6,309 research outputs found
Interpretation of runaway electron synchrotron and bremsstrahlung images
The crescent spot shape observed in DIII-D runaway electron synchrotron
radiation images is shown to result from the high degree of anisotropy in the
emitted radiation, the finite spectral range of the camera and the distribution
of runaways. The finite spectral camera range is found to be particularly
important, as the radiation from the high-field side can be stronger by a
factor than the radiation from the low-field side in DIII-D. By
combining a kinetic model of the runaway dynamics with a synthetic synchrotron
diagnostic we see that physical processes not described by the kinetic model
(such as radial transport) are likely to be limiting the energy of the
runaways. We show that a population of runaways with lower dominant energies
and larger pitch-angles than those predicted by the kinetic model provide a
better match to the synchrotron measurements. Using a new synthetic
bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager
(GRI) diagnostic used at DIII-D to resolve the spatial distribution of
runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure
Magnetic Barriers and their q95 dependence at DIII-D
It is well known that externally generated resonant magnetic perturbations
(RMPs) can form islands in the plasma edge. In turn, large overlapping islands
generate stochastic fields, which are believed to play a role in the avoidance
and suppression of edge localized modes (ELMs) at DIII-D. However, large
coalescing islands can also generate, in the middle of these stochastic
regions, KAM surfaces effectively acting as "barriers" against field-line
dispersion and, indirectly, particle diffusion. It was predicted in [H. Ali and
A. Punjabi, Plasma Phys. Control. Fusion 49 (2007), 1565-1582] that such
magnetic barriers can form in piecewise analytic DIII-D plasma equilibria. In
the present work, the formation of magnetic barriers at DIII-D is corroborated
by field-line tracing calculations using experimentally constrained EFIT [L.
Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to
include the vacuum field from the internal coils utilized in the experiments.
According to these calculations, the occurrence and location of magnetic
barriers depends on the edge safety factor q95. It was thus suggested that
magnetic barriers might contribute to narrowing the edge stochastic layer and
play an indirect role in the RMPs failing to control ELMs for certain values of
q95. The analysis of DIII-D discharges where q95 was varied, however, does not
show anti-correlation between barrier formation and ELM suppression
Metallurgical bonding development of V–4Cr–4Ti alloy for the DIII-D radiative divertor program
General Atomics (GA), in conjunction with the Department of Energy`s (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
Understanding the effect resonant magnetic perturbations have on ELMs
All current estimations of the energy released by type I ELMs indicate that,
in order to ensure an adequate lifetime of the divertor targets on ITER, a
mechanism is required to decrease the amount of energy released by an ELM, or
to eliminate ELMs altogether. One such amelioration mechanism relies on
perturbing the magnetic field in the edge plasma region, either leading to more
frequent, smaller ELMs (ELM mitigation) or ELM suppression. This technique of
Resonant Magnetic Perturbations (RMPs) has been employed to suppress type I
ELMs at high collisionality/density on DIII-D, ASDEX Upgrade, KSTAR and JET and
at low collisionality on DIII-D. At ITER-like collisionality the RMPs enhance
the transport of particles or energy and keep the edge pressure gradient below
the 2D linear ideal MHD critical value that would trigger an ELM, whereas at
high collisionality/density the type I ELMs are replaced by small type II ELMs.
Although ELM suppression only occurs within limitied operational ranges, ELM
mitigation is much more easily achieved. The exact parameters that determine
the onset of ELM suppression are unknown but in all cases the magnetic
perturbations produce 3D distortions to the plasma and enhanced particle
transport. The incorporation of these 3D effects in codes will be essential in
order to make quantitative predictions for future devices.Comment: 32 pages, 9 figure
- …