate (19:1 acrylamide: bisacrylamide, 8.3 M urea), SequaGel Diluent (8.3 M 

urea) and SequaGel Buffer (10 x TBE, 8.3 M urea, pH 8).

113



Chromatography Columns

Sephadex spin columns (biogel-P6: 5 base pair exclusion limit) consisted of 0.8 ml 

of P-6 polyacylamide were purchased from Biorad and stored in SSC, pH 7.0 (0.15 

M sodium chloride, 17.5 mM sodium citrate, 0.2% sodium azide). Fluoro- 

impregnated silica gel coated TLC plates and Sep-Pak™ C18 desalting cartridges 

were purchased from Waters.

Buffers

TBE (polyacrylamide gel running buffer): 90 mM Tris, 90 mM boric acid and 2 mM 

EDTA, pH 8.3.

Gel slice elution buffer 150 mM NaCl, 10 mM Tris (pH 8.0), and 1 mM EDTA. 

Formamide dye buffer: 90% formamaide, 0.04% xylene cyanol, 0.04% 

bromophenol-blue, 0.1 mM EDTA.

2.5.2 Oligonucleotides

Synthetic oligonucleotides, synthesised on a 2 pM scale, were purchased from 

MWG biotech dissolved in distilled water and stored at -20°C.

Oligo-1: 5’- TATAGATCTATA -3’

3’- ATATCTAGATAT -5’

Oligo-2: 5’- TATAGATTCTATA -3 ’

3’- ATATCTAAGATAT -5 ’

Oigo-3: 5’- TACITAGATCTACITA -3’

3’- ATICATCT AG ATICAT -5 ’

Oligo-4: 5’- TACITAGATTCTACITA -3’

3’- ATICATCTAAGATICAT -5’ (where I=Inosine)
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2.5.3 Purification o f DNA duplexes

100 pg of each oligonucleotide per lane were purified through denaturing 

polyacrylamide gel electrophoresis (20%, 19:1 acrylamide: bisacrylamide. 8.3 M 

urea, 1.5 mm thick, 52 x 18 cm). Gels were prepared by mixing the appropriate 

amounts of ready-to-use gel casting solutions and then 0.8 ml 10% (w/v) ammonium 

persulphate and 40 pi TEMED for every 100 ml of gel casting solution to catalyse 

polymerisation.

Each oligonucleotide was dissolved in 10 pi formamide buffer and loaded on to 

denaturing polyacrylamide gels. Electrophoresis was performed for 1 h prior to 

loading the samples. Gels were run at approximately 3000 V using a BioRad model 

3000xi power supply for approximately 3 hr. The gel was then transferred from the 

glass plate to cling film and placed on a fluoro-impregnated silica gel coated TLC 

plate. DNA was visualised by UV shadowing using a short wave UV lamp (254 nm 

model UVGII 215250V from Ultra-Violet Products). Full-length bands were 

extracted with a razor blade, crushed and soaked in 1 ml TE buffer overnight at 

37°C. The samples were then desalted by flushing through Sep-Pak ™ C18 

cartridges, which were in prior washed with 10 ml acetonitrile followed by 10 ml 

ultra-pure water, and eluted as 1.5 ml fractions with 60% methanol and lyophilised.

2.5.4 DNA measurement

The concentration of each sample was measured by fluorimetry with a Perkin-Elmer 

LS-2B fluorimeter. A standard curve was generated over a concentration range of 0 

to 10 pg of salmon sperm DNA in lx SSC (15 mM sodium citrate pH 7.0, 150 mM
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NaCl) labelled with the DNA binding agent Hoechst 33258 (10 Mg/ml) for 10 min at 

room temperature, in a final volume of 3 ml. Aliquots of sample were resuspended 

in lx SSC and labelled with Hoechst 33258 (10 pg/ml). Fluorescence was measured 

at 360 nm excitation and 450 nm emission. Following the measurement, the final 

concentration of the sample was calculated and then solutions were lyophilised and 

resuspended in TEOA at 0.5 pg/pl and stored at -20°C until use.

2.5.5 5 -end labelling o f DNA duplexes

5 pg self-complementary DNA was 5’-end labelled with y32P ATP using T4 

polynucleotide kinase as described in section 2.4.4. Unincorporated ATP was 

removed from samples by centrifugation at 270g at 4°C through a Biospin column. 

The BioSpin columns were prepared just prior to use by spinning at 270 g twice 

with distilled water for 5 minutes to wash and once without for 5 min to pack the 

column. The samples were loaded onto the column and spun for 5 min to collect the 

primer in the eluent.

For non-complementary DNA duplexes, 2.5 pg single strand was 5’-end labelled in 

the same way prior to annealing with 2.5 pg of the complementary strand by heating 

to 90°C for 2 min and allowing to cool slowly to room temperature.

2.5.6 Reaction protocol and electrophoresis

0.5 pg radiolabelled dupex DNA was treated with drug in a final volume of 50 pi lx 

TEOA buffer. The samples were incubated at 37°C for 2 h. DNA was recovered by 

ethanol precipitaion, washed with 70% ethanol, lyophilised to dryness and taken up
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in 7 pi formamide dye buffer. The samples were denatured at 90°C for 2 min and 

chilled on ice prior to denaturing PAGE (10% gel, 19:1 acrylamide: bisacrylamide, 

8.2M urea, 0.35 mm thick 52 x 18 cm) under the same condition as for duplex 

purification above. Gels were dried and autoradiography was performed as 

described in Section 2.4.6.

2.6 Measurement of Sequence Specific Covalent Binding Using Taq 

Polymerase Stop Assay

This method was previously described by Ponti et al. (1991).

2.6.1 Materials 

Chemicals

Ammonium persulphate (APS), piperidine and boric acid were purchased from 

Sigma. SequaGel Sequencing system was purchased from National Diagnostics: 

SequaGel Concentrate (19:1 acrylamide: bisacrylamide, 8.3M urea), SequaGel 

Diluent (8.3M urea) and SequaGel Buffer (lOx TBE, 8.3M urea, pH 8). 

Deoxynucleoside triphosphates (dNTPs): Ultrapure 100 mM solutions of the dNTPs 

were purchased from GE Healthcare.

Enzymes

Taq polymerase: 5 U/pl in 50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 0.1 mM 

EDTA, 1 mM DTT, 50% glycerol and 1% Triton X-100. Purchased from Promega. 

Buffers

Taq DNA polymerase lOx buffer: 50 mM KC1, 10 mM Tris-HCl (pH9.0), 1.5 mM 

MgCl2 and 0.1% Triton X-100. Purchased from Promega.
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Thermophilic DNA polymerase lOx buffer (Magnesium Free): 10 mM Tris-HCl (pH 

9.0), 50 mM KC1 and 0.1% Triton X-100. Purchased from Promega.

TBE polyacrylamide gel running buffer: 90 mM Tris, 90 mM boric acid and 2 mM 

EDTA, pH 8.3.

Synthetic oligonucleotide primers

The synthetic oligonucleotides were purchased from MWG. The synthetic primer, 

5 ’ -CTCACTCAAAGGCGGTAATAC, identified as pUCl, binds to the complementary 

strand at position 749-769 and was used to examine alkylation on the bottom strand 

of pUC18 plasmid DNA.

The synthetic primer, 5’-GCAGCAGATTACGCGCAGAA, identified as SCA, 

binds to the sequence 3090-3109 and was used to examine alkylation on the bottom 

strand of pBr322 plasmid DNA.

2.6.2 Linearisation o f DNA plasmid

Described in section 2.4.2. The DNA pellet was resuspended in 400 y\ of distilled 

water.

2.6.3 Drug reaction protocol

Approximately 100 ng of the linearised DNA was used for each sample. The 

labelled DNA was incubated with varying drug concentrations (50 y\ final volume) 

in 25mM triethanolamine/lmM EDTA at pH 7.2 and 37°C. After 2 h, the reactions 

were terminated by the addition of 10 y\ of NaOAC (3 M) and 40 y\ of distilled 

water. 3 volumes of EtOH (95%) was added to the samples, chilled and centrifuged, 

supernatant removed as described in section 2.4.3. The samples were washed twice
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with EtOH (70%) and centrifuged, supernatant removed and the DNA pellet was 

lyophilised as described in section 2.4.3. Samples were resuspended in 50 p\ of 

distilled water.

2.6.4 5 -end labelling o f oligonucleotide primer

An appropriate primer was 5’-end labelled with y32P ATP using T4 polynucleotide 

kinase as described in section 2.4.4, in a final volume of 25 }i\. Unincorporated ATP 

was removed from the sample by centrifugation at 270g at 4°C through a pre­

washed Biospin column. The BioSpin columns were prepared just prior to use by 

spinning at 270 g twice with distilled water for 5 minutes to wash and once without 

for 5 min to pack the column. The samples were loaded onto the column and spun 

for 5 min to collect the primer in the eluent.

2.6.5 Primer extension and electrophoresis

The drug treated DNA was combined with Taq DNA polymerase (1 unit), 32P-5’- 

end-labeled oligonucleotide primer (5pmol), dideoxynucleoside triphosphate 

mixture (62.5nM), gelatin (0.2%), (NH4)2S04 (20fiM), and MgCl2 (2.5//M) in 

reaction buffer (10/d, Tris [pH 9, 75//M] / Tween 20 [0.01%]) to give a total volume 

of 100 ft\. Thermal cycling was then carried out as follows: 94°C for 1 min 

(denaturation), 58°C for 1 min (annealing), and 72°C for 1 min (primer extension); 

this cycle was repeated for a total of 30 cycles, with the annealing step being 

extended by 1 s for each new cycle. The products were then precipitated with 3 

volumes of EtOH (95%), washed twice with 100 pi\ EtOH (70%), and lyophilised as
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described in section 2.4.3. Products were separated on 0.4mm thick 6% denaturing 

polyacrylamide at 1500V and 55°C for approximately 3 h using 1 x TBE gel running 

buffer. Autoradiography was carried out as described in section 2.4.6.

2.7 Measurement of Sequence Specific Binding Using a DNase I 

Footprinting Assay

This method was previously described by Schmitz et al. (1979). It was carried out 

using pUC18 or pBR322 and DNase I enzyme.

2.7.1 Materials 

Chemicals

Ethidium bromide was purchased from Sigma.

DNA size marker

1 kb DNA ladder (1 mg/ml) in 10 mM Tris-HCl pH 7.5, 50 mM NaCl and lmM 

EDTA was purchased from Invitrogen.

Kit

A  BiolOl GENECLEAN II kit containing 6M sodium iodide, ‘glassmilk’ silica 

matrix and New Wash concentrate (NaCl, Tris, EDTA) was purchased from 

Anachem.

Enzyme

DNase I: 1 U/pl. Purchased from Promega.

Buffers

2x footprinting buffer: lOmM Tris pH 7.0, lmM EDTA, 50mM KC1, lmM MgCl2, 

0.5mM DTT and 20mM Hepes.
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DNase I stop solution: 200mM NaCl, 30mM EDTA (pH8.0), 1% SDS.

Synthetic oligonucleotide primers

The synthetic oligonucleotides were purchased from MWG. The synthetic primer, 

5’-TTTGGGCTGTC, identified as pUC5, binds to the sequence 930-940 of pUC18 

plasmid DNA. The synthetic primer, 5 ’-GCATTGGTAACTGTCAGACC, 

identified as SRM binds to the sequence 3284-3303 of pBr322 plasmid DNA.

2.7.2 Primer labelling

An appropriate synthetic primer pUC5 (for pUC18 plasmid DNA) or SRM (for 

pBR322 plasmid DNA) was used as a reverse primer and was labelled using T4 

polynucleotide kinase and [y-32P]ATP, as described in section 2.4.4.

2.7.3 PCR reaction

The labelled primer was combined with a forward primer pUCl (for pUC18 plasmid 

DNA) or SCA (for pBR322 plasmid DNA), Taq DNA polymerase (unit 1), 

dideoxynucleoside triphosphate mixture (62.5nM), (NH4)2S04 (20/^M), and MgC12 

(2.5//M) in reaction buffer (10/d, Tris [pH 9, 75//M] / Tween 20 [0.01%]) to give a 

total volume of 50 /d. Thermal cycling was carried out as follows: 94°C for 1 min 

(denaturation), 58°C for 1 min (annealing), and 72°C for 1 min (primer extension); 

this cycle was repeated for a total of 30 cycles, with the annealing step being 

extended by 1 s for each new cycle.

121



2.7.4 Purification o f  the double stranded single-end labelled fragment 

Following amplification of the reverse primer, the unbound [y-32P]ATP were 

removed by running the sample through a BioSpin column as described in section 

2.6.5. Then the sample was loaded in 2 x 25 \i\ aliquots onto a 2% agarose gel 

containing 10/d of ethidium bromide with TAE buffer and run with a I pig of a lkb 

DNA marker at 80 V for 2 hr. After the electrophoresis, the gel was viewed under 

UV light and the DNA bands showing the fragment (201 base pairs for pUC18 and 

210 base pairs for pBR322) were cut out. Then the samples were purified using 

GENE clean kit using the manufacturer’s standard protocol.

2.7.5 Reaction protocol and electrophoresis

The purified DNA sample was incubated with varying drug concentrations at 37°C 

for 2 h in 2 x footprinting buffer in a total volume of 50 pi. Then the samples were 

added to 0.1 units of DNase I diluted in ice-cold 10 mM Tris pH 7.0 from a stock 

solution (1 unit/pl) and a 1:1 solution of 250 mM MgCl2/CaCl2 mixture. The 

reactions were performed at room temperature for 3 min followed by precipitaion 

with 50 pi of stop solution. The samples were mixed with an equivolume of 

phenol:chloroform:isoamyl alcohol and centrifuged for 5 min at 1200g in microfuge 

at 4°C and the cleaved products in the upper layer were extrtacted into a fresh 

Eppendorf tube. This was then precipitated with EtOH (95%) in the presence of 1 pg 

glycogen, washed once with 70% EtOH, followed by lyophilisation as described in 

section 2.4.3. The dried samples were resuspended in 5 pi\ of formamide dye, heat
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denatured at 90°C for 5 min, then placed on ice prior to loading onto the 

polyacrylamide gel. Electrophoresis was performed as described in section 2.6.6. 

Autoradiography was carried out as described in section 2.4.6.

2.7.6 Maxam-Gilbert Sequencing lanes

A purine-specific marker lane was generated using 5’ single-end labelled DNA. 7 \A 

of labelled DNA was incubated at room temperature for 5 min in 50 y\ of 70% 

formic acid, 10 pi\ distilled water. Following incubation, samples were snap frozen 

with a dry ice/ethanol bath and dried by lyophilisation. The DNA pellet was 

resuspended in 65 y\ of a freshly diluted and chilled 10% piperidine solution and 

incubated at 90°C for 30 min. The DNA was then precipitated with one tenths 

volume of NaOAC (3 M) and 2 volumes of EtOH (95%), washed twice with EtOH 

(70%) and lyophlised. Samples were taken up in 4 /d formamide loading dye, heat 

denatured at 90°C for 5 min, then placed on ice prior to loading onto the 

polyacrylamide gel, which is loaded with other samples.
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CHAPTER 3

EVALUATION OF NOVEL PYRROLO [2,1-c] [1,4] 

BENZODIAZEPINE (PBD) DIMERS: THE EFFECT OF 

LINKER LENGTH AND C2/C2’ SUBSTITUENTS

3.1 Introduction

As discussed in Chapter 1, in an attempt to enhance the sequence selectivity and

antitumour potency of the PBD molecules, C7- (Farmer, et al., 1988) and C8-linked 

dimers (Bose et al., 1992) have been synthesised. According to molecular modelling 

C8-linked dimers have greater isohelicity with the minor groove of DNA compared to 

the C7-linked dimers (Jenkins et al., 1994). The first C8/C8’-linked dimer to be 

synthesised was DSB-120 (Figure 3.1) (Bose et al., 1992) which comprises two DC-81 

molecules linked through their C8 positions via a flexible diether linkage.

Figure 3.1. Structure of DSB-120.

DSB-120 exhibits potent in vitro cytotoxicity and enhanced DNA-binding 

affinity and sequence-specificity compared to DC-81 (Smellie et al., 1994). The potent, 

irreversible interstrand cross-linking ability of the PBD dimers accounts for their
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improved biological activity (Thurston et al., 1999). NMR spectroscopy and molecular 

modelling studies showed that DSB-120 spans six DNA base pairs, actively recognising 

a 5’-GATC-3’ sequence with minimal distortion of the helix (Bose et al., 1992a; 

Jenkins et al., 1994). However, the subsequent in vivo studies of DSB-120 were 

disappointing partly due to the reaction with cellular thiol-containing molecules 

(Walton etal., 1996).

The unsaturation at the C2 of the C-ring is thought to be important for PBD 

monomers to be more biologically potent than molecules with C2-saturated C-rings. 

This can be explained by the fact that C2-unsaturation can lower the electrophilicity at 

the N10-C11 position (Morris et al., 1990), giving the agent greater availability to the 

target DNA sequence without reacting with thiol-containing proteins. For example, the 

less electrophilic tomaymycin is considerably more cytotoxic than DC-81, and binds 

more efficiently to DNA (Morris et al., 1990; Gregson et al., 2001a).

In an attempt to produce PBD dimers with improved in vivo antitumour activity, 

several analogues of DSB-120 were synthesised. As described in Chapter 1, the fully 

saturated C-ring PBD dimers with odd numbered linkage (i.e., n = 3- (DSB-120) and 5- 

methylene groups) showed efficient DNA interstrand crosslinking ability, whilst dimers 

with even numbered linkages (n = 4, 6) crosslinked much less efficiently (Smellie et al., 

2003). Therefore, analogues of DSB-120 that have C2/C2’-ejto-unsaturation and 

containing either 3 and 5 methylene linkers were synthesised.

SJG-136 and DRG-16 (Figure 3.2) contain two C2-exo-methylene-substituted 

DC-81 subunits tethered through their C8 positions of the A-ring via an inert
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propanedioxy (n = 3) and pentanedioxy (n = 5) linker, respectively (Gregson et al., 

2001). AT-150 and ELB-21 (figure 3.2) contain two tomaymycin subunits tethered via a 

propanedioxy (n = 3) and pentanedioxy (n = 5) linker, respectively.

SJG-136 (n=3) 

DRG-16 (n=5)

'— ( C H 2 )pr - O v r^ ^

AT-150 (n=3) 

ELB-21 (n=5)

Figure 3.2. Structures of novel PBD dimers containing C2/C2’-exo-unsaturation.
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The aim of this study was to evaluate and compare the in vitro biological activity of 

these four novel PBD dimers. The study included measurement of cytotoxicity in vitro, 

ability of the dimers to produce DNA interstrand crosslinking both in naked DNA and 

cells, and measurement of sequence selectivity.

3.2 Results

3.2.1 DNA Inter strand Crosslinking in Plasmid DNA

The crosslinking efficiency of each compound in naked plasmid DNA was 

investigated using an agarose gel-based electrophoresis crosslink assay as described in 

Chapter 2. The formation of an interstrand crosslink between the two complementary 

DNA strands prevents the separation of the two strands when denatured. Such 

crosslinked DNA molecules therefore run as double-stranded DNA in a neutral agarose 

gel. The quantitation of the amount of the double-stranded versus single-stranded DNA 

was measured from the intensity of each band on the gel autoradiograph by 

densitometry and the % crosslinking in a given DNA sample is calculated. As an 

example of the assay, the known interstrand crosslinking agent, cisplatin, was tested. 

Figure 3.3 shows the autoradiograph of a crosslinking gel for cisplatin and the 

quantitation shown graphically in Figure 3.4. The result showed 50% interstrand 

crosslinking (XL^) at a concentration of 2.3//M confirming previously reported data 

(Hartley et al., 1991).
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Figure 3.3 Autoradiograph of an agarose gel showing DNA interstrand crosslinking 
by cisplatin, in linear pUC18 plasmid DNA. Drug treatment was for 2 
hours at 37°C at the concentrations shown above. C is a non-denatured 
control. DS = double stranded, SS = single stranded.
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Figure 3.4 Dose response graph corresponding to the single experiment shown in 
Figure 3.3. Double- (DS) and single- (SS) stranded DNA were quantified 
by laser densitometry and a dose response curve derived.
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The autoradiographs in Figure 3.5 are example gels showing the dose dependent 

crosslinking efficiency of SJG-136 and DRG-16. In each case an increase of crosslinked 

DNA with increasing concentration of agent is observed. The graph derived from the 

gel comparing the crosslinking ability between SJG-136 and DRG-16 is shown in 

Figure 3.6. The concentrations required for the four compounds to produce 50% 

interstrand crosslinking (XL*) derived from several independent experiments in 

plasmid DNA are summarised in Table 3.1.

Table 3.1 50% DNA Interstrand Crosslinking Data for SJG-136, DRG-16, AT-150

and ELB-21 after 2 hr incubation at 37°C with pUC18 plasmid DNA. 

Data are the mean +/- standard error from at least three independent 

experiments.

Compound n = XL* (jiM)

SJG-136 3 0.03 ±0.01

DRG-16 5 0.0039 ±0.002

AT-150 3 0.045 ±0.006

ELB-21 5 0.0027 ±0.0016
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Figure 3.5
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Autoradiographs of an agarose gel showing DNA interstrand 
crosslinking by A: SJG-136 and B: DRG-16, in linear pUC18 plasmid 
DNA. Drug treatments were for 2 hours at 37°C at the concentrations 
shown above. C is a non-denatured control. DS = double stranded, SS = 
single stranded.
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Figure 3.6 Dose response graph corresponding to the single experiments shown in 
Figure 3.5. Double- (DS) and single- (SS) stranded DNA were quantified 
by laser densitometry.
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Under the conditions employed DRG-16 was found to be approximately 8-fold 

more efficient at producing interstrand crosslinking compared to SJG-136. Similarly, 

ELB-21 was 17-fold more efficient at producing interstrand crosslinking compared to 

AT-150. From these results it can be concluded that the compounds with the longer 

linker length (DRG-16 and ELB-21) are more efficient crosslinking agents.

AT-150 and ELB-21 have the extra methyl group on the C2 position compared 

to SJG-136 and DRG-16. This was found not to have a significant influence on the 

crosslinking ability of the agents since the values of XL^ for AT-150 and ELB-21 were 

similar to those for SJG-136 and DRG-16, respectively.

3.2.2 In Vitro Cytotoxicity Studies

The in vitro cytotoxicity of each compound against three human cancer cell lines 

was determined using the MTT assay. The cell lines used were the chronic myeloid 

leukaemia K562 (suspension culture), the histocytic lymphoma U937 (suspension 

culture) and the ovarian carcinoma A2780 (monolayer culture). Figure 3.7 shows the 

growth inhibition curves of SJG-136 against the three cell lines. The dose required to 

inhibit cell growth by 50% compared to untreated controls is expressed as IC^ and the 

values for the four compounds are summarised in Table 3.2.
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Table 3.2 In Vitro Cytotoxicity Data for the PBD dimer compounds in K562, 

A2780 and U937 cell lines. Drug treatments were for one hour at 37°C. 

Data are the mean +/- standard error from at least three independent 

experiments.

Compound n = IC50 (jiM)

K562 A2780 U937

SJG-136 3 0.025 ±0.0087 0.056 ±0.027 0.03 ±0.001

DRG-16 5 < 0.001 0.063 ± 0.0025 < 0.001

AT-150 3 0.0034 ± 0.0021 0.045 ±0.0012 < 0.001

ELB-21 5 < 0.001 < 0.001 < 0.001
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lines. Drug treatments were for one hour at 37°C. Data are the mean +/- 

standard error from a single experiment.



All the compounds were found to be highly cytotoxic to the cell lines with IQ q values in 

the nanomolar, and in some cases the sub-nanomolar range. Where >50% growth 

inhibition was observed below InM accurate IC^ values were not determined. Between 

the C2/C2’-exo-methylene dimers, the n = 5 linked compound DRG-16 was much more 

cytotoxic than the n = 3 linked SJG-136 in the K562 and U937 cell lines (>25-fold and 

>30-fold, respectively), however in the A2780 cell line both of the agents showed similar 

cytotoxicity. Between the C2/C2’-exo-ethylene dimers, the n = 5 linked ELB-21 was 

more cytotoxic than the n = 3 linked AT-150 in all the cell lines. The cytotoxicity of the 

longer linked dimers therefore correlated with their higher efficiency of interstrand 

crosslinking in naked DNA.

The n = 3 linked dimer AT-150 containing the extra methyl group on the C2 

position was more cytotoxic than SJG-136 against the K562 and U937 cell lines (7.4- 

fold and >30- fold, respectively), but no significant difference was observed in the 

A2780 cell line.

3.2.3 Determination of DNA Inter strand Crosslinking in Cells

The ability of the compounds to form DNA interstrand crosslinks in human 

K562 cells was investigated using a modification of the single cell electrophoresis 

(Comet) assay. Examples of typical comet images are shown in Figure 3.8. In control 

untreated, unirradiated K562 cells no DNA damage was detected, and the high- 

molecular-weight supercoiled DNA remained intact as shown in Figure 3.8A. When 

untreated cells are irradiated with 12.5Gy to introduce a fixed amount of random DNA
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strand breaks, distinct comet tails are evident (Figure 3.8B). DNA interstrand crosslinks 

impede the migration of genomic DNA fragments during electrophoresis. When the 

cells were treated with InM DRG-16 for 1 h, comet tails were visible following 

irradiation but with reduced length and intensity compared to the irradiated control due 

to the presence of DNA ICLs (Figure 3.8C). With lOnM DRG-16 treated cells no comet 

tails were visible due to extensive ICLs (Figure 3.8D). The tail moment of the cells 

were measured and crosslinking expressed as % decrease in tail moment compared to 

irradiated controls. Figure 3.9 shows the curve for each compound showing the 

interstrand crosslinking efficiency against drug concentration following a lhr incubation 

at 37°C. The concentration values to produce 50% interstrand crosslinking in cells for 

the four compounds are summarised in Table 3.3.

Table 3.3. DNA Interstrand Crosslinking Data in K562 cells after 1 hr incubation at 

37°C. The data are the mean ± standard error of cells analysed from at 

least 3 independent experiments.

Compound n = ICL* QiM)

SJG-136 3 0.017 ±0.02

DRG-16 5 0.0011 ±0.003

AT-150 3 0.0085 ±0.001

ELB-21 5 0.0013 ±0.003
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A

Figure 3.8 Typical Comet images of K562 cells treated with DRG-16. The drug 
treatment was for 1 hr. Untreated unirradiated control (A); untreated 
irradiated control (B); InM DRG-16 treated irradiated cells (C); lOnM 
DRG-16 treated irradiated cells (D). All images stained with propidium 
iodide. Original magnification, x20.
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Figure 3.9. Dose dependent drug induced DNA interstrand crosslinking efficiency in 
K562 cells after 1 hr incubation at 37 °C. The data are the mean ± 
standard error of cells analysed from at least 3 independent experiments. 
A: SJG-136, B: DRG-16, C: AT-150 and D: ELB-21.
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DRG-16 showed approximately 16-fold higher interstrand crosslinking 

efficiency than SJG-136 under identical treatment condition. ELB-21 showed 

approximately 7-fold higher interstrand crosslinking efficiency than AT-150. In 

addition, the compounds with the same linker length showed similar interstrand 

crosslinking efficiency with the longer linked pair (DRG-16 / ELB-21) being more 

efficient. This result correlates with their ability to produce DNA interstrand 

crosslinking in plasmid DNA and with their increased cytotoxicity against human 

tumour cells in vitro.

The time course of crosslink formation was studied for the four agents in K562 

cells. Cells were treated for one hour at the approximate ICL^ value as determined from 

Figure 3.9. Cells were then post-incubated in drug-free medium for times up to 48 hours 

and samples analysed for crosslinking using the comet assay. The crosslink time course 

graphs are shown in Figure 3.10. For each of the agents tested crosslinks have formed in 

K562 cells during the 1 hour treatment, and continue to form during the post-incubation 

in drug-free medium. For SJG-136, the peak of crosslinks was observed by 4 hours 

post- incubation, and for the other three agents, the peak was observed by 2 hours post­

incubation. For all four agents crosslinks persisted over a 48 hour period with no 

evidence of repair or unhooking.
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Figure 3.10. Time course of DNA interstrand crosslinking in K562 cells following a 
1 hour drug exposure at 37°C. The data are the mean ± standard error of 
cells analysed from at least 3 independent experiments.

A: SJG-136 at 0.01//M 
B: DRG-16 at O.OOlpiM 
C: AT-150 at 0.01//M 
D: ELB-21 atO.OOl^M
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3.3 Sequence Specificity of Alkylation

Based on the findings that DSB-120 could span six base pairs with a core sequence 

preference for 5’-GATC as described in chapter 1, three different sequence 

specificity evaluations with naked DNA were undertaken to determine whether the 

two propanedioxy-linked dimers, SJG-136 and AT-150, would also show the same 

sequence preference. In addition, the longer analogues DRG-16 and ELB-21 were 

studied to determine whether they could span more than 6 base pairs and exhibit a 

different sequence preference.

3.3.1 Determination of DNA Inter strand Crosslinking in Oligonucleotides

A pair of synthetic oligonucleotides were designed and synthesised, each 

containing an identical (A/T)4 flanking sequence but one containing the core 5’- 

GATC sequence (Oligo-1) and the other containing the core 5’-GATTC sequence 

(Oligo-2) as shown in Table 3.4. The oligonucleotides were purified using non- 

denaturing polyacrylamide gel electrophoresis. The purified oligonucleotides were 

singly end-labelled with P and annealed, then incubated with the four dimer 

compounds at 37 °C for 2 hours. The samples were then run on denaturing 

polyacrylamide electrophoresis gels. The method is described in detail in Chapter 2.

Experiments with Oligo-1 and -2 did not produce clear results. This may be 

due to the small size and low melting temperature of the duplex DNAs. As a result, 

longer DNA sequences, Oligo-3 and -4 (Table 3.4) were used. These 

oligonucleotides contained longer flanking sequences with the addition of two
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inosine /cytosine base pairs. Inosine, which does not contain an exocyclic amino 

group and therefore cannot be covalently bound by a PBD, was used in place of 

guanine. Typical autoradiographs of DNA crosslinking in Oligo-3 and -4 for all 

four compounds are shown in Figure 3.11.

Table 3.4 The synthetic oligonucleotides used

Oligo-1: 5’- TATAGATCTATA -3’

3’- ATATCTAGATAT -5’

Oligo-2: 5’- TATAGATTCTATA -3 ’

3’- ATATCTAAGATAT -5 ’

Oigo-3: 5’- T ACIT AG AT CT ACIT A -3’

3’- ATICATCTAGATICAT -5 ’

Oligo-4: 5’- T ACIT AG ATT CT ACIT A -3’

3’- ATI CAT CT AAG ATIC AT -5’ (where I=Inosine)

With the shorter oligonucleotide containing the 5’-GATC-3’ core sequence 

(Figure 3.11 A) crosslinking (measured as double stranded oligonucleotide) is observed 

with all four PBD dimers. At the conditions used, however, the level of crosslinking is 

low with <5% crosslinks observed. With SJG-136 crosslinking is observed at both lpM 

and lOpM but with the other dimers significant crosslinking is only observed at lOpM. 

No double stranded oligonucleotide is observed in the control, denatured sample (lane 

a). With the longer oligonucleotide containing the 5,-GATTC-3’ core sequence (Figure
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3.1 IB) significant crosslinking is only observed with SJG-136 and AT-150 at the higher 

drug concentration. Evidence of drug interaction, but not crosslinking, is observed with 

DRG-16 and ELB-21 at lOpM by the presence of a band migrating more slowly than 

the single stranded oligonucleotide, suggestive of mono-alkylation (indicated by MA on 

the autoradiograph).

3.3.2 Determination o f the sequence specificity of covalent interaction 

using the Taq Polymerase Assay

This technique was used in an attempt to identify the sequence specificity of 

covalent interaction of the compounds with naked pUC18 plasmid DNA. The principle 

employed is that the enzyme extends the DNA in the complex from the end of the 

strand and progress until it encounters the site of covalent attachment of the ligand. The 

method is described in Chapter 2.

The autoradiograph in Figure 3.12 shows the covalent binding sites of DRG-16 

and ELB-21 in a region of pUC18 plasmid following treatment at 37°C for 2 hours. A 

number of premature stop sites for Taq polymerase in the control sample (lane a) are 

observed. In this assay, cisplatin was used as a control compound since the sequence 

selectivity of covalent interaction for cisplatin is well established. Clear evidence of 

dose-dependent covalent binding of cisplatin is seen in lanes j and k with sequence 

specificity primarily at runs of contiguous guanines as indicated. This confirms previous 

data with cisplatin using this assay (Ponti et al., 1991).
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Figure 3.11. Autoradiographs of a gel showing the DNA interstrand crosslinking 
in oligonucleotide containing the core sequence of A: 5’- GATC and 
B: 5’-GATTC. Drug treatments were for 2 hours at 37°C. DS: 
double-stranded, SS: single-stranded, MA: mono-alkylated, 

a: control
b-c: 1 //M, 10 jiM (SJG-136) 
d-e: 1 piM, 10 //M (AT-150) 
f-g: 1 //M, 10 jtM (DRG-16) 
h-i: 1 //M, 10 piM (ELB-21)



There was very little evidence of sequence specific DNA interaction with the 

PBD dimers. DRG-16 was found to cause complete inhibition of Taq polymerase at 

concentrations of 1 and 3pM, which results in no bands (lanes d and e). However, weak 

evidence of covalent binding was observed at the lower concentration of 0.1 and 0.3 pM 

(lanes b and c). In particular, two bands that are not present in the control lane are 

observed as indicated by arrows. These stop sites corresponded to the sequences 5’- 

950GATAC954-3’ and 5’-960GTTTC964-3’ and were clearly at sites that were different to 

those for cisplatin. ELB-21 was found to give a similar result to DRG-16, binding at the 

same two sites. This was observed at 0.1, 0.3 and lpM  (lanes f-h) and complete 

inhibition of the enzyme was only observed at 3pM.

The autoradiograph in Figure 3.13 shows the covalent binding sites of DRG-16 

and SJG-136 in the same region of pUC18 plasmid DNA. Again two weak bands at the 

same binding sites are observed with DRG-16 but these are not observed with SJG-136 

at l-3pM. Furthermore, some blocks to the polymerase by SJG-136 were seen but at 

different sites to those of DRG-16. SJG-136 caused inhibition of the enzyme at the 

concentration of lOpM. Sites of interaction of SJG-136 correspond to the sequences 5 ’- 

GTGC-3’, 5’-GTTC-3’ and 5’-GTCC-3’. Figure 3.14 shows the DNA sequence of 

pUC18 plasmid DNA corresponding to the highlighted region in the autoradiograph 

Figure 3.13. The binding sites of cisplatin, DRG-16 and SJG-136 are indicated.
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Figure 3.12 Autoradiograph of a gel showing the result of Taq Polymerase Stop 
assay for DRG-16 / ELB-21/ Cisplatin in pUC18 plasmid DNA. 
Drug treatments were for two hours at 37 °C. The main blocks to 
the polymerase by DRG-16 and ELB-21 are indicated by arrows. 
Sites of runs of guanines which form adducts with cisplatin are also 
indicated.

a: control
b-e: DRG-16 (0.1, 0.3, l,3pM ) 
f-i: ELB-21 (0.1, 0.3, l,3pM ) 
j-k: Cisplatin (0.1, lpM)



3.3.3 Determination of Binding Sites using DNase I Footprinting

DNase I footprinting was used in an attempt to determine the sequence 

specificity for both covalent and non-covalent interactions of the PBD dimers with 

naked DNA. The experiments were carried out over a small concentration range to 

facilitate comparison of DNA binding of the four dimers. Areas of DNase I protection 

due to drug binding, or footprints, were assigned by eye as discrete regions of 

diminishing band intensity across all the lanes, where the intensity at these sites 

decreased with increasing drug concentration.

Where protection extended over a large number of base pairs at high 

concentrations, the primary site was assigned from the area protected at the onset of 

footprinting. Extended areas of protected DNA sequence seen at high drug 

concentrations only were not assigned as footprints, but as a non-specific binding due to 

drug saturation. Experiments were carried out on a GC-rich region of pUC18 plasmid 

DNA and an AT-rich region of pBR322 plasmid DNA. Footprinted sequences were 

identified by comparison with the corresponding region in GA sequencing lanes run 

alongside the footprinting reactions on each gel. In addition, sites of enhanced cleavage 

by DNase I, resulting from specific drug binding, were observed. In some cases it was 

difficult to assign specific recognition sites due to large areas of DNase I protection. 

This may be the result of overlapping binding sites or lack of cleavage by DNase I in 

control samples.
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Figure 3.13 Autoradiograph of a gel showing the result of Taq Polymerase Stop 
assay for DRG-16, SJG-136 and Cisplatin in pUC18 plasmid DNA. 
Drug treatments were for two hours at 37 °C. The main blocks to the 
polymerase by DRG-16 (blue) and SJG-136 (green) are indicated by 
arrows. Sites of runs of guanines which form adducts with cisplatin 
are also indicated (red), 

a: control
b-e: DRG-16 (0.05, 0.075, 0.1, 0.3, 0.5, 0.75pM) 
f-i: SJG-136 (1,3, lOpM) 
j-k: Cisplatin (lpM)
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930
1
AAACCCGACA GGAC TATAAA GATAC CAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC
TTTGGGCTGT CCTGATATTT CTATGGTCCG CAAAGGGGGA CCTTCGAGGG AGC AC GCGAG

990
11
TCCTGTTCCG ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT
AGGACAAGGC TGGGACGGCG AATGGC C TAT GGACAGGCGG AAAGAGGGAA GCCCTTCGCA

Figure 3.14. DNA sequence of region in pUC18 plasmid DNA highlighted in 
Figure 3.13 showing the sites of interaction for cisplatin (green), and 
potential alkylation sites of DRG-16/ ELB-21 (red) and SJG-136 
(blue).

Cisplatin 
—  DRG-16/ELB-21  

■ ■ " SJG-136
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The autoradiograph in Figure 3.15 shows the footprinting sites of DRG-16 and 

ELB-21 in a GC-rich region from pUC18. DRG-16 and ELB-21 both showed very 

similar patterns of DNase I protection. However, the footprints were observed at lower 

concentrations with DRG-16 than with ELB-21. DRG-16 showed distinct footprints at 

0.3//M (lane b) whereas ELB-21 showed the same level of protection at IptM (lane h). 

With both drugs, extensive and non-specific interaction was evident at 5j*M. The three 

strongest bands of DNase I protection are indicated by white boxes and are also shown 

in Figure 3.16. The areas of protection span more base pairs than can be covered by a 

single drug molecule and it is therefore difficult to assign accurately the exact binding 

sites. No clear consensus binding sites are evident.

Figure 3.16 shows the autoradiograph of the binding sites of SJG-136, DRG-16 

and ELB-21 in the same pUC18 fragment. DRG-16 and ELB-21 produced the same 

sites of interaction as shown in Figure 3.15 (indicated by boxes) and again DRG-16 

produced footprints at a lower concentration. SJG-136 showed fewer and smaller 

footprints in this same fragment compared to DRG-16 and ELB-21, which are only 

observed at 3pM. Two sites, indicated by shaded boxes are shown in Figure 3.16. In 

addition, several drug-enhanced cleavage sites are observed with SJG-136, which are 

not observed with DRG-16 and ELB-21 (two are indicated by arrows).
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Figure 3.15 Autoradiograph of a gel showing the footprinting results for 
DRG-16 and ELB-21 in pUC18 plasmid DNA, showing multiple 
binding sites. Footprints observed at the lower concentrations are 
indicated by boxes.

a. Control (cleaved)
b-e. DRG-16 (0.3, 0.5, 1,5//M)
f-i. ELB-21 (0.3, 0.5, 1, 5/dVl)
j. G+A marker lane
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Figure 3.16 Autoradiograph of a gel showing the footprinting results for DRG-16, 
ELB-21 and SJG-136 in pUC18 plasmid DNA, showing multiple binding 
sites. Footprints observed at the lower concentrations for DRG-16 and 
ELB-21 are indicated by boxes. Footprints observed at the higher 
concentration for SJG-136 are also indicated by shaded boxes. Enhanced 
cleavages observed at the higher concentrations are indicated by arrows.

a. control (uncleaved)
b. control (cleaved)
c-e. DRG-16 (0.3, 1, 3pM)
f-h. ELB-21 (0.3, l,3nM )
i-j. SJG-136 (1, 3pM)
k. G+A marker lane



Enhanced cleavage is a clear evidence of drug interaction with the DNA causing 

DNA distortion and hence the enzyme to cleave at different sites. Box diagrams 

showing the multiple binding sites of DRG-16, ELB-21 and SJG-136 at the higher 

concentrations in pUC18 plasmid DNA are shown in Figure 3.17.

Figure 3.18 shows the autoradiograph of the binding sites of AT-150, DRG-16 

and ELB-21 in an AT-rich region of pBR322. Higher concentrations were required for 

all three dimers to protect from DNase I cleavage compared to the GC-rich pUC18 

fragment. Three compounds showed similar regions of protection (indicated by boxes) 

and are shown by box diagrams in Figure 3.19. With DRG-16 and ELB-21 weak 

footprints were observed at lpM  and more extensive protection at lOpM. Footprints 

were only observed at lOpM with AT-150. Similarly to SJG-136, enhanced cleavage 

was observed with AT-150 at the highest dose, which is not observed with DRG-16 or 

ELB-21 (indicated by arrows), again indicating a different interaction with the DNA.

Figure 3.20 shows the autoradiograph of the footprinting gel of AT-150, DRG- 

16, ELB-21 (as shown in Figure 3.18) and including a monofunctional PBD compound, 

GWL-6 (see Chapter 4). This figure includes the top portion of the gel, above the band 

of full length fragment (indicated by closed arrow). At the highest doses of the PBD 

dimer compounds, bands of high molecular weight DNA are observed above the full 

length fragment (indicated by open arrow). This may be due to DNA interstrand 

crosslinking by the dimer compounds.
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GCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCA
CGGCGCAACGACCGCAAAAAGGTATCCGAGGCGGGGGGACTGCTCGTAGT
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CAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAG
gtttttagctgcgagttcagtctccaccgctttgggctgtc

Figure 3.17. Box diagrams showing the multiple binding sites of DRG-16, 
ELB-21 and SJG-136 at the higher concentrations in pUC18 
plasmid DNA.

DRG-16 and ELB-21 

SJG-136
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Figure 3.18
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Autoradiograph of a gel showing the footprinting results for AT-150, 
DRG-16 and ELB-21 in pBR322 plasmid DNA, showing multiple 
binding sites. Enhanced cleavage observed at the higher 
concentration of AT-150 is indicated by arrows, 

a. control
b-d. AT-150 (0.1, 1, 10 piM)
e-g. DRG-16 (0.1, 1, 10 piM)
h-j. ELB-21 (0.1, 1, 10//M)
k. G+A marker lane
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5270 3280 3290 3300
l I 1 1

AT ATGAGTAAAC TTGGTC TGAC AGTT ACC AATGC 
TAT AC TC ATTTGAACC AGACTGTC AATGGTT AC G

Figure 3.19 Box diagrams showing the multiple binding sites of DRG-16, 
ELB-21 and A T-150 at the higher concentrations in plasmid 
pBR322 DNA.

DRG-16, ELB-21, AT-150
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Figure 3.20 Autoradiograph of a gel showing the footprinting results for AT-150, 
GWL-6, DRG-16 and ELB-21 in pBR322 plasmid DNA, showing 
multiple binding sites. The high molecular weight of the crosslinked 
adducts of AT 150, DRG-16 and ELB-21 are observed at the top. 

a. control
b-d. AT-150 (0.1, 1, 10 jiM)
e-h. GWL-6 (0.1, 1, 10, 100 //M)
i-k. DRG-16 (0.1, 1, 10 piM)
1-n. ELB-21 (0.1, 1, 10 jiM)
o. G+A marker lane



In the case of GWL-6 (lanes e-h), although clear evidence of sequence selective binding 

is observed, no high molecular weight bands are evident, even at lOOpM. This 

compound, containing only a single PBD moiety cannot form DNA interstrand 

crosslinks.

3.4 Discussion

Between the pair of C2/C2’-exo-methylene PBD dimers, SJG-136 and DRG-16, 

which contain a diether linkage (C8-0-(CH2)n-0-C8’ where n = 3 and 5, respectively), 

DRG-16 exhibited a higher crosslinking efficiency than SJG-136 by approximately 8- 

fold. Within the pair of C2/C2’-exo-ethylene PBD dimers, AT-150 and ELB-21, 

enhanced crosslinking activity by approximately 16-fold was observed with the 

increased linker length. This was in contrast to the parent dimer pair, DSB-120 and its 

longer analogue AT-286 (n = 5), which was previously shown to have a similar level of 

crosslinking (Bose et a l , 1992a, b; Smellie et al., 2003).

DNA interstrand crosslinks in K562 cells evaluated using the comet assay also 

showed more efficient crosslinking activity of the 5 methylene linked compounds, 

DRG-16 and ELB-21, compared to their 3 linked analogues, SJG-136 and AT-150, 

respectively. These results demonstrate that the DNA interstrand crosslinking ability in 

cells follows that observed in naked DNA. Time course results of the same assay 

showed that in all cases crosslinks form rapidly in cells and that no repair of DNA 

interstrand crosslinking induced by the four PBD dimers is evident up to 48 hours.
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These latter results are supported by the molecular modelling of SJG-136 and its 

analogues being relatively non-distorting for the DNA helix (Gregson et a l , 2001b) 

suggesting that these crosslinks on DNA will not be recognised easily by the repair 

mechanisms. Molecular modelling shows that the interstrand crosslinking adduct of 

DRG-16 is more favoured compared to the formation of an SJG-136 adduct (Gregson et 

al., 2004). In contrast, extension of DSB-120 to AT-286 is disfavoured in overall 

energy for the equivalent crosslinked adducts (Smellie et a l , 2003). Such energetic 

differences may be explained in terms of superior accommodation of the C2-exo-PBD 

rings within the minor groove cavity of the host DNA molecule. Steric hindrance 

between the groove walls and the ring C2-hydrogens of DSB-120/AT-286 is avoided in 

the case of SJG-136/DRG-16/AT-150/ELB-21 (Gregson et a l, 2004). Importantly, the 

C2-exo-unsaturated C-ring (of SJG-136/DRG-16/AT-150/ELB-21) provides a more 

isohelical fit within the minor groove and hence facilitates improved groove penetration 

for ligand accommodation. This is why crosslinking by SJG-136 and DRG-16 is 

favoured compared to that of DSB-120 and AT-286, due to snug shape complementarity 

and avoidance of groove perturbation. In the case of the C2-saturated dimers {i.e., DSB- 

120), localised wall distortions induced by the two C-rings are spread out within the 

spanned site to prevent a full isohelical drug fit of the PBD units and the tethering 

diether linkage (Gregson et a l , 2004). This perturbation is effectively excluded with the 

C2-exo-unsaturated dimers (SJG-136/DRG-16/AT-150/ELB-21).
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The DNA interstrand crosslinking results of the four drugs in naked DNA and in 

cells follow the same general trend as their in vitro cytotoxicity. DRG-16 was more 

potent by at least 25-fold compared to SJG-136 in K562 cells following a 1 hour 

exposure. Similarly, ELB-21 was at least 7-fold more cytotoxic compared to AT-150. In 

the n = 3 linked compounds AT-150 was more potent than SJG-136. The IC50 values 

obtained were considerably lower than those of DSB-120 (n = 3) and AT-286 (n = 5) 

that had IC50 = 0.2 and 0.5 pM, respectively, in the K562 cell line following a 1 hour 

exposure (Smellie et a l , 1994). Interestingly, in this pair the n = 5 compound was 

slightly less cytotoxic than the n = 3 compound.

DRG-16 was found to be significantly more potent than SJG-136 in the NCI 60 

cell line panel confirming the results found here (Gregson et al., 2004). The GI50 values 

of DRG-16 ranged from 0.001 to 7.94nM (mean = 0.12nM) following continuous 

exposure compared to a range of 0.14 to 324nM (mean = 7.41nM) for SJG-136. 

Enhancement of cytotoxicity of DRG-16 compared to SJG-136 in individual cell lines 

ranged from a factor of ~30-fold for UACC-257 (melanoma) to >3000-fold for 

IGROV1 (ovarian) (Gregson et al., 2004). The cytotoxicity results for the novel dimers 

therefore support the original theory that the unsaturation at C2/C2’- positions of the 

four novel dimers, which subsequently reduce the electrophilicity of the molecule 

compared to DSB-120 that has a saturated C2/C2’, results in the improved 

accommodation within the minor groove of DNA. This then provides an efficient 

interstrand crosslinking opportunity, which results in the enhanced cytotoxicity of the
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drugs. The activity in vitro also translates, in the case of SJG-136, into potent in vivo 

activity and has resulted in SJG-136 entering clinical trials (Hartley et a l , 2004; Alley 

et al, 2004). DRG-16 has also been shown recently to have significant antitumour 

activity in vivo (J. Hartley, personal communication).

Efficiency of crosslinking in naked DNA was reflected in efficient crosslinking 

in cells. Therefore, the gel assay (to detect crosslinking in naked DNA) is a good 

indicator of crosslinking in cells for PBD dimers as has been shown for major groove 

crosslinking agents such as the nitrogen mustards (Sunters et a l, 1992). The values of 

50% crosslinking in naked DNA (XL50) are similar to those in cells (ICL50) suggesting 

that the dimers are able to get into cells/nuclei efficiently. Also, since the IC50 values 

correlate with the XL50 values in most cases, this suggests that interstrand crosslinking 

is the cytotoxic lesion produced by these molecules.

Thermal denaturation studies using calf thymus (CT) DNA as a host DNA 

duplex has been used to rank the reactivity of the PBD dimers (Gregson et a l, 2004). 

Among the DSB-120 homologues (n = 1 - 4), DSB-120 (n = 3) and AT-286 (n = 5) 

previously showed much better DNA reactivity than n = 2 and 4 compounds (Bose et 

a l, 1992a, b; Thurston et a l, 1996). In terms of induced ATm shift, SJG-136 and DRG- 

16 were similarly more effective than DSB-120 and AT-286 [i.e., ~8-fold higher for 

DRG-16 versus DSB-120 homologue without DNA-drug incubation (t = 0 h)], but also 

showed this effect faster. Therefore, while DSB-120 and AT-286 gave 68 and 35% of
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their maximum (i.e., at t = 18 h) effect without prolonged DNA-drug contact (i.e., at t = 

0 h), this level increases to 76 and 97% for SJG-136 and DRG-16, respectively. From 

this it was concluded that DRG-16 is an unusually rapid and efficient modifier of 

duplex DNA. This may explain the results of the time course for interstrand 

crosslinking in cells of the four novel dimers. After a 1 hour of exposure of K562 cells, 

the peaks of crosslinks induced by all four dimers were reached in under 4 hours. In 

contrast, the peak of crosslinking observed after a 1 hour exposure of the same cells to 

the conventional major groove crosslinking agent melphalan was found to be ~16 hours, 

and clear evidence of loss of crosslinks was observed at 48 hours (Hartley et al., 2004).

Restriction endonuclease inhibition studies have been utilised to find the relative 

binding affinity of DNA-interactive small molecule ligands (Balcarova et al., 1992; 

Brabec et al., 1993). Anthramycin was the first PBD molecule to be shown to have the 

ability to inhibit restriction endonucleases (Sumner and Bennett, 1981). More recently a 

quantitative restriction enzyme digest (RED 100) assay was developed in which the 

inhibition of DNA cleavage by BamW 1 was used to probe the DNA binding behaviour 

of PBD monomers (Puvvada et al., 1993). This technique was also used to study the 

covalent interaction of PBD dimers while clearly discriminating between the monomers 

and dimers. BamHl was used as an endonuclease as its sequence preference for 

cleavage contains the 5’-GATC motif, which is favoured by DSB-120 and SJG-136 

(Gregson et al., 2004). The total percentage of cut DNA produced from restriction 

endonuclease digestion decreased as the concentration of the PBD molecule increased. 

It was shown that DRG-16 was the most effective of three dimers examined followed
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by SJG-136 then DSB-120, while the monomer anthramycin was significantly less 

active. This study also correlates the results of DNA interstrand crosslinking and the in 

vitro cytotoxicity of these dimers. Furthermore, anthramycin was found to bind to DNA 

more rapidly compared to the dimers in a time course experiment. It was suggested that 

the greater sequence selectivity of binding of the dimers may lead to a kinetically 

limiting requirement to find a suitable binding site, and that a longer time interval may 

be required to target and bind to such sites since there are fewer appropriate DNA 

binding sites available for dimers compared to monomers (Gregson et al., 2004). 

Nevertheless the PBD dimers form crosslinks much more rapidly than many 

conventional major groove crosslinking agents.

It was shown in previous studies that the PBD dimers DSB-120 (n = 3) and 

AT286 (n = 5), span 5’-Pu-GATC-Py and 5’-Pu-GA(A/T)TC-Py, respectively, through 

interstrand crosslinking with a high degree of selectivity, with AT-286 showing some 

binding also in the shorter site 5’-Pu-GATC-Py (Smellie et al., 2003). Also molecular 

modelling studies of SJG-136 and DRG-16 for the same interstrand DNA crosslinking 

sites indicated that DRG-16 is a superior ligand compared to SJG-136 (Gregson et al., 

2004). It was suggested that this is partly due to the longer length of DRG-16 compared 

to SJG-136 and the greater opportunities for contact with the walls of the minor groove. 

Therefore, it was expected that SJG-136 / AT-150 pair and DRG-16 / ELB-21 pair 

would form interstrand crosslinks at 5’-Pu-GATC-Py and 5’-Pu-GATTC-Py, 

respectively, with the longer linker pair potentially forming crosslinks also in the shorter
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5’-GATC. The molecular modelling showed that the linker group of the longer dimer is 

snugly held by the hydrophobic walls of the DNA minor groove in the case of 5’- 

GATTC, but is partly displaced away from the helix and compacted by internal 

conformational rotation to achieve crosslinking within the shorter 5’-GATC tract. 

However, the results obtained in short synthetic oligonucleotides were not as expected. 

SJG-136 and AT-150 showed formation of interstrand crosslinking in both sequences, 

5’-GATC and 5’-GATTC with AT-150 crosslinking much less intensely in the 5’- 

GATTC sequence. On the other hand, the longer dimers, DRG-16 and ELB-21, both 

formed interstrand crosslinks in 5’-GATC sequence at higher concentration with no 

detectable crosslinking in the 5’-GATTC sequence. DRG-16 and ELB-21 had bands 

just above the single strand lanes at a higher concentration suggesting that there may be 

formation of mono-alkylated adducts of these drugs instead of interstrand crosslinks. 

Similar bands of possible monoalkylation were also observed in the previous study of 

Smellie et al. (Smellie et al., 2003). In the present study, n = 3 PBD dimers, SJG-136 

and AT-150, showed crosslinking across not only 4 base pairs but also 5 base pairs, 

although much less intensely. This was not predicted from the molecular modelling 

studies as it infers that there would be helical distortion on DNA if SJG-136/AT-150 

were to crosslink across 5 base pairs. On the other hand, n = 5 PBD dimers, DRG-16 

and ELB-21, were found to only crosslink across 4 base pairs under the assay condition, 

which again was not predicted by the molecular modelling studies. Unfortunately in this 

assay, a very small % of crosslinks is observed therefore it may not be the optimal assay 

to observe the efficiency of crosslinking using such small oligonucleotides.

163



Sites of covalent interaction in a linearised pUC18 plasmid DNA were 

investigated using the Taq polymerase stop assay. Since cisplatin showed binding to the 

expected sequences and at the doses used previously (Ponti et al., 1991), the assay is 

proved to be working. However, there was very little evidence of covalent binding for 

the PBD compounds. This may be due to the PBD-DNA adduct being thermally 

unstable. High temperature (94 °C for 1 min) is involved in the PCR cycle, which may 

cause the PBD molecule to dissociate from the DNA. In addition, covalent linkage of 

the two strands of DNA produced by an interstrand crosslink will prevent separation of 

the two strands, which is required for the progress of the polymerase. It is therefore not 

clear how close to an interstrand crosslink the Taq polymerase can act. DRG-16 and 

ELB-21 showed more binding sites and also interaction at lower concentrations 

compared to SJG-136 or AT-150. This may be because the longer linked dimers are 

more stable when bound to DNA under the conditions applied. It was shown that DRG- 

16 and ELB-21 bind to different sites compared to SJG-136 and AT-150. In addition, a 

different pattern of enhanced cleavage by DNase I is observed between the shorter 

dimers and the longer dimers, again suggesting different interaction with the DNA.

Both covalent and non-covalent interactions of these compounds with DNA 

were determined by using a DNase I footprinting technique with a GC-rich region in 

pUC18 and an AT-rich region in pBR322 DNA fragments. Results showed that DRG- 

16 and ELB-21 compounds had the same binding sites, with DRG-16 having a much 

stronger binding affinity. SJG-136 and AT-150 bound with a different selectivity to
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DRG-16 and ELB-21 and with lower affinity. There was significantly more interaction 

in the GC-rich region compared to AT-rich region, which correlates with the known fact 

that PBDs bind to guanine. There are a few 5’-GATC-3’ sequence sites in the pBR322 

fragment used. However, only one of the 5’-GATC-3’ sequence sites was bound by the 

PBD dimer compounds, and also with weak intensity. This was unexpected as other 

reported data of DNase I footprinting studies for SJG-136 using a different DNA 

plasmid showed binding to 5’-GGATCC-3’ with the highest intensity among the other 

sequences observed (Martin et al., 2005). In addition, since it was 5’-GATCC-3’ 

sequence that the dimers bound, it may be possible that the longer dimers DRG-16 and 

ELB-21 were crosslinking 5 base pairs instead of 4 base pairs as predicted in the 

molecular modelling studies. Furthermore, even if the drugs are producing crosslinks it 

may not be possible to observe such sites because of the high molecular weight of the 

crosslinked adducts (as observed in Figure 3.20) that are not digested by DNase I. 

Therefore it could be concluded that the binding sites observed in the footprinting 

results may be either mono-alkylated adducts, or non-covalent adducts, rather than 

crosslinking products by the PBD dimers.

In summary, the four dimers tested in this chapter showed highly efficient 

interstrand crosslinking ability, sequence selectivity, and significant cytotoxicity in 

vitro. The interstrand crosslinks in cells induced by all the dimers were not repaired 

over 48 hour period. The n = 3 linked dimers, SJG-136 and AT-150, are similar in 

activity, and since SJG-136 has been selected for clinical trials and shown promising
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results so far, the further development of AT-150 in vivo is probably not warranted. The 

n = 5 linked dimers, DRG-16 and ELB-21, were more efficient in interstrand 

crosslinking and more cytotoxic than the n = 3 linked dimers. The sequence selectivity 

studies indicated that they may bind to different sites to the n = 3 linked dimers which 

could infer a different mode of action. Therefore these drugs may be of interest for 

further pre-clinical development. Indeed, DRG-16 is currently undergoing in vivo 

evaluation and is demonstrating significant antitumour activity in vivo.
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CHAPTER 4

EVALUATION OF NOVEL PYRROLO [2,1 -c] [1,4] 

BENZODIAZEPINE (PBD) COMPOUNDS

4.1 Introduction

In the attempt to obtain drugs with increased cytotoxicity and/or enhanced 

sequence selectivity, two series of novel PBD dimers and PBD conjugates have been 

synthesised and the evaluation of biological activity for these compounds will be 

presented in this chapter. The novel PBD dimers that were synthesised include SJG- 

428, SJG-570, LCF-178 (Figure 4.1), KG-2, KG-3, SJG-604 and SJG-605 (Figure 4.2). 

The novel PBD conjugates include a tripyrrole PBD conjugate, a series of aniline 

mustard PBDs and several novel C2-aryl PBD monomers.

Based on the molecular modelling study of a C-C2/A-C8 linked PBD dimer that 

is potentially an intra-strand crosslinker, two novel PBD dimers, SJG-428 and SJG-570, 

were synthesised. Each compound consists of two DC-81 subunits that are tethered 

through their C-ring and A-ring via an amide linker. These compounds were synthesised 

in an attempt to examine the biological activity of novel linked dimers beyond the C- 

C8/C-C8’ linked dimers (Chapter 3) and the recently reported C-C2/C-C2’ linked 

dimers (Reddy et a l , 2000), although the crosslinking efficiency for the latter 

compound has not been reported. SJG-428 and SJG-570 differ in that the substituent at 

A-C7 of the dimer is hydrogen for SJG-428 and a methoxy group for SJG-570.
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Similarly, as SJG-428 and SJG-570 are potential intra-strand crosslinking agents, 

LCF178 with a longer linkage between the two monomer PBD units was synthesised in 

an attempt to introduce flexibility into the molecule and hence the potential to be an 

inter-strand crosslinker.

H3CO

SJG-428 : R = H 
SJG-570 : R = OCH3

LCF178

Figure 4.1 Structures of C-C2/A-C8 linked dimers.



KG-2

CH30

KG-3

o

CH3

SJG-604

SJG-605

Figure 4.2 Structures of novel A-C8/A’-C8’ linked PBD dimers.
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KG-2 and KG-3 contain two DC-81 subunits tethered through their A-C8/A’- 

C8’ positions via ethyl- and propyl- diamide linkages, respectively (Figure 4.2). They 

differ in symmetry where KG-2 is asymmetrical while KG-3 is symmetrical.

Another pair of novel PBD dimers, SJG-604 and SJG-605 (Figure 4.2), was 

synthesised. They are linked via N-methylpyrrole, which is the distamycin subunit, 

through the A-C8/A’-C8’ positions of the PBD. Unlike the dioxyether linkage of SJG- 

136 analogues, these dimers contain a potential non-covalent DNA recognition (i.e., AT 

base) moiety in the linker. They differ also in the symmetry where SJG-604 is 

asymmetrical and SJG-605 is symmetrical.

A series of novel PBD-aniline mustards (Figure 4.3) have been synthesised and 

their biological activities have been evaluated. This series of compounds include ones 

that consist of a single PBD tethered to either one or two nitrogen mustard moieties. It 

was shown previously that Tallimustine, a nitrogen mustard-polyamide conjugate 

(Chapter 1) was found to alkylate within the minor groove of DNA rather than in the 

major groove as found with non-tethered mustards (Broggini et al., 1995). Hence, it was 

of interest whether a minor groove alkylating PBD combined with a major groove 

crosslinking nitrogen mustard would behave in a similar way and have any significant 

biological activity. They were tested for their interstrand crosslinking activity in naked 

DNA and cytotoxicity evaluated.
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A series of PBD-oligopyrrole amide conjugates was designed and synthesised 

with the aim to obtain a new derivative that would have different, or increased, 

sequence selectivity over the component moieties. An earlier study with a similar series 

of compounds differing in the C-terminus end subunit to that of distamycin, showed that 

the increase in the length of the polypyrrole backbone led to an increase in cytotoxicity 

in vitro (Baraldi et al., 1999). They were much more active than their parent compounds 

that contained the same number of pyrrole units but no PBD. Only the molecules with 

tri- and tetra-pyrrole units, however, showed higher antiproliferative activity than the 

PBD unit alone. Tri- and tetra-pyrrole hybrids have higher binding affinities with 

respect to the mono- and di-pyrrole conjugates, due to additional amido hydrogen bonds 

and van der Waals interaction. The series of novel synthesised compounds include 

GWL-6 (Figure 4.4), which consists of PBD attached to three pyrrole units and its 

biological evaluation is presented in this chapter. The tri-pyrrole containing compound, 

distamycin A, binds non-covalently to AT-rich region of DNA whereas a PBD 

covalently binds to guanine. GWL-6 differs in the end of the tripyrrole unit having an 

ester rather than an amidine in the case of distamycin, and it was examined for its 

cytotoxicity and sequence selectivity.

The importance of unsaturation on the C ring of a PBD molecule has been 

considered to be a responsible factor for increased cytotoxicity of PBD molecules such 

as anthramycin, sibiromycin (C2-en<fo/e;t0-unsaturated) and tomaymycin (C2-exo- 

unsaturated) as described in Chapter 1. The explanation for this is that the molecule is 

able to fit better into the minor groove of DNA without causing steric hindrance
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(Puvvada et al., 1993; Gregson et al., 2000). As anthramycin binds to DNA more 

efficiently, a series of novel PBD-C2-aryl compounds with different aryl groups have 

been synthesised while retaining the Cl-endo/exo-unsteuration of the PBD. Compounds 

evaluated are NC020, NC048 and NC053 (Figure 4.5), in which the substituent at C2 

are toluyl, biphenyl and naphthyl, respectively. These molecules were compared for 

their cytotoxicity and sequence selectivity.

H

H3CO‘
CK

Figure 4.4 Structure of GWL-6.
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Anthramycin

NC 020

NC 048

NC 053

Figure 4.5 Structures of anthramycin and novel PBD-C2-aryl compounds.

175



4.2 Results

4.2.1 Novel PBD Dimers

The novel C-C2/A-C8 linked PBD dimers, SJG-428 and SJG-570 were tested 

for their crosslinking efficiency. Although both of the compounds showed a similar 

DNA interstrand crosslinking ability, they were not as efficient as the C8-C8’ linked 

PBD dimers discussed in chapter 3. Figure 4.6 shows the autoradiograph and its 

corresponding graph of the interstrand crosslinking gel of SJG-570 in comparison with 

another interstrand crosslinking dimer, AT-150 (chapter 3). 100% crosslinking was 

observed only at 100//M with SJG-570 while AT-150 produced 100% crosslinking at 

0.1//M. From the dose response curve, 50% crosslinking of each compound is measured 

and it clearly shows that AT-150 is more efficient in crosslinking than SJG-570 by 

approximately 1000-fold.

The XL^ values for SJG428 and SJG-570 were both 25jM  (Table 4.1). These 

compounds were tested for the cytotoxicity and the results showed that although SJG- 

428 and SJG-570 showed very similar abilities to form DNA interstrand crosslinking, 

SJG-428 was not cytotoxic up to 100//M whereas SJG-570 showed a lower IQq value 

of 75/*M.
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Figure 4.6 (A) Autoradiograph of an agarose gel showing DNA interstrand

crosslinking ability of SJG-570 in comparison with AT-150. Drug 

treatment was for 2 hr at 37°C with pBR322 plasmid DNA.

(B) Dose response graph corresponding to the single experiments shown 

in (A). Double- (DS) and single- (SS) stranded DNA were quantified by 

laser densitometry.
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Table 4.1 In Vitro Cytotoxicity Data in K562 cells after 1 hr incubation at 37°C and 

DNA Interstrand Crosslinking Data in pBR322 plasmid DNA after 2 hr 

incubation at 37°C

Compound IC „ (jiM) X L ^ M )

SJG-428 > 100 25 ±5

SJG-570 75 ±5 25 ±1

LCF178 > 100 > 100

KG-2 35 ±7.5 >100

KG-3 > 100 > 100

SJG-604 23 ±5 > 100

SJG-605 1.2 ±0.4 > 100

The C-C2/A-C8 linked dimer with the longer linkage, LCF178, was also tested 

for its crosslinking and cytotoxicity activity. It was less efficient at crosslinking 

compared to the shorter dimers (XL^ >100/*M, Table 4.1) and also it was not cytotoxic 

up to lOO^M (Table 4.1).

The A-C8/A’-C8’ linked dimers, KG-2 and KG-3, also did not show any 

crosslinking up to 100/^M (Table 4.1). However, KG-2 was > 2.8- fold more cytotoxic 

than KG-3. KG-2 was approximately 2-fold more cytotoxic than SJG-570.
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Neither SJG-604 nor SJG-605 showed any interstrand crosslinking up to 100//M 

(Table 4.1). Figure 4.7 shows the autoradiograph of a typical crosslinking gel of SJG- 

604 and SJG-605 in which no interstrand crosslinking was observed up to 50/^M. Both 

molecules, however, showed significant cytotoxicity in K562 cells with IQo = 1.2/^M 

for SJG-605 which is 19-fold lower than that of SJG-604 (IC* = 23//M) (Table 4.1).

SJG-604 SJG-605

C 0 1 10 50 1 10 50 Qi M)

DS

ss

Figure 4.7 Autoradiograph of an agarose gel to examine the DNA interstrand 

crosslinking ability of SJG-604 and SJG-605. Drug treatment was for 2 

hr at 37°C with pBR322 plasmid DNA.

These PBD dimers were also examined for sequence selective interactions by 

using DNase I footprinting and Taq polymerase stop assays in a region of pBR322 

DNA. Figure 4.8 shows one example of the footprinting results for SJG-428 and SJG- 

570, compared to the PBD dimer AT-150 (Chapter 3). No evidence of DNase I
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protection was observed, up to 100//M with either SJG-428 or SJG-570 (lanes g-1), 

whereas AT 150 clearly showed footprints at a concentration of 10//M (lane d). Using 

the Taq stop polymerase assay, no evidence of DNA interaction was observed up to 

lOOpiM with SJG-428 or SJG-570 (data not shown).

Identical analysis of dimer compounds, LCF178, KG-2, KG-3, SJG-604 and 

SJG-605 similarly gave no evidence of interaction by footprinting and Taq polymerase 

inhibition up to 100//M (data not shown).

4.2.2 Novel PBD-aniline mustards

This series of compounds containing two alkylating moieties, a PBD and a 

nitrogen mustard (Figure 4.3), were evaluated for cytotoxicity, and DNA interstrand 

crosslinking activities in naked DNA. The IC^ values for these compounds ranged from 

0.087 to 65//M (SL-285 to GD10 in Table 4.2). The most cytotoxic compound was GD3 

(IC^ = 0.087 piM), which was the only one that showed significant crosslinking ability 

in naked DNA (XL^ = 8 piM) under the conditions employed. Figure 4.9 shows the 

autoradiograph of a typical interstrand crosslinking gel for GD3 and GD4, in which 

possible loss of DNA with GD4 is observed at 50 piM. The control nitrogen mustard, 

chlorambucil, had an XL^ = 75 piM under the conditions employed (CM in Table 4.2).
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a b c d e f g h i  j k 1

Figure 4.8 Autoradiograph of a gel showing the results of the footprinting 
assay for AT-150, SJG428 and SJG570 in pBR322 plasmid 
DNA after 2 hr incubation at 37°C. 

a. control
b-f. AT-150 (0.1, 1. 10, 50, 100 piM) 
g-i. SJG-428 (1, 10, 50 jiM) 
j-1. SJG-570 (1, 10,50/<M)



Table 4.2 In Vitro Cytotoxicity Data in K562 cell lines after 1 hr incubation at 37°C 

and DNA interstrand crosslinking data in pBR322 plasmid DNA after 2 hr 

incubation at 37 °C.

Compound IC^ (//M) XL^ (//M)

SL285 5 ±0.74 > 100

GDI 65 ±5 >100

GD2 2.45 ± 0.55 > 100

GD3 0.087 ±0.057 8 ±1.2

GD4 7 ± 1.53 > 100

GD5 30 ± 6.5 > 100

GD6 0.58 ±0.16 > 100

GD7 1.5 ±0.3 > 100

GD8 1.6 ±0.2 > 100

GD10 4.5 ±0.35 > 100

E11BDM >100 >100

E11CDM >100 >100

P11BDM >100 >100

P11CDM >100 >100

BMO >100 > 100

BM >100 > 100

PM 16 ±8 > 100

CM 58.8 ±4.3 75 ±5
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Figure 4.9 (A) Autoradiograph of an agarose gel showing DNA interstrand

crosslinking ability of GD3 and GD4. Drug treatment was for 2 hr at 37C 

with pBR322 plasmid DNA.

(B) Dose response graph of GD3 corresponding to the single experiments 

shown in (A). Double- (DS) and single- (SS) stranded DNA were 

quantified by laser densitometry.
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Compared to chlorambucil, GD3 was approximately 9-fold more efficient in 

crosslinking. The IQo value of GD3 was however approximately 675-fold lower than 

chlorambucil (Table 4.2). None of the PBD-di-aniline mustards showed crosslinking 

activity up to 100/zM (E11BDM to P11CDM in Table 4.2). These compounds did not 

show any cytotoxicity up to 100//M. The bi-functional chlorambucil analogues (PM and 

BM) did not produce any crosslinks up to 100//M, however, PM was 3.6-fold more 

cytotoxic (IQq = \6piM) than chlorambucil (IQo = 58.8//M) (Table 4.2). The 

monofunctional alkylating agent BMO did not produce any crosslink as expected.

These compounds were also tested for any sequence selectivity using DNase I 

footprinting and Taq polymerase stop assays. Figure 4.10 shows one example of the 

footprinting result for GD3, GD4, GD5 and GD6 in contrast to the PBD monomer 

GWL-6 (Section 4.2.2). Except for GD4 (lanes i, j), no strong evidence of DNase I 

protection was observed up to 100//M with the PBD-aniline mustards (lanes g, h, k-n). 

GD4 shows weak footprinting at 100//M. In contrast, GWL-6 clearly showed footprints 

at a concentration of 10//M (lane e). None of the other PBD-mustards or the 

chlorambucil analogues showed any clear binding sites within the region of pBR322 

DNA tested up to 100/4 M (data not shown). No evidence of DNA covalent interaction 

of any of the compounds was observed in the Taq polymerase stop assay at a dose up to 

100/iM (data not shown). Taken together these results suggest that the cytotoxicity of 

the compounds when observed is not due to DNA interaction.
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4.2.3 Novel PBD-Tri-Pyrrole Amide

The mono-functional novel compound, GWL-6, showed significant cytotoxicity in the 

K562 cell line with an IQ q value of 0.5 ± 0.058//M. The DNA binding site of GWL-6 

was determined by using DNase I footprinting in an AT-rich region of pBR322 DNA. 

Figure 4.11 shows the autoradiograph of the footprinting result. The compound showed 

clear footprints at 10//M (lane c). The strongest footprint site is at 5’-3199AGATTAT3205- 

3’ as indicated in the autoradiograph. There is also evidence of enhanced cleavage 

observed at the concentration of 10//M (as indicated by the arrow in Figure 4.11).

4.2.4 Novel PBD-C2-Aryls

Novel PBD compounds with various C2 aryl substituents; NC020, NC048 and 

NC053, were investigated (Figure 4.5). As seen in anthramycin, these compounds retain 

the C2-endo-exo unsaturation (coloured red). A summary of cytotoxicity data for these 

compounds is shown in Table 4.3.
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Figure 4.10 Autoradiograph of a gel showing the footprinting results for GWL-6, GD3, 
GD4, GD5 and GD6 in pBR322 plasmid DNA. Weak footprinting observed 
with GD4 indicated by an arrow.

a. control
b-f. GWL-6 (0.01, 0.1, 1, 10, 100/iM)
g-h. GD3 (50, 100/iM)
i-j- GD4 (50, 100//M)
k-1. GD5 (50, 100//M)
m-n. GD6 (50, 100//M)
0. G+A marker lane



a b e d  e

5’- AGATTAT

Figure 4.11 Autoradiograph of a gel showing the results of the footprinting assay 
for GWL-6 in pBR322 plasmid DNA after 2 hr incubation at 37°C. The 
strongest footprint within this sequence is indicated with a box on the 
left of the gel. An example of enhanced cleavage is indicated by an 
arrow on the right of the gel.

a. Control
b. 1
c. 10
d. 100 (piM)
e. G+A marker lane



a b e d  e f g h i j k

3181

3206

3223

Figure 4.12. Autoradiograph of a gel showing the footprinting results for NC020,
NC048 and NC053 in pBR322. The main binding sites are indicated by 
arrows.

a. control
b-d. N020 (1, 10, 50 piM)
e-g. N048 (1, 10, 50 piM)
h-j. NC053 (1, 10, 50 piM)
k. G+A marker lane



T ab le  4.3 In Vitro MTT Cytotoxicity Data for NC020 / NC048 / NC053 in the 

K562 cell line after lhr incubation at 37°C.

Compound IC* (jiM)

NC020 0.0475 ± 0.0075

NC048 0.23 ±0.05

NC053 0.0175 ± 0.0025

Figure 4.12 shows the autoradiograph of the binding sites of these compounds and 

Figure 4.13 shows the box diagram corresponding to the binding sites in comparison to 

G W L-6. DNase I footprinting in the AT-rich region of pBR322 DNA showed that all 

three compounds bound at the same sites indicated by the arrow in the gel. These sites, 

31835 ’-A G G -3’3185, 32115’-AGG-3’3213 and 32245’-AGA-3’3226, correspond to known 

preferred Pu-G-Pu sites for PBD monomer compounds. However, the binding affinities 

of N C 020 and NC053 were higher showing the footprints at 10//M compared to NC048, 

w hich only showed very weak footprints at 50//M. This result correlates with the 

cytotoxicity results where NC020 and NC053 are more potent than NC048.
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^090 3100 3110 3120 3130 3140

GCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGG
CGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTAGGAAACTCGAAAAGATGCCC

31501 31601 31701 31801 3190l 3200 
J__

GTCTGACGCTCAGTGGAACGAAAACTCACGTTA2 .GGC ATTTTGGTCATG? GATTATCAAA 
CAGACTGCGAGTCACCTTGCTTTTGAGTGCAAT*: CCC TAAAACC AGT AC TICT AATAGu?TT

3710 3770 3130 3240 3250 3260
■ r------ ,  1   ,  i i i i

AAGG^TCTTCACCTAGAtCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTAT
TTCCTAGAAGTGGATCTAGGAAAATTTAATTTTTACTTCAAAATTTAGTTAGATTTCATA

3770 3780 3290 3300
t i l l
ATATGAGTAAACTTGGTCTGACAGTTACCAATGC
TATACTCATTTGAACCAGACTGTCAATGGTTACG

Figure 4.13 Box diagram showing binding sites of GWL-6, NC020, NC048 and 
NC053 in pBR322 plasmid DNA.

I------ 1 GWL-6

I------ 1 NC020/NC048/NC053
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4.3 Discussion

Among the novel PBD dimers that are asymmetrical C/C2-A7C8’ linked 

molecules, SJG-428 and SJG-570 showed DNA interstrand crosslinking activity using 

the gel based assay under the conditions employed. This result was unexpected because 

SJG-428 and SJG-570 were predicted to be intra-strand crosslinking agents rather than 

inter-strand crosslinking agents due to the rigid linkages and the molecules being planar. 

On the other hand, LCF178 has an extra ethyl ether in the linkage and therefore is more 

flexible and may have the ability to produce inter-strand crosslinking. The lower IG*, 

value of SJG-570 compared to the other two compounds may suggest that the methoxy 

substituent on the A-ring is more favourable for the cellular pharmacology of the 

compound. Also SJG-570 may be very efficient at producing intra-strand crosslinking, 

however, these crosslinks are not measurable using the gel based assay. The same 

interstrand crosslinking values were obtained for SJG-428 and SJG-570 in naked DNA 

but as the IQ q values of these compounds differed, a comet assay might have shown 

any differences in the ability of the compounds to form interstrand crosslinks in cells. 

The results with SJG-570, being more potent, may suggest that this compound may 

produce more cytotoxic crosslinks in cells.

Unlike the other A/C8-A7C8’-linked PBD dimer DSB-120 (Chapter 1) which 

differs in the linkage between the two PBD units, KG-2 and KG-3 did not have any 

significant interstrand crosslinking activity in naked DNA. Therefore it would suggest 

that the amide-linkage for this type of dimer is not favourable for DNA interaction.
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Although neither of the compounds showed significant crosslinking activity in naked 

DNA, KG-2, which is an asymmetrical amide-linked dimer, was more potent in vitro 

than the symmetrical KG-3. Hence, the symmetry of the dimer may be important for the 

cellular pharmacology of the compound. Similarly, another pair of PBD dimers, SJG- 

604 and SJG-605 that are also A/C8-A7C8’ linked but via a potential non-covalent 

binding pyrrole moiety, did not show any significant crosslinking ability. Interestingly, 

however, these molecules showed significant cytotoxicity, which did not correlate with 

crosslinking in naked DNA. The fact that SJG-605 is 19-fold more cytotoxic than SJG- 

604 suggests that the symmetry in this type of compounds is important for the activity 

of the compound. Also SJG-605 being 29-fold more potent than KG-2 suggests that the 

pyrrole subunit is a better linkage than the di-amide linkage. It is not clear why SJG-605 

is significantly cytotoxic without any ability to form DNA interstrand crosslinking.

From the results of the Taq polymerase stop and DNase I footprinting assays, it 

was concluded that none of these dimers showed any significant non-covalent or 

covalent binding sites within a region of pBR322 plasmid DNA up to the concentration 

of 100 jM . Although SJG-604 and SJG-605 contain a potential non-covalent DNA 

interacting moiety and the molecules should span up to seven base pairs, there were no 

clear footprints observed by these drugs. The results of the Taq polymerase stop assay is 

due to the possibility of the drug-DNA adducts being thermally unstable and therefore 

the drug falls off the DNA in the high temperature involved during the process. The 

footprinting results may infer that the lengths of the compounds are not favourable for
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high affinity binding to the DNA. Therefore, the cytotoxicity of these dimers may be 

due to non-DNA interaction mechanisms.

The series of PBD-mono-aniline mustard conjugates (SL285 to GD10 in Figure 

4.3) showed a wide range of cytotoxicity values in the K562 cell line under identical 

conditions. Interestingly, although these compounds have three potential crosslinking 

moieties (two chloroethyl arms of the mustard unit and N10-C11 of the PBD unit), 

GD3, which has the longest linkage, was the most potent (IQo = 87nM), and is the only 

compound to show any significant interstrand crosslinking activity. Compared to the 

parent nitrogen mustard compound chlorambucil, a significant increase in cytotoxicity 

for GD3 was observed (approximately 655-fold). Therefore it was possible to obtain a 

potent interstrand crosslinking agent by combining a nitrogen mustard with a PBD with 

an appropriate linker length. It has been shown previously with chlorambucil- 

distamycin conjugates where the conjugate crosslinked in naked and cellular DNA more 

efficiently than the parent nitrogen mustard chlorambucil (Wyatt et al., 1994). A 

number of studies have been reported on nitrogen mustard-distamycin conjugates 

(Broggini et al., 1995; Hartley et al., 1995; Wyatt et al., 1995; 1997a, b; Barald/ et al., 

2002a, b). Such compounds include tallimustine (see chapter 1) of which the reported in 

vitro IC50 value was ca. 2.4/^M (Baraldi et al., 2002a). Similarly, a hairpin polyamide- 

chlorambucil conjugate was found to be a much more efficient DNA crosslinking agent 

than chlorambucil (Wang et al., 2003b). It was suggested that this might be due to the 

more efficient and faster delivery of alkylating groups of chlorambucil to DNA reactive 

sites as nitrogen mustards alkylate primarily in the major groove and they do not have
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any particular affinity for the DNA. This may explain the result with GD3 that the PBD 

moiety delivers the nitrogen mustard subunit to the minor groove of DNA. As the PBD 

unit is likely to interact with DNA first followed by the nitrogen mustard moiety, it may 

suggest that the linker length of GD3 is favourable for such DNA crosslinking.

The PBD-di-aniline mustards (El 1CDM to PI 1BDM in Figure 4.3) did not have 

any cytotoxic or crosslinking activity up to 100//M. This was interesting because these 

compounds have four potential crosslinking moieties (2 from each mustard unit) to 

potentially crosslink the DNA. In these molecules the N10-C11 of the PBD unit is BOC 

protected, and therefore the PBD moiety would not be able to interact with guanine in 

the minor groove. The BOC unit was kept attached since the second mustard unit would 

dissociate if the BOC were to be removed. The chlorambucil analogues BM, PM and 

BMO (of which BMO is mono-functional), did not show any crosslinking activity up to 

100/4M. Interestingly, however, PM was 3.6-fold more cytotoxic than chlorambucil 

(CM), which did show crosslinking.

Apart from GD4, none of the aniline mustard-PBD conjugates, or the 

chlorambucil analogues showed any evidence of binding within a region of pBR322 

plasmid DNA as determined by DNase I footprinting or a Taq polymerase stop assay. In 

the case of GD4 evidence of binding (at lOO^M) was observed by footprinting but no 

evidence of covalent interaction observed using the Taq polymerase assay. This would 

suggest that the interaction is not favourable for alkylation by the mustard group, which

194



should block the progress of the polymerase. Covalent interaction at guanine-N2 by the 

PBD portion of the molecule may be occurring but not detected by the Taq polymerase 

assay due to thermal instability of the adduct.

With GD3 it was surprising that no evidence of DNA interactions was indicated 

by either assay since this molecule was found to be an efficient interstrand crosslinker 

using the plasmid-based electrophoresis assay. One possibility is that the molecule is 

relatively selective in its action and that the favourable DNA sequence for crosslinking 

present in the whole pUC18 plasmid is not represented in the smaller DNA fragment 

used in the other assays. The fact that no evidence of DNA binding was observed using 

DNA footprinting would suggest that the PBD moiety is prevented from binding 

efficiently to its preferred purine-G-purine binding sites. Although the PBD molecule is 

relatively small and spans only three base pairs it can be detected by footprinting as 

shown with the C2-aryl compounds (Figure 4.5).

A significant level of alkylation at guanine-N7 or adenine-N3 by the aniline 

mustard-PBD conjugates is clearly not produced since alkylation at both these sites are 

known to be detected by the Taq polymerase stop assay (Ponti et al., 1991). All of the 

aniline mustard-PBD conjugates were cytotoxic to the human K562 cell line with IQo 

values in the low micromolar or sub-micromolar range. The lack of clear evidence of 

DNA binding in most cases suggests that they do not exert their cytotoxicity through 

interaction with DNA.
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The mono-functional PBD-tripyrrole conjugate, GWL-6, showed significant 

cytotoxicity in the K562 cell line. The non-covalent binding site of GWL-6 was 

determined by using DNase I footprinting which showed its binding site at 5’- 

AGATTAT-3’ in a region of pBR322 DNA. This fits with polypyrrole compounds 

binding to A/T sequences (eg. distamycin) and also PBD binding to 5’-pu-G-pu (A-G-A 

in this case). Interestingly, a previously reported PBD-distamycin conjugate showed a 

strong binding affinity to GC-rich DNA (Baraldi et al., 1998) suggesting that the 

sequence selectivity of distamycin towards AT-rich sequences is lost. When a series of 

PBD-distamycin conjugates with different numbers (n = 1- 4) of polypyrrole backbones 

of distamycin were evaluated (Baraldi et al., 1999), it showed that the increase in length 

increased the cytotoxicity of the drugs where all were much more active than the tri- 

pyrrole distamycin and its four pyrrole analogue. Only n = 3 and 4 retained a higher 

cytotoxicity compared to the PBD group alone which gave a similar value to DC-81. It 

was suggested that this was due to additional amido H-bonds and van der Waals 

interactions as it gives tighter DNA binding which depends on the multiplicity of 

interactions between the pyrrole carbonyl units and AT-rich sequences of DNA. 

Therefore, the significant potency and sequence selectivity of GWL-6 may be explained 

in a similar manner. Later GWL-6 was resynthesised by solid phase synthesis, which 

will be discussed in chapter 5.

Three PBD-C2-aryl conjugates showed significant cytotoxicity in the order of 

NC053 > NC020 > NC048 with approximately 13-fold difference between NC053 and
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NC048. This correlates with the result of the non-covalent binding intensity determined 

from DNase I footprinting where NC053 showed clear footprints at much lower 

concentrations, with the binding sites at 5’-pu-G-pu, within a region of pBR322 DNA. 

These results are consistent with the previously reported data that the C2-endo-exo 

unsaturation of the PBD plays a significant role in the activity. Two of the best known 

naturally occurring PBDs, anthramycin and tomaymycin (chapter 1), both have C2-exo- 

unsaturation. However, anthramycin binds to DNA more efficiently (Thurston, 1993) 

and it is thought to be associated with the C2/C3-endo unsaturation of anthramycin. A 

series of novel C2/C3-£mfo-unsaturated PBDs was synthesised and all the compounds 

were shown to have enhanced DNA-binding reactivity and in vitro cytotoxicity 

(Gregson et al., 2000).

The different IC^ values and binding efficiency of the PBD-C2-aryl conjugates 

also show that the C2-£/tt/o-ejc<?-unsaturation of the PBD is dependent on the substituent 

on the C2 position. Not only the electrophilicity of the C2-substituent is important but 

also the lipophilicity influences the potency. The fact that NC053 is the most potent 

compound may suggest that the molecule interacts with the floor of minor groove better 

as the naphthyl group is lipophilic.

The importance of the electrophilicity of the substituent is explained in 

previously reported data (Guiotto et al., 1998), where a series of aryl PBD compounds 

with different substituents on a phenyl ring were evaluated. These compounds were A-
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ring substituted rather than on the C-ring of the PBD. These types of compounds were 

of interest because of the para relationship of the A/C7-substituent to the N10 of the 

DNA-interactive N10-C11 imine moiety. In this series, the cytotoxicity of the 

compounds was suggested to be an electronic effect of the substituent on the phenyl 

ring rather than the steric effect. This is because the C7-position of the PBD nucleus is 

known to point out of the minor groove of DNA. Therefore the substituents can affect 

the electronic characteristics of the imine, which influences its electrophilicity and 

ability to interact with DNA.

The novel PBD dimers in this chapter were not very active at DNA interstrand 

crosslinking, although some had significant cytotoxicity in vitro. This may be due to the 

effect of the linkages of the dimers being not favourable for DNA interstrand 

crosslinking. None of the A/C8-A7C8’-linked dimers were more active than the parent 

dimer DSB-120 and were significantly less potent than molecules in clinical 

development such as SJG-136. Similarly, the PBD-nitrogen mustard conjugates were 

not active apart from one compound, GD3. It may be useful to study the molecular 

modelling and kinetics of the drug-DNA adduct to see if the distance between the PBD 

and the nitrogen mustard units of GD3 is particularly favourable for the binding and 

crosslinking in the minor groove. The monofunctional C2-aryl containing PBDs showed 

promising in vitro cytotoxicity. Hence they will be good guides for further investigation 

of this type of compounds, including novel dimers. The enhanced sequence selectivity
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of GWL-6 compared to a PBD alone gives the potential for extended conjugate 

molecules to cover longer sequences of DNA.
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CHAPTER 5

DEVELOPMENT OF SCREENING METHODS FOR 

SOLID PHASE COMBINATORIAL LIBRARIES

5.1 Introduction

Combinatorial chemistry has become one of the most important tools in drug 

discovery during the past decade (Song et al., 2003). Synthesis of combinatorial 

libraries can be used to create new lead compounds for a specific biological target, and 

also to subsequently optimise these initial leads. Virtually every major pharmaceutical 

company has adopted this technology for their drug discovery programs. The general 

approaches in combinatorial peptide library methods include biological libraries, 

spatially addressable parallel solid phase or solution phase libraries and the ‘one-bead 

one-compound’ library method, which results from a split-and-mix strategy. The 

biological library approach is limited to peptide libraries featuring amino acids. 

However, the other synthetic approaches can also be utilised in non-peptide oligomer or 

small molecule libraries (Lam, 1997). The combinatorial isolation of hit compounds 

consists of three stages: 1) the stepwise generation of a large number of compounds by 

joining various building blocks together; 2) a high throughput screening method to 

select for a specific biological property of library members; and 3) identification of 

active compounds (‘hits’) by deconvolution methods, or chemical analysis (Lam, 1997).
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This chapter is about the development of methods for the screening of a solid 

phase, ‘one-bead, one-compound’ library. In such libraries, each bead carries only one 

type of compound; therefore the entire library can be screened for binding against a 

tagged acceptor molecule (e.g., receptor, enzyme, antibody, or even small molecules).

An initial combinatorial library was produced, featuring diversity in a peptide 

chain and N-terminal capping by a PBD moiety (Hardy et al., 2003). Since a PBD is 

known to bind covalently to guanine bases in DNA (with a preference for 5’-Pu-G-Pu 

sequences), this interaction combined with the various potential sequence preferences of 

heterocycles featured in the peptide chain, suggests that such compounds should exhibit 

different sequence specific DNA binding. Thus, a large number of compounds were 

synthesised by building up extended molecules on solid support (tentagel bead). 

Randomised peptide chains containing biological amino acids and aromatic 

heterocycles were combinatorially synthesised on the surface of tentagel beads and then 

covalently capped with the PBD group.

O

Figure 5.1 An example of resin-bound PBD (PL = photocleavable linker).
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An example of resin-bound PBD is shown in Figure 5.1. It was previously 

proved that such resin-bound PBD selectively binds A-G-A base pair DNA motifs, in 

the manner of the equivalent solution phase interaction (Hardy et al.y 2003). This study 

was carried out using radiolabelled (isotope 32P) oligonucleotides containing the 

sequence A-G-A. Two sets of resin were evaluated derived from the same initial 

batches of Fmoc-protected PBD resin which were then split into two before one half 

was deprotected. This ensured that the identical PBD species were on the bead, whether 

the beads were NlO-protected or not, allowing the extent of binding to be directly 

compared. Both sets of resin were incubated with the radiolabelled oligonucleotides 

followed by washing, then the counts per minute (CPM) of the isotope 32P were 

measured to indicate the relative binding affinity of the compounds to DNA. The result 

showed significantly high binding affinity of the unprotected PBD and no binding was 

observed with the NlO-protected PBD (Table 5.1). This important result indicated that 

PBD attached to the bead surface could interact with DNA after the removal of the N10- 

Fmoc protecting group during the library synthesis.

In order to further confirm the difference of binding affinity between NlO- 

protected and deprotected PBD resins, an alternative rhodamine label (Figure 5.2) was 

then used. The rodamine labelling was chosen instead of the radioactivity because of 

safety considerations and the potential for high throughput fluorescence analysis. As 

seen with the previous results, a significantly higher value of fluorescence for the N10- 

deprotected PBD was obtained, indicating the potential to develop sensitive screening 

procedures based on this strategy (Table 5.2) (Hardy et al.y 2003).
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Resin-bound compound CPM (32P)

o

50,304

M Fmoe

o

0

Table 5.1 Relative intensity of counts per minute of the isotope 32P indicating the 
binding affinity of protected and unprotected PBD resin with radiolabelled 
oligonucleotide containing an AGA sequence (taken from Hardy et al 
2003).

S02NH(CH2)5- C - 0 —n ,

Figure 5.2 Structure of Rhodamine Red ™.



Resin-bound compound Rhodamine

o

16,539

N Fmoc 1,122

Table 5.2 Relative intensity of fluorescence indicate the binding affinity of protected 
and unprotected PBD resin with rhodamine labelled oligonucleotide 
containing an AGA sequence (taken from Hardy et al., 2003).

Three synthetic oligonucleotides were designed according to the known binding 

sequence preference of PBDs. They each contained either the A-G-A motif (most 

preferred), T-G-T (least preferred) or A-I-A (where I = inosine). Previous experiments 

had showed that PBD on bead had the highest binding affinity towards A-G-A sequence 

and only residual binding was observed with the A-I-A sequence (Hardy et al., 2003). 

This confirmed that a PBD is incapable of binding covalently to inosine as it has no 

exocyclic amino group. A synthetic 20 base pair oligonucleotide containing a single A- 

G-A sequence and therefore a single PBD covalent binding site was designed (Oligo-1) 

and was used as a control sequence in subsequent experiments. The sequence of OIigo-1 

is 5 ’- ACACCTAIAGATIAAITCTI - 3 ’ where I = inosine.
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5.2 Materials and Methods

5.2.1 Materials

Combinatorial libraries and resin bound PBDs were kindly supplied by Dr. P. Howard 

and Professor D.E. Thurston (School of Pharmacy, University of London).

Synthetic oligonucleotides were purchased from MWG biotech.

Sea plaque agarose was purchased from FMC Bioproducts.

NUNC™ black flat-bottomed 96 well plates were purchased from Fisher.

5.2.2 Hybridisation o f Oligonucleotides

Sequences of oligonucleotides were designed according to different target 

sequences. Each synthetic oligonucleotide was diluted with distilled water to lOOpM. 

To hybridise 50pM of oligonucleotides, rhodamine labelled oligonucleotide was mixed 

with the same volume of complementary non-labelled strand by heating to 90°C for 2 

minutes and then cooling slowly to room temperature. The volume to be used was 

calculated accordingly for each experiment to give 400//1 per lmg of combinatorial 

bead library. The duplex was then diluted to 5pM with distilled water prior to 

incubation with the library.
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5.2.3 Screening protocol for resin bound PBD-polypeptide sublibraries 

(multiple beads per compound)

Transfer the beads into 96 well plates

Measure fluorescence using TECAN plate reader

Wash with water 4 times to remove unbound oligonucleotides

Incubate the beads with annealed oligonucleotides at 37°C for 24 hr

Anneal a rhodamine labelled synthetic oligonucleotide with its complementary strand

Figure 5.3 Screening methods for libraries containing multiple beads per 
compound.

In order to measure the fluorescence of the beads that are bound to 

oligonucleotides and hence compare the binding affinity among the compounds, the 

following screening protocol was used. Figure 5.3 is the schematic diagram of the 

protocol, lmg of each bead library was weighed out and mixed with the duplex 

rhodamine-labelled-oligonucleotide in an 1ml eppendorf tube at 37°C for 24 hours
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followed by washing with distilled water by mixing the tube four times to remove 

unbound oligonucleotide. The beads were then resuspended in 200pl of distilled water 

and transferred into a well of a NUNC™ black flat-bottomed 96-well plate using a 1ml 

tip with a Gilson pipette. Under a light dissecting microscope, the positive beads were 

visible ranging from pink to dark red as the intensity of the binding increased. To 

confirm the extent of binding of the dye, the fluorescence of the samples were measured 

using a TECAN SpectraFlourPlus plate reader. The wavelength used were 485nm for 

emission and 535nm for excitation.

5.2.4 Screening method o f libraries containing one compound per bead

This type of library contained various sublibraries therefore the whole sample 

was screened at one time to find positive beads. Microscope slides were pre-coated with 

500pl of 0.25% sea plaque agarose. Each library were incubated with the annealed 

rhodamine-labelled oligonucleotide in 1ml eppendorf tube at 37°C for 24 hours with 

mixing, followed by washing with distilled water four times. The libraries were then 

mixed with 1ml of 37°C 0.25% sea plaque agarose and layered onto precoated slides, 

and then allowed to set at room temperature. Each slide containing the beads embedded 

in the agarose was then hydrolysed with 1ml of water until beads were swollen. The 

positive beads were visible with the naked eye as red or pink. Under a dissecting light 

microscope the most positive (red) beads could be removed using a Pasteur pipette. 

Since the bead was relatively sticky, it stayed on the tip of the pipette to allow transfer 

of an individual bead into a PCR tube containing lOpl of distilled water. These PCR
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tubes containing the positive beads were sent to the Babraham Institute for sequence 

analysis (Edman Sequencing). Figure 5.4 shows the schematic picture of this screening 

method.

Wash with water 4 times

Positive beads are sent for sequencing

Pick positive beads under 
a light dissecting microscope

Incubate the beads with rhodamine-labelled oligonucleotide at 37°C for 24 hr

Anneal a rhodamine labelled synthetic oligonucleotide with its complementary strand

Figure 5.4 Screening method for libraries containing one compound per bead.
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5.3 Results

A high throughput screening method was developed to identify compounds from 

combinatorial libraries that have a high affinity to specific DNA sequences. By mixing 

beads with rhodamine-labelled target oligonucleotides it was possible to identify 

interactions between compounds and desired DNA sequences simply by visualising 

rhodamine-stained beads under light or fluorescent microscopes. The sequence of the 

peptide chain within each of the interacting compounds was then determined by a direct 

chemical analysis procedure, where selected rhodamine-stained beads were sent off for 

Edman sequencing (Lam et al., 1997).

5.3.1 On bead PBD dilactam

It was previously shown that a PBD attached to a bead could bind to its known 

preferred sequence (AGA) by using this screening method. PMS/42/2 (Figure 5.5) is a 

PBD dilactam attached to a bead. Therefore as a negative control, this compound was 

screened against Oligo-1 (see section 5.1). As described previously in Chapter 1, PBD 

dilactams do not bind covalently to DNA since they lack the N10-C11 electrophilic 

moiety, which is essential for the covalent binding to the guanine-N2 position. No 

binding was observed (i.e., no change in bead colour) as expected, indicating that the 

protocol is applicable as a screening procedure, and does not detect non-specific/non- 

covalent PBD interactions.
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CN'̂ yY'4,
Figure 5.5 MS/42/2

5.3.2 Screening of heterocyclic-PBD libraries

Since the DNA binding characteristics of a PBD and a dilactam on bead are 

demonstrated as the same as when they are off bead, libraries of longer peptide-PBD 

conjugates on bead were synthesised in an attempt to obtain a greater sequence selective 

DNA binding.

532.1  Sequence selectivity ofGWL-6

As presented in Chapter 4, the PBD-polyamide conjugate GWL-6, which 

consists of three pyrroles attached to a PBD, was found to bind sequence selectively to 

DNA. The preferred binding sequence of GWL-6 (5’-AGATTAT) was obtained from 

the footprinting experiments. In order to find if this binding behaviour is retained when 

the compound is tethered to a solid support, an on-bead-GWL-6 (AH393) was 

synthesised (Figure 5.6) and screened against several different DNA sequences.
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Figure 5.6 Structure of GWL-6 on bead, AH393

Synthetic oligonucleotides were designed according to specific target sequences, i.e., 

the synthetic oligonucleotide Oligo-2, contains a 20 base pair sequence from the EGFR 

gene and Oligo-3, a 15 base pair sequence containing an inverted CCAAT box element 

from the promoter of human topoisomerase I la  gene. As it was shown by footprinting 

that GWL-6 binds to 5’- AGATTAT-3’, a synthetic oligonucleotide containing this 

sequence was also synthesised (Oligo-4). Sequences of the synthetic oligonucleotides 

used to screen against various bead libraries are summarised in Table 5.3.

Table 5.3. Sequences of the synthetic oligonucleotides used to screen against 
libraries.

OIigo-1 5’- ACACCTAIAGATIAAITCri -3 ’ where I = inosine

Oligo-2 5’- GC ACTTTTG A AG AT C ATTTT-3 ’

Oligo-3 5’- CTACGATTGGTTCTT - 3 ’

Oligo-4 5’- TGAG ATT AT CAA AAAG -3 ’
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lmg of AH393 was incubated with 400/d of each oligonucleotide for 24 hours at 37°C 

as described in section 5.2.4. Following extensive washing, each sample was transferred 

to a black 96-well plate and the fluorescence values of the rhodamine label were 

measured. The results are shown in Figure 5.7A. As expected, AH393 clearly showed 

the highest binding affinity towards the oligo-4 sequence containing the target 5*- 

AGATTAT sequence while it showed little affinity towards the other sequences, 

suggesting that the method can detect the sequence selectivity of AH393.

5 3 2 2  Binding affinity and sequence selectivity of heterocyclic compounds 

Another set of beads, AH394, that consisted of three consecutive pyrrole units attached 

to the bead and no PBD capping unit, was synthesised. This compound was also 

screened against the same four synthetic oligonucleotides in order to examine the 

influence of a PBD unit on the interaction with the DNA. The fluorescence values 

observed indicated that the compound had a high binding affinity towards the oligo-4 

sequence (Figure 5.7B). The fluorescence value for Oligo-4 was 21-fold higher than 

that of AH393. AH394 also showed a significant affinity towards Oligo-2 which is 

approximately 3-fold lower than Oligo-4. The affinity of AH394 towards Oligo-2 is 

higher than the affinity of AH393 towards Oligo-4 by approximately 7-fold.
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Figure 5.7 Fluorescence measured for (A) AH393 and (B) AH394 against different 
sequences from a single experiment
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The binding of AH394 to the least preferred sequence (Oligo-1) was still higher than the 

binding of AH393 to any of the four oligonucleotide sequences. These results infer that 

this method can be used not only to compare sequence selectivity of compounds but 

also can detect non-covalent minor groove interactions of polyamide structures and 

compare the binding affinity towards various DNA sequences. Furthermore, the 

significant decrease in the binding affinity towards the sequences examined of AH393 

compared to AH394 suggests that the PBD unit of AH393 influences the interaction 

with DNA.

5 3 3 3  Comparison of the influence of the PBD unit

Similarly to AH393 and AH394, beads sets AH525, AH526 and AH527 were 

synthesised in order to compare the effect of the PBD towards the DNA affinity and 

selectivity. The structures of the compounds are shown in Table 5.4. Each group 

contained two compounds each featuring three coupled imidazoles (Im) or pyrrole (Py) 

units capped, with or without a PBD unit.

Each group of beads was screened against the same four oligonucleotide 

sequences, Oligo-1 to Oligo-4 and the results are shown in Figure 5.8.

As observed with the AH393 and AH394 pair, most compounds without a PBD 

showed higher fluorescence values than the ones with a PBD. However, there was one 

exception in the group AH525 (three imidazoles) against the Oligo-4 where the 

compound with a PBD showed higher affinity.
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AH525 a TG-Im-Im-Im
b TG-Im-Im-Im-PBD

AH526 a TG-Im-Py-Im
b TG-Im-Py-Im-PBD

AH527 a TG-Py-Im-Py
b TG-Py-Im-Py-PBD

TG = tentagel bead

Table 5.4 Structures of heterocyclic PBD conjugate.

In the AH525 pair (three imidazoles), AH525a had the highest binding affinity 

towards Oligo-2 followed by Oligo-4. Interestingly, however, AH525b showed the 

strongest affinity towards Oligo-4, followed by Oligo-2 with much less affinity. This 

suggests that the DNA affinity of the three imidazoles towards the Oligo-4 sequence is 

enhanced by the presence of a PBD resulting in an altered sequence selectivity.

Both AH526a and AH527a showed the highest binding affinity towards Oligo-4 

followed by Oligo-2, while AH526b and AH527b compounds gave much less intensity 

to all the sequences.

High fluorescence values were observed for binding to Oligo-2 with AH525a 

giving the highest binding affinity among the all compounds tested, followed by 

AH527a > AH526a. Similarly, the values for the Oligo-4 sequence were also high in the 

order of AH527a > AH525b > AH526a > AH525a.
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These fluorescence values were > 4-fold lower than those of AH394, however, 

higher than those of AH393. Therefore, introducing an imidazole instead of the three 

consecutive pyrroles influences the DNA interaction and reduces binding affinity 

towards these sequences compared to AH394. In addition the method clearly shows the 

sequence selectivity of all the compounds towards different DNA sequences. 

Importantly, these results indicate that this screening method can discriminate between 

compounds containing different mixtures of heterocycle unit, with or without a PBD 

attached to a bead binding to different sequences.

5.4.3 Screening o f one compound per bead libraries

5.43.1 Peptide-based library

Figure 5.9 shows the structures of the initial libraries screened.

JMB337 was a peptide library with two PBDs, in 17 sublibraries, defined by 17 amino 

acids.

JMB434 was a peptide only library, in 17 sublibraries, defined by 17 amino acids.

Both of the above libraries were screened against the EGFR sequence (Oligo-2). The 

most positive beads (average of 15 beads in each library) were picked and sent to 

Babraham Institute for sequencing.
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Figure 5.8 Fluorescence values showing differences in binding affinity of heterocyclic 
compounds.



JMB507 was peptide with PBD in 17 sublibraries defined by 17 different amino acids. 

They were screened against the CCAT sequence (Oligo-3). The most positive beads 

were picked and sent to Babraham Institute for sequencing.

O - t p  G X 1X2X3X4L p  NX1X2X3X4X5— NHg

PBD PBD

.TMB337 JMB434

>1-17 >1-171-17-17

HN,

JMB507

X = one of 17 amino acids 
R = any one of 17 amino acid side chains

Figure 5.9 Structures of peptide-based libraries containing various sublibraries.
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5 3 3 2  PBD-capped heterocycle-based library

A diverse set of heterocycles was chosen based on the concept of naturally 

occurring AT-rich minor groove binding agents, e.g., N-methylpyrroles in netropsin and 

distamycin A, in order to increase the variety and selectivity of binding. N-methyl 

imidazole was included for its ability to tolerate G/C base pairs whereas pyrrole 

building blocks prefer A/T base pairs. Each library had 100,000 compounds.

Sequences of the synthetic oligonucleotides used in this experiment were Oligo- 

2 and Oligo-5. Oligo-5 contains a sequence within the bcr-abl oncogene.

Oligo-2 5’- GC ACTTTT G A AG AT C ATTTT-3 ’

Oligo-5 5’- GACGCAGAAGCCCTT -3 ’

AH568 was a library of peptide-linked heterocycles with 10 sublibraries (Figure 5.10). 

They were screened against Oligo-5.

TG14.8 was a library of peptide-linked heterocycles (Figure 5.11). The library featured 

amino acids side chains assigned randomly to code for each of ten different 

heterocycles. They were screened against Oligo-2 and Oligo-5.

The positive beads were picked and sent to Babraham Institue for sequencing to find the 

structure of the libraries that bound to the DNA.
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Figure 5.10 AH568 - 100,000 members
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Figure 5.11 TG14.8 - 100,000 members
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Figure 5.12 shows an example photograph of a library under a light dissecting 

microscope where positive beads can be seen to have turned pink.

Figure 5.12 A typical image of beads sample after being reacted with synthetic 
oligos. Incubation at 37°C for 24 hr. The positive beads are shown as 
pink as the oligos were rhodamine labelled.

One of the positive beads isolated from a library screen against the EGFR 

sequence (Oligo-2) was successfully sequenced at the Babraham Institute and the 

compound was resynthesised on bead (JMB471) (Figure 5.13). Screening of this one 

compound set of beads was re-screened against Oligo-2 and showed strong binding
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under a fluorescence microscope, indicating that the method can be used to select out 

the beads that contain compounds which bind with high affinity to DNA.

Figure 5.13 Structure of JMB471.

5.4 Discussion

A method for the screening of combinatorial libraries was developed, in order to 

achieve a high throughput screen for libraries synthesised in the solid phase. The 

libraries were either one-compound per bead or multiple beads per compound. The TG- 

resin has a long PEG (polyethylene glycol) coating, and hence the bead is far away from 

the units added during the combinatorial synthesis and should therefore not interfere 

with binding to target DNA sequences. In addition, PEG is water missible and so it is 

suitable for screening in the solution phase.

By reacting the libraries with rhodamine-labelled oligonucleotides of various 

sequences, it was possible to select specific beads containing compounds that have 

sequence selective affinity to a specific sequence of DNA. The applicability of the

-Leu-Val-lle-NH2

O
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screening method was initially tested using one-compound per bead and had 

demonstrated binding of PBD to a single target PuGPu sequence (Hardy et al., 2003). In 

the present study a PBD dilactam (which is unable to bind covalently to DNA) was 

found not to bind to the same target oligonucleotide. It was therefore demonstrated that 

this screening method can be used to discriminate between different compounds on 

bead in the same way as when unattached to bead.

Further confirmation was obtained by demonstrating that the novel sequence 

selective agent GWL-6 on bead (AH393) bound with high affinity to the sequence 5’- 

AGATTATC which was found to be a target sequence by DNA footprinting (Chapter 

4). In addition, AH393 bound to this target oligonucleotide (Oligo-4) with higher 

affinity than to several other oligonucleotide sequences (Oligo 1-3).

A tripyrrole compound but without a PBD unit, AH394, was also found to bind 

to oligo-4 with the highest affinity among the same four sequences tested. Since the 

tri pyrrole unit is contained in distamycin, which is known to bind preferentially to AT- 

rich sequences, the strong binding affinity of AH394 to the 5’- AGATTATC sequence 

(oligo-4) is consistent with the known distamycin sequence selectivity. Between the 

compounds with tripyrroles (AH394 and AH393), AH394 (without a PBD) showed a 

stronger binding affinity towards all the sequences than AH393.
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In the same manner, three groups of polypeptide compounds on bead with or 

without a PBD (AH525-AH527) were screened to the same four sequences. The varied 

fluorescence values for each compound further confirmed that the method could be used 

to discriminate between the binding affinity of different types of polypeptide with or 

without a PBD. Therefore, these results demonstrated that this method can be used to 

measure and compare binding affinity of different compounds towards various DNA 

sequences, and also to examine sequence selectivity of a compound towards a series of 

DNA sequences.

In an attempt to develop libraries containing potential DNA binding molecules 

in large quantity, on-bead heterocycle compounds with PBD were synthesised. These 

were single compound per bead of 100,000 members in each library. Following the 

reaction with the labelled oligonucleotides, a range of colour of beads showing from no 

binding (white) to strong binding (red) was observed and it was possible to isolate the 

most positive beads. The positive beads were successfully sequenced in a few cases and 

some of the compounds were resynthesised. JMB471 was a resynthesised compound on 

bead and it showed strong binding when re-screened against the same oligonucleotide 

sequence. This confirmed that this screening method is reproducible.

However, the resynthesis stage of the hit compounds encountered problems. One 

of the problems was ensuring the quality control of the compounds that are synthesised 

on a bead. Another problem was that coding strands (e.g., TG14.8) on the active bead
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were successfully sequenced, however, on attempting to resynthesise larger amounts of 

the library hits, it became apparent that the heterocycle coupling chemistry was not 

efficient in all cases. One implication was that during library generation only the coding 

strand was successfully synthesised to completion and it was these polypeptides that 

may be binding to the labelled DNA.

Due to these significant problems, small libraries (< 100 compounds) of PBD- 

containing DNA binding molecules are now being synthesised in solution phase where 

the quality of libraries can be assured, and also which provide an appropriate 

environment for the biological screening. Therefore the screening method presented 

here is no longer applicable. If a better way of controlling the synthesis of large PBD- 

containing libraries in solid phase is developed in the future, the screening protocol may 

then be applied.
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CHAPTER 6 

OVERALL DISCUSSION AND FUTURE WORK

Although cancer research has seen successes in the last two decades, including 

introduction of new chemotherapy agents such as Herceptin (Harris and Smith, 2002) 

and Avastin (Ferrara et al., 2004), improvement in terms of tumour response or 

increased patient survival has largely been dependent on a combination of these new 

agents with conventional chemotherapy, leading to incremental benefit in survival 

(Duncan et al., 2005). While an emergence of drug resistance remains a significant 

problem, it has also become important to discover novel anticancer drugs that are not 

only cytotoxic to cells but also able to target molecular aberrations that are specific to 

tumour cells, as described in chapter 1. With the phenomenal progress of molecular 

mechanism information from genomics and proteomics research, a current large body of 

research has been focused on the search for low molecular weight anticancer drugs with 

target selective characteristics. One potential target is specific sequences of DNA with 

ability to up and down regulate transcription of genes that would have therapeutic 

activity and limited or no side effects.

This thesis describes an investigation into the interactions of rationally designed 

novel PBD compounds with DNA in vitro. It examines the structural influence of the 

PBD dimers and the PBD conjugates on the molecular and in vitro pharmacological
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activity with DNA. This includes the effects of linker length in the case of dimers, 

C2/C2'-exo/endo-unsaturation, substituent on the C2 position and different subunit on 

the conjugates, on the in vitro cytotoxicity, DNA interstrand crosslinking in naked DNA 

and in cells, and affinity and selectivity of binding in the minor groove of DNA. This 

thesis also describes the development of a screening method for combinatorial libraries 

where all compounds examined were synthesised in the solid phase.

A comprehensive investigation into the effects of the linker length and C2/C2’- 

substituents among the four novel PBD dimers that have C2/C’2-exo-unsaturation was 

carried out in Chapter 3. This enabled characterisation of the dimers for cytotoxicity and 

interstrand crosslinking both in naked DNA and in cells. All these dimers were much 

more efficient in interstrand crosslinking, and more potent, compared to the dimers with 

C2/C2’-saturation reported previously (Bose et al., 1992a, b). This proved the 

importance of C2/C2’-unsaturation of the PBD dimers for efficient interaction with 

DNA. The presence of the extra methyl at the C2/C2’-substituents of the dimers, 

however, gave no significant effect on the activity of the drugs. This infers that the extra 

methyl group in this stereochemistry does not influence the drug to fit any better in the 

floor of the minor groove.

The investigation of the linker length provided the results that the dimers with 

five methylene linker (n = 5) showed significantly increased potency and also 

interstrand crosslinking efficiency compared to equivalent three methylene linked (n =
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3) dimers. Interestingly, in a similar comparison reported previously (Smellie et al., 

2003) for compounds with C2/C2’ saturation, no significantly increased activity of the n 

= 5 compound was observed. Furthermore, all four dimers examined produced 

interstrand crosslinks in cells that are not significantly repaired up to 48 hours 

suggesting that the drugs do not cause perturbation within the minor groove when 

bound to DNA.

Sequence selectivity of the four novel PBD dimers was also investigated. They 

showed clear binding to naked DNA as determined by footprinting and Taq stop 

polymerase assays. The binding sites of the n = 3 compounds differed to those of n = 5 

compounds suggesting that the DNA interactions are different. Also, the lower 

concentrations needed to observe the binding sites of n = 5 dimers suggests that they 

react more efficiently compared to n = 3 dimers.

The importance of interstrand crosslink formation has been well established, 

however, a number of clinical antitumour drugs such as nitrogen mustards and cisplatin 

are not only able to form interstrand crosslinks but also they interact with non-DNA 

macromolecule and other targets. When they interact with DNA, they produce other 

products such as monoadducts or intrastrand crosslinks which may not contribute to the 

antitumour activity but contribute to other effects such as toxicity and mutagenesity. 

Therefore it has been a great interest to develop novel agents that can produce 

interstrand crosslink lesions much more efficiently in the minor groove of DNA, and
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also in a sequence selective manner so that some side effects may be potentially 

reduced.

Furthermore, the resistance of tumours to currently used antitumour drugs has 

been one of the major problems in cancer therapeutics. Repair of DNA interstrand 

crosslinks has been shown to be an important determinant of sensitivity to DNA 

crosslinking drugs (McHugh et al., 2001) and an important mechanism of clinical drug 

resistance to nitrogen mustard drugs such as melphalan (Spanswick et al., 2002). The 

ability of the novel PBD dimers to produce interstrand crosslinks in the minor groove of 

DNA that are not repaired easily suggests that such compounds may have activity in 

tumours resistant to clinically used DNA crosslinking drugs. Since one of the four 

dimers, SJG-136, has been selected for clinical trials and has been shown to be highly 

efficacious in vivo activity in many models including cisplatin-resistant tumours 

(Hartley et al., 2004), the longer linked analogues of SJG-136 may also be potential 

candidates as alternative agents as they have different DNA binding sites to SJG-136 

and are more potent in vitro.

Sequence selectivity of the novel PBD dimers is encouraging for investigation 

further in this type of compounds, such as increasing the linker length which potentially 

increases the number of base pairs spanned and hence enhances sequence selectivity. 

Similarly, novel PBD trimers and tetramers would also potentially have enhanced
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sequence selectivity but in different sequences to the dimers as they would involve more 

than one pair of guanines to be crosslinked.

Different types of novel PBD dimers and novel PBD conjugates were also 

investigated in Chapter 4. The effect of different linker of PBD dimers was examined 

for the cytotoxicity and crosslinking ability. None of the dimers produced significant 

interstrand crosslinks, however, some of them were significantly cytotoxic. A similar 

trend has been reported recently (Kamal et al., 2005) where the cytotoxicity data for 

novel piperazine-linked PBD dimers did not correlate with DNA thermal denaturation 

studies. It is not clear what cellular mechanism of these dimers makes them cytotoxic 

towards cells without producing interstrand crosslinks. Similarly, among the novel 

PBD-aniline mustards only one compound, GD3, showed significant interstrand 

crosslinking although some other closely related compounds were also significantly 

cytotoxic. Although footprinting and Taq polymerase stop assays could not determine 

the sequence selective binding sites of GD3, this compound may be a good example of 

a novel PBD-nitrogen mustard conjugates to be developed in the future.

Novel PBD-monomers were also examined in Chapter 4 for cytotoxicity and 

sequence selectivity. The significant cytotoxicity of a PBD-tripyrrole compound (GWL- 

6) and the PBD-aryl conjugates correlated to DNA binding affinity. The sequence 

recognition of the polyamide and PBD moieties of GWL-6 could potentially be 

enhanced by introducing a longer polyamide chain. For similar compounds, the
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evaluation of novel PBD dimers with pyrrole and imidazole polyamide conjugates has 

recently been reported (Kumar and Lown, 2005). It showed that this type of conjugate 

in general is potent against many human cancer cell lines although details of the 

biological evaluation has not been reported yet. Therefore it is a good indication for 

GWL-6 to be a building block of dimers and trimers of this type of agent.

Development of a high throughput screening method of combinatorial libraries 

for DNA binding has been carried out in this thesis. A large number of libraries on resin 

were screened against various designed synthetic oligonucleotides. By using this 

method, it was possible to select out specific compounds that were bound to DNA, and 

hence it was demonstrated that the method could be used to discriminate between 

compounds with different sequence specificities. Although combinatorial libraries 

synthesised in solid phase on bead continues to be used (Fridkin and Lubell, 2005; Xue 

and Seto, 2005; Sweeney et al., 2005), the synthesis of heterocycle coupled PBD 

libraries is no longer continued due to resynthesis and quality control problems 

encountered. However, screening in the search for compounds with specific sequence 

affinity continues in solution phase although in much lower throughput.

In conclusion, PBD-based molecules continue to be developed as therapeutic 

anticancer agents with one of the members (SJG-136) currently in clinical trials. In 

addition they have potential for use as a component of novel sequence selective agents
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to regulate gene expression. The work in this thesis has contributed to the further 

development of this interesting class of molecule.
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