578 research outputs found

    DNA Methylation Arrays as Surrogate Measures of Cell mixture Distribution

    Get PDF
    There has been a long-standing need in biomedical research for a method that quantifies the normally mixed composition of leukocytes beyond what is possible by simple histological or flow cytometric assessments. The latter is restricted by the labile nature of protein epitopes, requirements for cell processing, and timely cell analysis. In a diverse array of diseases and following numerous immune-toxic exposures, leukocyte composition will critically inform the underlying immuno-biology to most chronic medical conditions. Emerging research demonstrates that DNA methylation is responsible for cellular differentiation, and when measured in whole peripheral blood, serves to distinguish cancer cases from controls

    EpiDISH web server: Epigenetic Dissection of Intra-Sample-Heterogeneity with online GUI

    Get PDF
    It is well recognized that cell-type heterogeneity hampers the interpretation of Epigenome-Wide Association Studies (EWAS). Many tools have emerged to address this issue, including several R/Bioconductor packages that infer cell-type composition. Here we present a web application for cell-type deconvolution, which offers the functionality of our EpiDISH Bioconductor/R package in a user-friendly GUI environment. Users can upload their data to infer cell-type composition and differentially methylated cytosines in individual cell-types (DMCTs) for a range of different tissues. Availability and implementation EpiDISH web server is implemented with Shiny in R, and is freely available at https://www.biosino.org/EpiDISH/

    A New Timepiece: An Epigenetic Mitotic Clock

    Get PDF
    A new mitotic clock and mathematical approach that incorporates DNA methylation biology common among human cell types provides a new tool for cancer epigenetics research

    Accelerated epigenetic aging in Werner syndrome.

    Get PDF
    Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown
    corecore