103 research outputs found

    Secure Wireless Communications Based on Compressive Sensing: A Survey

    Get PDF
    IEEE Compressive sensing (CS) has become a popular signal processing technique and has extensive applications in numerous fields such as wireless communications, image processing, magnetic resonance imaging, remote sensing imaging, and anology to information conversion, since it can realize simultaneous sampling and compression. In the information security field, secure CS has received much attention due to the fact that CS can be regarded as a cryptosystem to attain simultaneous sampling, compression and encryption when maintaining the secret measurement matrix. Considering that there are increasing works focusing on secure wireless communications based on CS in recent years, we produce a detailed review for the state-of-the-art in this paper. To be specific, the survey proceeds with two phases. The first phase reviews the security aspects of CS according to different types of random measurement matrices such as Gaussian matrix, circulant matrix, and other special random matrices, which establishes theoretical foundations for applications in secure wireless communications. The second phase reviews the applications of secure CS depending on communication scenarios such as wireless wiretap channel, wireless sensor network, internet of things, crowdsensing, smart grid, and wireless body area networks. Finally, some concluding remarks are given

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Wireless One-time PAD : A Practical Method to Achieve Perfect Secrecy

    Get PDF
    In this thesis, a new practical method to realize one-time pad perfect secrecy for wireless communication is presented. Most commonly used security methods are based on cryp- tographic techniques employed at the upper layers of a wireless network. These methods basically rely on the computational hardness of some mathematical problems. This com- putational complexity is vulnerable in nature due to fast-growing computational power of hardware technology, yet not taking into account the revolution of Quantum computing in further future. Another core problematic issue exists in symmetric security systems; there is a deadlock between securing the channel and establishing the shared key. We need the key for securing the channel, on the other hand, for sharing the key we need a secure channel. To address such vulnerabilities, Physical Layer Security (PLS) has been widely studied in recent years. PLS schemes build on the idea of turning unpredictable and random wire- less channel characteristics into a source for information-theoretic security. Information- theoretic security itself, relies on Shannon’s pioneer work . Shannon, inspired by one-time pad, also known as Vernam cipher, theoretically showed that the only unconditional per- fect secrecy system is a one-time pad with a key at least as random as the plaintext, i.e., a system that uses a different random key to cipher any new plaintext. In PLS key genera- tion methods, legitimate parties alternately send probe signals and estimate Channel State Information (CSI) of common random channel and then convert enough amount of these estimates to secure shared keys. To achieve perfect secrecy, the key generation methods must meet the key randomness and Key Generation Rate (KGR) requirements of their specific cryptographic applications. In this research a new practical system for achieving unconditional perfect secrecy is presented. Our system uses channel phase as the probing parameter to fully benefit from its uniform distribution over [0, 2π]. It also uses an encryption method based on modulo- 2π addition of phase values which is the perfect counterpart of XOR addition in binary one-time pad. Moreover, by intentionally perturbing the wireless channel in vicinity of the transceiver antenna based on RF-mirrors structure, it produces different random phase values in each channel probing, much faster than the inherent channel variation would do, resulting in dramatically higher KGR than any wide-band PLS scheme presented so far and realizing true perfect secrecy. Most importantly, the focus of this research is a detailed practical algorithm for implementing the system as well as empirical results which makes our system the first channel-phase-based PLS scheme implementation, reported so far

    Low-resolution ADC receiver design, MIMO interference cancellation prototyping, and PHY secrecy analysis.

    Get PDF
    This dissertation studies three independent research topics in the general field of wireless communications. The first topic focuses on new receiver design with low-resolution analog-to-digital converters (ADC). In future massive multiple-input-multiple-output (MIMO) systems, multiple high-speed high-resolution ADCs will become a bottleneck for practical applications because of the hardware complexity and power consumption. One solution to this problem is to adopt low-cost low-precision ADCs instead. In Chapter II, MU-MIMO-OFDM systems only equipped with low-precision ADCs are considered. A new turbo receiver structure is proposed to improve the overall system performance. Meanwhile, ultra-low-cost communication devices can enable massive deployment of disposable wireless relays. In Chapter III, the feasibility of using a one-bit relay cluster to help a power-constrained transmitter for distant communication is investigated. Nonlinear estimators are applied to enable effective decoding. The second topic focuses prototyping and verification of a LTE and WiFi co-existence system, where the operation of LTE in unlicensed spectrum (LTE-U) is discussed. LTE-U extends the benefits of LTE and LTE Advanced to unlicensed spectrum, enabling mobile operators to offload data traffic onto unlicensed frequencies more efficiently and effectively. With LTE-U, operators can offer consumers a more robust and seamless mobile broadband experience with better coverage and higher download speeds. As the coexistence leads to considerable performance instability of both LTE and WiFi transmissions, the LTE and WiFi receivers with MIMO interference canceller are designed and prototyped to support the coexistence in Chapter IV. The third topic focuses on theoretical analysis of physical-layer secrecy with finite blocklength. Unlike upper layer security approaches, the physical-layer communication security can guarantee information-theoretic secrecy. Current studies on the physical-layer secrecy are all based on infinite blocklength. Nevertheless, these asymptotic studies are unrealistic and the finite blocklength effect is crucial for practical secrecy communication. In Chapter V, a practical analysis of secure lattice codes is provided

    Cryptographic Primitives and Design Frameworks of Physical Layer Encryption for Wireless Communications

    Get PDF
    Security is always an important issue in wireless communications. Physical layer encryption (PLE) is an effective way to enhance wireless communication security and prevent eavesdropping. Rather than replacing cryptography at higher layers, PLE's benefit is to enable using lightweight cryptosystems or provide enhanced security at the signal level. The upper cryptography is faced with a noise-free channel, and the processing object is bit data. In PLE, the effects of channel and noise can be exploited to enhance security and prevent deciphering. In addition, since the processing object is complex vector signals, there are more operational functions to select and design for PLE. The mathematical models, design frameworks, and cryptographic primitives of PLE are established. Two design frameworks are proposed: stream PLE and block PLE. For stream PLE, a new 3D security constellation mapping is derived. For block PLE, two types of sub-transforms are defined: isometry transformations and stochastic transformations. Furthermore, a practical system operation mode PLE-block chaining (PBC) is proposed to enhance the practical system security. The proposed PLE framework can resist known plaintext attacks and chosen-plaintext attacks. The simulation shows that the proposed isometry transformation method has good performances in terms of bit error ratio (BER) penalty and confusion degree

    On Achieving Unconditionally Secure Communications Via the Physical Layer Approaches

    Get PDF
    Due to the broadcast nature, wireless links are open to malicious intrusions from outsiders, which makes the security issues a critical concern in the wireless communicationsover them. Physical-layer security techniques, which are based on the Shannon’s unconditional secrecy model, are effective in addressing the security issue while meeting the required performance level. According to the Wyner’s wiretap channel model, to achieve unconditionally security communication, the first step is to build up a wiretap channel with better channel quality between the legitimate communication peers than that of the eavesdropper; and the second step is to employ a robust security code to ensure that the legitimate users experience negligible errors while the eavesdropper is subject to 0.5 error probability. Motivated by this idea, in this thesis, we build wiretap channels for the single antenna systems without resorting to the spatial degree in commonly observed the multiple-input multiple-output (MIMO) systems. Firstly, to build effective wiretap channels, we design a novel scheme, called multi-round two-way communications (MRTWC). By taking feedback mechanisms into the design of Low Density Parity Check (LDPC) codes, our scheme adds randomness to the feedback signals from the destination to keep the eavesdropper ignorant while adding redundancy with the LDPC codes so that the legitimate receiver can correctly receive and decode the signals. Then, the channel BERs are specifically quantified according to the crossover probability in the case of Binary Symmetric Channel (BSC), or the Signal to Noise Ratio (SNR) in the case of AWGN and Rayleigh channels. Thus, the novel scheme can be utilized to address the security and reliability. Meanwhile, we develop a cross-layer approach to building the wiretap channel, which is suitable for high dynamic scenarios. By taking advantage of multiple parameters freedom in the discrete fractional Fourier transform (DFRFT) for single antenna systems, the proposed scheme introduces a distortion parameter instead of a general signal parameter for wireless networks based on DFRFT. The transmitter randomly flip-flops the uses of the distortion parameter and the general signal parameter to confuse the eavesdropper. An upper-layer cipher sequence will be employed to control the flip-flops. This cryptographic sequence in the higher layer is combined with the physical layer security scheme with random parameter fipping in DFRFT to guarantee security advantages over the main communication channel. As the efforts on the second step, this thesis introduces a novel approach to generate security codes, which can be used for encoding with low complexity by taking advantage of a matrix general inverse algorithm. The novel constructions of the security codes are based on binary and non-binary resilient functions. With the proposed security codes, we prove that our novel security codes can ensure 0.5 error probability seen by the wiretapper while close to zero by the intended receiver if the error probability of the wiretapper’s channel is over a derived threshold. Therefore, the unconditionally secure communication of legitimate partners can be guaranteed. It has been proved mathematically that the non-binary security codes could achieve closer to the security capacity bound than any other reported short-length security codes under BSC. Finally, we develop the framework of associating the wiretap channel building approach with the security codes. The advantages between legitimate partners are extended via developing the security codes on top of our cross-layer DFRFT and feedback MRTWC security communication model. In this way, the proposed system could ensure almost zero information obtained by the eavesdroppers while still keeping rather lower error transmissions for legitimate users. Extensive experiments are carried out to verify the proposed security schemes and demonstrate the feasibility and implement ability. An USRP testbed is also constructed, under which the physical layer security mechanisms are implemented and tested. Our study shows that our proposed security schemes can be implemented in practical communications settings

    On the Application of PSpice for Localised Cloud Security

    Get PDF
    The work reported in this thesis commenced with a review of methods for creating random binary sequences for encoding data locally by the client before storing in the Cloud. The first method reviewed investigated evolutionary computing software which generated noise-producing functions from natural noise, a highly-speculative novel idea since noise is stochastic. Nevertheless, a function was created which generated noise to seed chaos oscillators which produced random binary sequences and this research led to a circuit-based one-time pad key chaos encoder for encrypting data. Circuit-based delay chaos oscillators, initialised with sampled electronic noise, were simulated in a linear circuit simulator called PSpice. Many simulation problems were encountered because of the nonlinear nature of chaos but were solved by creating new simulation parts, tools and simulation paradigms. Simulation data from a range of chaos sources was exported and analysed using Lyapunov analysis and identified two sources which produced one-time pad sequences with maximum entropy. This led to an encoding system which generated unlimited, infinitely-long period, unique random one-time pad encryption keys for plaintext data length matching. The keys were studied for maximum entropy and passed a suite of stringent internationally-accepted statistical tests for randomness. A prototype containing two delay chaos sources initialised by electronic noise was produced on a double-sided printed circuit board and produced more than 200 Mbits of OTPs. According to Vladimir Kotelnikov in 1941 and Claude Shannon in 1945, one-time pad sequences are theoretically-perfect and unbreakable, provided specific rules are adhered to. Two other techniques for generating random binary sequences were researched; a new circuit element, memristance was incorporated in a Chua chaos oscillator, and a fractional-order Lorenz chaos system with order less than three. Quantum computing will present many problems to cryptographic system security when existing systems are upgraded in the near future. The only existing encoding system that will resist cryptanalysis by this system is the unconditionally-secure one-time pad encryption
    • …
    corecore