11,790 research outputs found

    Non-associative Deformations of Geometry in Double Field Theory

    Get PDF
    Non-geometric string backgrounds were proposed to be related to a non-associative deformation of the space-time geometry. In the flux formulation of double field theory (DFT), the structure of mathematically possible non-associative deformations is analyzed in detail. It is argued that on-shell there should not be any violation of associativity in the effective DFT action. For imposing either the strong or the weaker closure constraint we discuss two possible non-associative deformations of DFT featuring two different ways how on-shell associativity can still be kept.Comment: 29 pages, 1 figure, v2: major revision of section 4, discussion of closure constraint change

    The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect

    Get PDF
    In classical density functional theory (DFT) the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x)g(x) and structure factor S(k)S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.Comment: 9 pages, 3 figure

    Gauged Double Field Theory

    Get PDF
    We find necessary and sufficient conditions for gauge invariance of the action of Double Field Theory (DFT) as well as closure of the algebra of gauge symmetries. The so-called weak and strong constraints are sufficient to satisfy them, but not necessary. We then analyze compactifications of DFT on twisted double tori satisfying the consistency conditions. The effective theory is a Gauged DFT where the gaugings come from the duality twists. The action, bracket, global symmetries, gauge symmetries and their closure are computed by twisting their analogs in the higher dimensional DFT. The non-Abelian heterotic string and lower dimensional gauged supergravities are particular examples of Gauged DFT.Comment: Minor changes, references adde

    Geometric Low-Energy Effective Action in a Doubled Spacetime

    Full text link
    The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β\beta functions. With dd compact dimensions, we can add to it an O(d,d;Z)O(d, d;\mathbb{Z}) geometric structure and construct the supergravity theory inspired by double field theory through the use of a suitable commutative star product. The latter implements the weak constraint of the double field theory on its fields and gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d1d\ge1. This orthogonality holds also for an arbitrary number of star products of fields for d=1d=1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.Comment: 27 pages, minor changes, references adde

    BRST symmetry of doubled membrane sigma-models

    Full text link
    Courant sigma-models encode the geometric and non-geometric fluxes of compactified closed string theory as generalized Wess-Zumino terms and exhibit their relation to Courant algebroids. In recent work, we proposed a doubled membrane sigma-model that establishes the corresponding connection to double field theory and its algebroid structure. The strategy is to consider a "large" Courant sigma-model over a doubled target spacetime and identify a suitable projection that leads to a sigma-model for doubled fields. In this note, we provide further details for this construction. Starting from the BRST symmetry of the BV action that satisfies the classical master equation, we consistently project the BRST transformations of the superfields of the "large" Courant sigma-model to obtain the gauge transformations of the doubled membrane sigma-model. We show that demanding gauge invariance and the closure of gauge transformations of the worldvolume theory, leads to a condition that is in direct correspondence to the strong constraint of the target space double field theory.Comment: 13 pages; proceedings of "Dualities and Generalized Geometries", Corfu Summer Institute 2018. v2: typos correcte

    Crystallization of magnetic dipolar monolayers: a density functional approach

    Full text link
    We employ density functional theory to study in detail the crystallization of super-paramagnetic particles in two dimensions under the influence of an external magnetic field that lies perpendicular to the confining plane. The field induces non-fluctuating magnetic dipoles on the particles, resulting into an interparticle interaction that scales as the inverse cube of the distance separating them. In line with previous findings for long-range interactions in three spatial dimensions, we find that explicit inclusion of liquid-state structural information on the {\it triplet} correlations is crucial to yield theoretical predictions that agree quantitatively with experiment. A non-perturbative treatment is superior to the oft-employed functional Taylor expansions, truncated at second or third order. We go beyond the usual Gaussian parametrization of the density site-orbitals by performing free minimizations with respect to both the shape and the normalization of the profiles, allowing for finite defect concentrations.Comment: 23 pages, 18 figure

    A fundamental measure theory for the sticky hard sphere fluid

    Full text link
    We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Phys. Rev. Lett. {\bf 63}, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS fluid ΦSHS\Phi_{\text{SHS}} is uniquely defined when (a) it is solely a function of the weighted densities from Kierlik and Rosinberg's version of FMT [Phys. Rev. A {\bf 42}, 3382 (1990)], (b) it satisfies the SPT differential equation, and (c) it yields any given direct correlation function (DCF) from the class of generalized Percus-Yevick closures introduced by Gazzillo and Giacometti [J. Chem. Phys. {\bf 120}, 4742 (2004)]. The resulting DFT is shown to be in very good agreement with simulation data. In particular, this FMT yields the correct contact value of the density profiles with no adjustable parameters. Rather than requiring higher order DCFs, such as perturbative DFTs, our SHS FMT produces them. Interestingly, although equivalent to Kierlik and Rosinberg's FMT in the case of hard spheres, the set of weighted densities used for Rosenfeld's original FMT is insufficient for constructing a DFT which yields the SHS DCF.Comment: 11 pages, 3 figure

    Double Field Theory on Group Manifolds in a Nutshell

    Full text link
    We give a brief overview of the current status of Double Field Theory on Group Manifolds (DFTWZW). Therefore, we start by reviewing some basic notions known from Double Field Theory (DFT) and show how they extend/generalize into the framework of Double Field Theory on Group Manifolds. In this context, we discuss the relationship between both theories and the transition from DFTWZW to DFT. Furthermore, we address some open questions and present an outlook into our current research.Comment: Proceedings prepared for the "Workshop on Geometry and Physics", November 2016, Ringberg Castle, Germany; v2: references adde

    The gauge structure of Exceptional Field Theories and the tensor hierarchy

    Get PDF
    We address the construction of manifest U-duality invariant generalized diffeomorphisms. The closure of the algebra requires an extension of the tangent space to include a tensor hierarchy indicating the existence of an underlying unifying structure, compatible with E_{11} and Borcherds algebras constructions. We begin with four-dimensional gauged maximal supergravity, and build a generalized Lie derivative that encodes all the gauge transformations of the theory. A generalized frame is introduced, which accommodates for all the degrees of freedom, including the tensor hierarchy. The generalized Lie derivative defines generalized field-dependent fluxes containing all the covariant quantities in the theory, and the closure conditions give rise to their corresponding Bianchi Identities. We then move towards the construction of a full generalized Lie derivative defined on an extended space, analyze the closure conditions, and explore the connection with that of maximal gauged supergravity via a generalized Scherk-Schwarz reduction, and with 11-dimensional supergravity.Comment: 53 page
    corecore