706,442 research outputs found

    Extent of stacking disorder in diamond

    Full text link
    Hexagonal diamond has been predicted computationally to display extraordinary physical properties including a hardness that exceeds cubic diamond. However, a recent electron microscopy study has shown that so-called hexagonal diamond samples are in fact not discrete materials but faulted and twinned cubic diamond. We now provide a quantitative analysis of cubic and hexagonal stacking in diamond samples by analysing X-ray diffraction data with the DIFFaX software package. The highest fractions of hexagonal stacking we find in materials which were previously referred to as hexagonal diamond are below 60%. The remainder of the stacking sequences are cubic. We show that the cubic and hexagonal sequences are interlaced in a complex way and that naturally occurring Lonsdaleite is not a simple phase mixture of cubic and hexagonal diamond. Instead, it is structurally best described as stacking disordered diamond. The future experimental challenge will be to prepare diamond samples beyond 60% hexagonality and towards the so far elusive 'perfect' hexagonal diamond

    Effect of surface pretreatments on the deposition of polycrystalline diamond on silicon nitride substrates using hot filament chemical vapor deposition method

    Get PDF
    The deposition of diamond films on a silicon nitride (Si3N4) substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Diamond possesses remarkable physical and mechanical properties such as chemical resistant, extreme hardness and highly wears resistant. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Polycrystalline diamonds films have been deposited on silicon nitride substrate by Hot Filament Chemical Vapor Deposition (HF-CVD) method. The Si3N4 substrates have been subjected to various pretreatment methods prior to diamond deposition namely chemical etching and mechanical abrasion. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) while diamond film quality has been characterized using Raman spectroscopy. The adhesion of diamond films has been determined qualitatively by using Vickers hardness tester. It was found that the diamond films formed on chemical pretreated substrates has cauliflower morphology and low adhesive strength but also have low surface roughness. Substrates that pretreated with sand blasting have yield diamond film with well-facetted morphology with high crystallinity and better adhesion. However, the surface roughness of the diamond film deposited on substrates pretreated with blasting are also higher

    Single Color Centers Implanted in Diamond Nanostructures

    Get PDF
    The development of materials processing techniques for optical diamond nanostructures containing a single color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal. Individual NV centers are then isolated mechanically by dry etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1\mu m) implantation of individual NV centers into pre-fabricated diamond nanowire. The high single photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allows us to sustain strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure

    Surface texturing of CVD diamond assisted by ultrashort laser pulses

    Get PDF
    Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    Partitioning 3-homogeneous latin bitrades

    Full text link
    A latin bitrade (T⋄,T⊗)(T^{\diamond}, T^{\otimes}) is a pair of partial latin squares which defines the difference between two arbitrary latin squares L⋄⊇T⋄L^{\diamond} \supseteq T^{\diamond} and L⋄⊇T⊗L^{\diamond} \supseteq T^{\otimes} of the same order. A 3-homogeneous bitrade (T⋄,T⊗)(T^{\diamond}, T^{\otimes}) has three entries in each row, three entries in each column, and each symbol appears three times in T⋄T^{\diamond}. Cavenagh (2006) showed that any 3-homogeneous bitrade may be partitioned into three transversals. In this paper we provide an independent proof of Cavenagh's result using geometric methods. In doing so we provide a framework for studying bitrades as tessellations of spherical, euclidean or hyperbolic space.Comment: 13 pages, 11 figures, fixed the figures. Geometriae Dedicata, Accepted: 13 February 2008, Published online: 5 March 200
    • …
    corecore