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1 Introduction

In string theory, a large scale geometric target space is rather an emergent phenomenon.

The basic starting point is the two-dimensional field theory on the world-volume of the

probe string equipped with the fundamental paradigm that on-shell solutions of string

theory are provided by two-dimensional conformal field theories (CFTs) with the critical

central charge. However, the generic left-right asymmetric CFT does not correspond to a

fixed point of a non-linear sigma model with a geometric target space. Since string theory

is strongly believed to provide a consistent theory of quantum gravity, one may wonder

to which non-geometric generalizations of the target space-time the generic asymmetric

CFT corresponds to. This could also enlighten relations to complementary target-space

approaches to quantum gravity, like loop quantum gravity or non-commutative geometry.

During the last years some progress has been made towards a better understanding of

this non-geometric regime of string theory. In fact, the recent developments go precisely in

the direction of providing a quasi-geometric description of these asymmetric conformal field

theories. T-duality is a left-right asymmetric transformation, so that it served as the main

tool to shed some light into this mainly unexplored regime of the string theory landscape.

In [1] the simple closed string background of a flat space with constant H-flux and

dilaton was considered. Successively applying the Buscher rules, one gets the well-known

chain of T-dual configurations

Hijk
Tk←−−→ Fij

k Tj←−→ Qi
jk Ti←−→ Rijk . (1.1)

The last two were argued to be non-geometric. The Q-flux case is still geometric locally

but the transition functions involve non-geometric T-duality transformations, whereas the

R-flux case is considered to be even locally non-geometric.
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A simple argument shows that this background does not allow the notion of a point [2].

Let us repeat it here to make clear that something drastic must happen for these back-

grounds. Consider a D3-brane wrapping a three-torus carrying a constant three-form

H-flux. In fact such a configuration is not allowed as it suffers from the Freed-Witten

anomaly [3], i.e. it violates the Bianchi identity dF = H for the gauge flux on the brane.

Now, by formally applying a T-duality along all three directions of the torus, one gets a

D0-brane with transverse R-flux. Thus, placing a point-like object in an R-flux background

is not allowed. This suggests that one has an uncertainty relation like ∆x∆y∆z ≥ ℓ4s R
xyz,

pointing towards a relation to non-commutative geometry.

Indeed, it was abstractly argued that the R-flux involves a non-associativity of the

coordinates [4]. More recently it was found [5–9] by explicit string and CFT computations

that the string geometry indeed becomes non-commutative and non-associative for closed

strings that are winding and moving in non-geometric backgrounds. Concretely, the equal-

time cyclic double-commutator of three local coordinates was found to be

[

xi, xj , xk
]

=

{

0 H−flux
ℓ4s R

ijk R−flux
. (1.2)

The same result arises from a commutator algebra

[xi, xj ] =
i

3~
ℓ4s R

ijk pk , [xi, pj ] = i~ δij (1.3)

so that the Jacobiator gives precisely (1.2). If also Q-flux is present the commutator was

argued to be generalized to

[xi, xj ] =
i

3~
ℓ4s

(

Rijk pk +Qk
ijwk

)

, (1.4)

where wk is the winding operator. Analogous relations were also derived in the framework

of matrix theory in [10].

In [7] this background was investigated using conformal perturbation theory and, anal-

ogous to the open string story [11], on-shell string scattering amplitudes of tachyons were

computed. Actually, for both constant H-flux and R-flux the final scattering amplitude

was associative, as expected from crossing symmetry of conformal correlation functions.

However, prior to invoking momentum conservation, there was a difference between the H-

and R-flux case, namely the appearance of world-sheet independent phase factors. For the

H-flux the holomorphic and anti-holomorphic phases directly canceled each other while for

the R-flux they added up. These phases could be encoded (at least at linear order in Rijk)

in the tri-product1

(f △g△h)(x) = exp

(

ℓ4s
6
Rijk ∂x1

i ∂x2
j ∂x3

k

)

f(x1) g(x2)h(x3)
∣

∣

∣

x
. (1.6)

1Choosing f = exp(ip1x) and similar for g, h the momentum conservation can be implemented by

integrating the tri-product (1.6), so that the order ℓ4s correction becomes∫
d
n
xR

ijk
p
1
i p

2
j p

3
k e

i(p1+p2+p3)·x = R
ijk

p
1
i p

2
j p

3
k δ(p

1 + p
2 + p

3) = 0 . (1.5)

The aim of this paper is to generalize this result to non-constant fluxes on a curved space.
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The three-bracket can then be defined as

[

xi, xj , xk
]

=
∑

σ∈S3

sign(σ) xσ(i)△xσ(j)△xσ(k) , (1.7)

where S3 denotes the permutation group of three elements. Note that, formally one could

also define such a tri-product with H ijk instead of Rijk. The tri-product (1.6) as well as

an associated momentum dependent star-product was also derived in [12, 13] by starting

with the non-associative commutator algebra (1.3). In addition the non-commutative and

non-associative phase space structure of DFT as well as the magnetic field analogue of the

string R-flux model was discussed in [13].

Besides these example based arguments, there was a successful approach to develop a

manifestly T-duality, i.e. O(D,D), covariant formulation of the dynamics of the massless

modes of string theory. This was initiated in [14, 15] and pushed forward more recently

in [16–19]. In this so-called double field theory (DFT) framework (see [20–22] for reviews)

one doubles the number of target space coordinates by also introducing winding coordi-

nates. It turned out that this is a constrained theory, where usually the weak and the

strong constraint are imposed. Then, locally one ends up on a D-dimensional slice of the

2D-dimensional doubled geometry, which can be rotated to the supergravity frame via an

O(D,D) transformation.

DFT is related to generalized geometry [23–25] by setting the winding coordinates to

zero while keeping the doubled tangent bundle TM⊕TM∗. Moreover, it admits all the local

symmetries, usual and winding diffeomorphisms, to allow for a global description of, for

instance, the Q-flux and R-flux backgrounds. This is possible as T-duality exchanges ordi-

nary and winding coordinates so that for these non-geometric backgrounds there appears

a winding coordinate dependence either in the transition functions between two charts (Q-

flux) or in the definition of the flux itself (R-flux). Thus, non-geometry just means explicit

winding coordinate dependence in the background fluxes or in the transition functions.

There exist essentially two formulations of DFT. First, there is the generalized metric

formulation, which was developed in a series of papers [16–19]. Here one invokes the so-

called strong constraint to guarantee e.g. closure of the symmetry algebra (the C-bracket).

Based on the previous work [14, 15, 26] and [27–30], in [31] a second formulation of DFT

has been provided which from the onset incorporates the relation to gauged supergravity

theories. This is the so-called flux formulation of DFT, which was shown to be equivalent

to the generalized metric formulation, up to boundary terms and terms vanishing by the

strong constraint. However, as will also be essential for our investigation, it allows to move

away from the strong constraint and admit truly non-geometric duality orbits of fluxes in

the sense of [32]. In fact, it makes use of the observation that requiring only closure of the

symmetry algebra provides a weaker constraint than the strong constraint. A weakening

of the strong constraint was first discussed in [33]. Maybe the simplest examples are given

by Scherk-Schwarz reductions [34, 35] of DFT [28–31] (see also [36, 37]). Note that in [38]

concrete examples of asymmetric orbifold CFTs were presented for which evidence was

provided that they do correspond to such non-geometric duality orbits.
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It was observed that, in DFT, which is a priori a background independent formal-

ism, generalized coordinate transformations compose in a non-standard manner, such that

the composition is non-associative [39]. However this non-associativity vanishes after im-

posing the strong constraint on arbitrary fields. Besides that, in DFT no notion of a

non-associative, background dependent deformation of the geometry is visible. Hence it

is puzzling how DFT can be reconciled with the aforementioned claim that the R-flux is

related to such a non-associative deformation, as described for constant flux via the tri-

product (1.6). The resolution of this paradox is the purpose of this paper. To this end, we

identify two important aspects:

• First, as is apparent from (1.6), the non-associativity is claimed to arise for an R-

flux background contracted with ordinary partial derivatives ∂/∂xi. Note that, in

this sense, the DFT T-dual of the H-flux background on ordinary space is an R-flux

background on winding space.

• Second, in quantum theories, where observables are operators acting on some Hilbert

space, one can get non-commutativity, but the product of operators is always associa-

tive. Since conformal field theories are ordinary (2-dimensional) quantum theories,

on-shell, i.e. if the string equations of motion are satisfied, there should better not

be any violation of associativity in CFT on-shell scattering amplitudes.

Indeed, in conformal field theory one requires crossing symmetry of the operator product

expansion, which is related to the Jacobi identities for the algebra of the modes of the

conformal fields. In string theory, from on-shell scattering amplitudes, one can determine

an effective theory for the massless modes, which by construction does not show any on-

shell sign of non-associativity. Therefore, we conclude that any admissible non-associative

deformation given by a non-associative tri-product like (1.6) should have a trivial effect

on the effective field theory, when going on-shell. However it is a priori not clear whether

the off-shell effective string action is sensitive against non-associative deformations of the

underlying geometry.

As we will discuss, the main result of this paper is that, on the level of the effective

action, a non-associative deformation of the DFT generalization of both the H-flux and

the R-flux only leads at most to boundary terms. For the first one has to invoke the

DFT equations of motion, whereas the second deformation turns out to be trivial once one

imposes either the strong or even the closure constraint.

A similar reasoning also applies to the case of open strings ending on D-branes sup-

porting a non-trivial, in general non-constant gauge flux. The case when this product

becomes non-associative was analyzed in a series of papers [40–42]. Thus, before we move

on to briefly review the flux formulation of DFT in section 3, we review in section 2 two

known examples of non-associativity, namely the system of an electric charge moving in a

magnetic monopole field and a D-brane carrying non-constant gauge flux. In section 4 we

will analyze possible tri-products for DFT. As we will see, a priori there are two candidates,

one related to the tri-product (1.6) with H-flux and one to the tri-product with R-flux.

Both cases will be discussed in detail.
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2 Non-associativity in physics

In this section we review two instances where a non-associative structure has appeared

in physics. First, we recall the story of quantizing the motion of an electrically charged

particle in a magnetic field. Second, the effective theory on a D-brane with non-constant

magnetic background field turned on is considered. This gives a non-vanishing H = dB

flux, which in general leads to a non-associative star-product.

2.1 Non-associativity for magnetic monopoles

As it is known for some time [43–47], non-associativity emerges when considering the

quantization of a charged particle in the background of a magnetic monopole. Hence in this

context immediately the question arises how the apparent emergence of non-associativity

can be reconciled with the basic principles of quantum mechanics, where associativity of

all operators is mandatory. This issue was recently addressed in [13], where also some

remaining puzzles of the earlier work were resolved.

Here, let us just recall a few facts about this system following essentially [43, 44].

The commutator algebra between position and momentum of a particle in a background

magnetic field ~B in three space-dimensions takes the following form

[xi, pj ] = i~δij , [xi, xj ] = 0 , [pi, pj ] = i~ e ǫijkBk(~x) . (2.1)

In turn, the Jacobiator becomes

[pi, pj , pk] = −e~2 ǫijk ~∇ · ~B (2.2)

with ~∇ · ~B = 4πρm in Gaussian-cgs units. These relations have the analogous form as

the commutators (1.3) and three-bracket (1.2) after exchanging the role of momentum

and position variables in these equations. Now, consider the finite translation operators

U(a) = exp( i
~
a · p). Using the Baker-Campbell-Hausdorff formula one obtains

U(a)U(b) = exp

(

− i e

~
Φ(a,b)

)

U(a+ b) (2.3)

where Φ(a,b) =
1
2(a × b)kBk denotes the magnetic flux through the (infinitesimally small)

triangle spanned by the two vectors (a, b). Similarly, one can compute the associator of

three Us

(

U(a)U(b)
)

U(c) = exp

(

− i e

~
Φ(a,b,c)

)

U(a)
(

U(b)U(c)
)

(2.4)

where Φ(a,b,c) = 1
6 [(a × b) · c]~∇ · ~B denotes the magnetic flux through the tetrahedron

spanned by the three vectors (a, b, c). Due to Gauss law this is nothing else than the

magnetic charge 4πm sitting inside the tetrahedron. Therefore, the non-associativity (2.4)

vanishes if the phase is trivial, i.e.

em

~
=

N

2
(2.5)
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with an integer N . This is Dirac’s quantization rule for the magnetic charge. Thus we

can cite from the abstract of [43] ‘Insisting that finite translations be associative leads to

Dirac’s monopole quantization condition’.

As discussed in [13], only for the case of the magnetic monopole the classical equations

of motion of a charged particle are still integrable. In this case, the so-called Poincaré

vector provides an integral of motion, and angular momentum is still preserved. For a

continuous magnetic charge distribution ρ(x) angular symmetry gets broken.

In this paper, we are essentially generalizing the above mentioned logic by clarifying

how the non-associative tri-product deformation of the DFT action can be made consistent

with the requirements from CFT scattering amplitudes. The only main difference is that

we are not considering quantized fluxes and momenta but the case where these are in

general non-rational and space-time dependent. However, the main message still is that

from the requirement of absence of non-associativity we can learn something very essential

about the system.

2.2 Open string with non-associative star product

Let us recall that the conformal field theory of an open string ending on a D-brane sup-

porting a non-trivial gauge flux F = B + 2πα′F features a non-commutative geometry.

Indeed, by computing the disc level scattering amplitude ofN -tachyons, certain relative

phases appear which for constant gauge flux can be described by the Moyal-Weyl star-

product

(f ⋆ g)(x) = exp

(

i
ℓ2s
2
θij ∂x1

i ∂x2
j

)

f(x1) g(x2)
∣

∣

∣

x
, (2.6)

where the relation of the open and closed string quantities is

G−1 + θ = (g + F)−1 . (2.7)

In the Seiberg-Witten limit the OPE exactly becomes the Moyal-Weyl star-product.

This non-trivial product of functions lead to the non-commutative Moyal-Weyl plane

with [xi, xj ] = i ℓ2s θ
ij . That in the on-shell string scattering amplitudes such a non-

commutativity can show up, is possible because the conformal SL(2,R) symmetry group

only leaves the cyclic order of the inserted vertex operators invariant. By the same reason,

the non-commutativity must be such that, on-shell, it preserves cyclicity.

There is no need to only consider a constant antisymmetric two-vector θij . Indeed,

in [48] it has been shown that for every Poisson structure θij one can define a corresponding

associative star-product, which will also involve derivatives of the Poisson structure. The

same product can also be considered for a quasi Poisson structure, but then leads to a

non-associative star-product. This is related to the physical situation of an open string

ending on a D-brane with generic non-constant B-field, i.e. non-vanishing field strength H.

At leading order in derivatives this leads to a non-commutative product

f ◦ g = f · g+i
ℓ2s
2
θij ∂if ∂jg −

ℓ4s
8
θijθkl ∂i∂kf ∂j∂lg

− ℓ4s
12

(

θim∂mθjk
)(

∂i∂jf ∂kg + ∂i∂jg ∂kf
)

. . . .

(2.8)
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The associator for this product becomes

(f ◦ g) ◦ h− f ◦ (g ◦ h) = ℓ4s
6
θijk ∂if ∂jg ∂kh+ . . . (2.9)

with θijk = 3 θ[im∂mθjk], which precisely vanishes for a Poisson tensor. But now the puzzle

arises that in the open string CFT we should not see the effect of such a non-associative

deformation of the underlying space-time. Indeed this question was analyzed in some detail

in [41, 42] and we briefly repeat their essential observation here.

From the open string scattering amplitudes one can determine the low-energy effective

action so that also the effect of the non-associativity in its quantum deformation should be

trivial. Indeed, consider the DBI action

SDBI =

∫

dnx
√

g + F (2.10)

and vary it with respect to the gauge potential A in F = B + dA. One gets

∂i

(

√

g + F
[

(g + F)−1
][ij]
)

= ∂i

(

√

g + F θij
)

= 0 (2.11)

where we have used (2.7). Then, it directly follows that up to leading order in ∂θ the

⋆-product satisfies the property

∫

dnx
√

g + F f ◦ g =

∫

dnx
√

g + F f · g . (2.12)

Indeed, e.g. at order O(ℓ2s) the difference between the left and the right hand side is a total

derivative on-shell

i
ℓ2s
2

∫

dnx
√

g + F θij ∂if ∂jg = i
ℓ2s
2

∫

dnx ∂i

(

√

g + F θij f ∂jg
)

= 0 (2.13)

where here and in the following sections we always assume that the functions f, g are

sufficiently well behaving so that integrals over total derivatives vanish. Thus, as expected

from CFT, in the effective action the product of two functions is commutative (cyclic),

once the background satisfies the string equations of motion.

Similarly, the associator below the integral also gives a total derivative at leading order

in ∂θ. E.g. at order O(ℓ4s) we find

∫

dnx
√

g + F
(

(f ◦g)◦h−f ◦(g◦h)
)

=
ℓ4s
6

∫

dnx ∂i

(

√

g + F θijk f ∂jg ∂kh
)

= 0 , (2.14)

ywhere we have used

∂i

(

√

g + F θijk
)

= 0 , (2.15)

which can be seen by expanding θijk and successively employing the equation of mo-

tion (2.11) and the anti-symmetry of θij . The two relations (2.12) and (2.14) also hold for

higher orders in derivatives of θij [42]. Note, that as here one is using the DBI action, the

– 7 –
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star-product is exact in α′ at leading order in ∂θ. Thus, we conclude that, as expected

from the open string conformal field theory, on-shell the non-associativity of the ◦-product
is not visible.

In the following we will generalize this kind of analysis to the closed string case. Since

there we are dealing with non-geometric fluxes, the appropriate framework to discuss it is

double field theory. Therefore, let us recall those aspects of DFT which will be used in the

main section 4.

3 Flux formulation of DFT

In this section we summarize the main features of the flux formulation of DFT, as it has

been described in [21, 31], based on the earlier work [14, 15] and [28–30]. For more details

we refer to these papers.

3.1 Basics of DFT

The main new feature of DFT is that one doubles the number of coordinates by introducing

winding coordinates x̃m and arranges them into a doubled vector XM = (x̃m, xm). One

defines an O(D,D) invariant metric

ηMN =

(

0 δmn

δm
n 0

)

(3.1)

and introduces a generalized bein EA
M with metric

SAB =

(

sab 0

0 sab

)

(3.2)

with sab being the flat D-dimensional Minkowski metric. The most generic parameteriza-

tion of this generalized bein reads

EA
M =

(

ea
m ea

k Bkm

eakβ
km eam + eakβ

klBlm

)

, (3.3)

with the ordinary bein ea
msabeb

n = Gmn. Note that (3.3) contains both a two form Bmn

and a two-vector βmn. The flat derivative is defined as

DA = EA
M ∂M . (3.4)

Using these beins, one defines the generalized fluxes FABC as

FABC = 3Ω[ABC] (3.5)

in terms of the generalized Weitzenböck connection2

ΩABC = DAEB
M ECM . (3.6)

2For a recent discussion of the role of a Weitzenböck connection in DFT see [49].
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The components of these DFT fluxes FABC are precisely the geometric and non-geometric

fluxes H,F,Q and R

Fabc = Habc , Fa
bc = F a

bc , Fc
ab = Qc

ab , Fabc = Rabc . (3.7)

The explicit form of these fluxes in terms of B and β can be found in [28, 31, 50] (see

also [51]). For later use we just list the fluxes for the choice Bmn = 0 in (3.3). Defining

f c
ab = ei

c
(

∂aeb
i − ∂bea

i
)

, f̃a
bc = ea

i
(

∂̃bei
c − ∂̃cei

b
)

, (3.8)

one finds Habc = 0 and the geometric flux F c
ab = f c

ab. The non-geometric fluxes are

Qc
ab =f̃c

ab + ∂cβ
ab + fa

cmβmb + f b
cmβam (3.9)

and

Rabc =3
(

∂̃[aβbc] + f̃m
[ab βc]m

)

+ 3
(

β[am∂mβbc] + β[amβbnf c]
mn

)

. (3.10)

Similar to the open string case (2.9), the contribution Rabc
cl = 3

(

β[am∂mβbc] + . . .
)

can

be considered as the defect for associativity, when we consider βab as a classical (quasi-)

Poisson tensor.

Next, one introduces the T-duality invariant dilaton

e−2d = e−2φ√g (3.11)

which is used to also define

FA = ΩB
BA + 2EA

M∂Md . (3.12)

DFT is required to be invariant under a large symmetry group. First it is invariant under

global G = O(D,D) transformation and second it is invariant under a local H ⊂ G

symmetry with H = O(D)×O(D). This local symmetry acts on the bein as

δΛEA
M = ΛA

B EB
M with ΛA

CSCD ΛB
D = SAB (3.13)

so that they can be viewed as local double Lorentz transformations. Besides that, the

usual diffeomorphism symmetry is enhanced to so-called generalized diffeomorphism with

infinitesimal parameter ξM = (λ̃m, λm) and generalized Lie-derivative, acting e.g. on a

doubled vector V as

LξV M = ξN∂NV M + (∂MξN − ∂NξM )V N . (3.14)

For instance the beins EA transform as a doubled vector, whereas the dilaton d transforms

as a scalar density

δξd = Lξd = ξM∂Md− 1

2
∂MξM . (3.15)
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This allows to define a generalized tensor calculus by defining that the variation of a tensor

with respect to generalized diffeomorphisms is

δξT
M1...Mk = LξTM1...Mk . (3.16)

In contrast to the usual Lie-derivative, the Lie-derivative of a generalized tensor is not

automatically again a generalized tensor. To ensure this, one has to impose the so-called

closure constraint

∆ξ1(Lξ2TM1...Mk) = 0 (3.17)

with the anomalous variation ∆( · ) = δξ( · )− Lξ( · ).
The invariant action of the flux formulation of DFT reads

SDFT =

∫

dX e−2d

[

FAFA′SAA′

+ FABCFA′B′C′

(1

4
SAA′

ηBB′

ηCC′ − 1

12
SAA′

SBB′

SCC′

)

− 1

6
FABC FABC −FAFA

]

.

(3.18)

Note that in CFT we can assign a world-sheet parity Ω to every field (see e.g. [50]). Then,

the terms in the first two lines are Ω-even and the term in the last line are Ω-odd. The

DFT action has to be supplemented by one of the following constraints.

• Strong constraint : in this case one requires the so-called weak and strong constraint

∂M∂M = 0 , ∂Mf ∂Mg = DAf DAg = 0 (3.19)

with f, g being the fundamental objects like EA
M and ξM . Locally, up to an O(D,D)

transformation these constraints remove the winding dependence. In particular, the

constraints guarantee the closure constraint. In the following, we always implement

the weak and strong constraint for the uncompactified directions.

• Closure constraint : for compact spaces one can weaken the strong constraint and only

require that the symmetry algebra closes [30], i.e. that a Lie-derivative of a generalized

tensor is again a generalized tensor (3.17). Scherk-Schwarz reductions are prototype

examples, whose reduced action is closely related to gauged supergravity and whose

internal spaces are truly non-geometric in the sense that fields depend on doubled

coordinates (ym, ỹm).

Let us analyze some of the consequences of just imposing the closure constraint. First,

if f is a generalized scalar, then we can write

DAf = EA
M∂Mf = LEA

(f) (3.20)
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which by the closure constraint implies that ∆ξ(LEA
f) = 0. Therefore, DAf is also gener-

alized scalar. Now, by direct computation one obtains

∆ξ(DBf) = δξ(DBf)− Lξ(DBf)

=
(

DCξM
)

EBM DCf = 0 .
(3.21)

Thus, choosing ξ = EA we can conclude

(

DCEA
M
)

EBM DCf = ΩC
AB DCf = 0 . (3.22)

For a generalized scalar g, we can also choose ξ = EBg in (3.21) and, using the rela-

tion (3.22), obtain

δAB DCg DCf = 0 . (3.23)

Thus, we conclude that the closure constraint implies that for scalars f and g the strong

constraint still has to hold. A particular example which we will use later is

(DCFA)DCf = 0 . (3.24)

Similarly, the fluxes FABC = ECM (LEA
EB

M ) and FA = −e2d (LEA
e−2d) with flat

indices transform as scalars with respect to generalized diffeomorphisms, i.e.

δξFABC = ξM∂MFABC , δξFA = ξM∂MFA . (3.25)

However, under a local double Lorentz transformation one gets as

δΛFABC = 3
[

D[AΛBC] + Λ[A
DFBC]D

]

, δΛFA = DBΛBA + ΛA
BFB , (3.26)

where the first terms are anomalous. We also write e.g. ∆ΛFABC = 3D[AΛBC]. For the

relation (3.22) to be well defined we also require

0 = ∆Λ(Ω
C
AB DCf) = (DCΛAB)DCf , (3.27)

which could also be read off from (3.23)

Moreover, the fluxes satisfy the generalized Bianchi identities

D[AFBCD] −
3

4
F[AB

M FCD]M = ZABCD (3.28)

and

DMFMAB + 2D[AFB] −FM FMAB = ZAB , (3.29)

where the right hand sides are given by

ZABCD = −3

4
ΩE[AB ΩE

CD]

ZAB =
(

∂M∂ME[A
N
)

EB]N − 2ΩC
AB DCd .

(3.30)
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Both quantities vanish by the strong constraint. As shown in [31], realizing that ∆EA
FB =

ZAB and ∆EA
FBCD = ZABCD this also holds for the closure constraint.

Due to (3.25) the DFT action (3.18) is apparently invariant under generalized diffeo-

morphisms. Taking the anomalous terms in (3.26) into account, under local double Lorentz

transformations, the action transforms into a boundary term plus

δΛSDFT =

∫

dXe−2dΛA
C
(

ηAB − SAB
)

ZBC (3.31)

which indeed vanishes for all possible constraints.

The derivative (3.4) satisfies the commutation relations

[DA,DB] = FC
AB DC − ΩC

AB DC = FC
AB DC , (3.32)

where ΩC
AB DC vanishes after invoking either the strong or the closure constraint (3.22).

Now, varying the action with respect to the beins, one obtains the equations of motion

G[AB] = ZAB + 2SC[ADB]FC + (FC −DC)F̆C[AB] + F̆CD[AFCD
B] = 0 (3.33)

with

F̆ABC = S̆ABCDEF FDEF (3.34)

and

S̆ABCDEF =
1

2
SAD ηBE ηCF+

1

2
ηAD SBE ηCF+

1

2
ηAD ηBE SCF− 1

2
SAD SBE SCF . (3.35)

Note that the Ω-odd terms in (3.18) do not contribute to these equations of motion. The

dilaton equation of motion is that the integrand of the action (3.18) vanishes. It is remark-

able that it is possible to express the equations of motions, including the gravity part, in

this unified way just in terms of doubled fluxes FABC and FA.

Finally, let us mention that, by analyzing a Scherk-Schwarz reduction of DFT, it was

pointed out in [28, 29] that the quadratic constraints of gauged supergravity are satisfied

even though the strong constraint is not. Additionally, in [30, 31] it was shown that for

such Scherk-Schwarz reductions the closure constraint of DFT is satisfied. Thus, in a

compactified DFT the strong constraint seems only to be a sufficient but not a necessary

requirement. These Scherk-Schwarz reductions provide explicit examples of truly doubled

geometries [32]. Whether all such truly non-geometric backgrounds are honest solutions of

string theory is still under debate.

4 Non-associative deformations of DFT

In this section we investigate the generalization of the open string analysis from section 2.2

to the closed string, which we describe by DFT. As we argued, (on-shell) closed string

scattering amplitudes are not expected to show any sign of non-associativity. The latter is

due to the fact that CFT amplitudes are crossing symmetric, which correspond to satisfied
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Jacobi-identities in an operator formalism. Therefore, we again expect that the deformation

of the effective action by a (non-associative) tri-product should better be trivial (at least)

on-shell. However, let us stress that, if one can identify such a specific non-trivial tri-

product, one definitely has made a big change of the underlying geometry. We will show

that, under certain conditions, it remarkably has no effect for the DFT action. In a similar

vein, the conformal SL(2,C) symmetry does not preserve the (radial) ordering of points

on the sphere. Therefore, on-shell one also does not expect to see any imprint of non-

commutativity.

In DFT, there exist two possible tri-products. First, there is the tri-product

f △g△h = f g h+
ℓ4s
6
F̆ABC DAf DBgDCh+O(ℓ8s) . (4.1)

Since (4.1) contains the component Habc ∂af ∂bg ∂ch, with H ijk = gii
′

gjj
′

gkk
′

Hi′j′k′ , it can

be considered as the DFT generalization of the three-product (1.6) with H-flux deforma-

tion. Even though there does not exist evidence for the presence of some non-associativity

for H-flux, we study it here, as it is the direct generalization of the open string story and

it still shows some remarkable properties.

The second possibility is the generalization of the tri-product with Rijk deformation

f △g△h = f g h+
ℓ4s
6
FABC DAf DBgDCh+O(ℓ8s) . (4.2)

As mentioned in the introduction, for this case the CFT analysis showed some signs of

non-associativity.

In this section we will see that both of these in principle possible non-associative

deformations do not lead to any physical effect in on-shell DFT, though the mechanisms

turn out to be different for the two cases.

4.1 A tri-product for F̆
ABC

In analogy to the non-associative product for the open string, we consider the DFT tri-

product

f △g△h = f g h+
ℓ4s
6
F̆ABC DAf DBgDCh+O

(

ℓ8s
)

. (4.3)

We assume that f, g, h are scalars under generalized diffeomorphisms and are invariant

under doubled local Lorentz transformations.

Invoking the strong or closure constraint, F̆ABC and DAf transform as scalars un-

der generalized diffeomorphisms so that the tri-product is invariant under the latter. The

anomalous transformation behavior of the tri-product under doubled local Lorentz trans-

formations is

∆Λ

(

F̆ABC DAf DBgDCh
)

= 3S[ADDBΛC]
D DAf DBgDCh (4.4)

which vanishes directly for the strong constraint and due to (3.27) for the closure constraint.
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Now consider the effect of the order ℓ4s term under the integral. Performing an in-

tegration by parts and using that for both constraints we have [DA,DB] = FC
ABDC ,

we find
∫

dXe−2d F̆ABC DAf DBgDCh =

∫

dX ∂M (e−2dV M )

+

∫

dXe−2d
[

(FC −DC)F̆C[AB] + F̆CD[AFCD
B]
]

f DAgDBh .

(4.5)

with

V M = EA
M F̆ABC f DBgDCh (4.6)

transforming as a vector under generalized diffeomorphisms. Thus, invoking Stokes theorem

this gives a boundary term, which vanishes on well defined compact doubled geometries

patched by generalized diffeomorphisms and double Lorentz transformations. Here we have

also used the relation

∂M (EA
M e−2d) = −e−2dFA . (4.7)

The second term can be written as
∫

dXe−2d
[

G[AB] − 2SM [ADB]FM

]

f DAgDBh = 0 (4.8)

where, due to (3.33), G[AB] vanishes on-shell and the second term vanishes for both the

strong and, due to (3.24), also for the closure constraint. Thus, we conclude that the order

ℓ4s term in the tri-product is a surface term on-shell. In this respect this tri-product is very

similar to the open string story.

Matter corrections. However, these equations of motion receive stringy higher deriva-

tive corrections, so that the tri-product, i.e. the coefficient F̆ABC , needs to be adjusted

accordingly. Moreover, coupling DFT to extra matter sources, which, in particular, means

any additional field contributing to the energy-momentum tensor, the equations of motion

change to

2SC[ADB]FC + (FC −DC)F̆C[AB] + F̆CD[AFCD
B] = T AB . (4.9)

For instance, including the R-R sector [52, 53], one can put all R-R fields in the spinor

representation of O(D,D)

G =
∑

n

eφ

n!
G

(n)
i1...in

ea1
i1 . . . ean

in Γa1...an |0〉 , (4.10)

where Γa1...an defines the totally anti-symmetrized product of n Γ-matrices. Then, the R-R

contribution to the DFT equation of motion is

T AB =
1

4
G ΓAB G . (4.11)
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In order to still keep the total derivative property, the only thing one can do is to adjust

the tri-product (4.3) as

f △g△h = . . .+
ℓ4s
18
T AB

(

f DAgDBh+DAf DBg h+DBf gDAh
)

. (4.12)

This means that one already has to introduce a non-trivial two-product as

f △2 g = f · g + ℓ4s
18
T AB DAf DBg +O

(

ℓ8s
)

. (4.13)

Let us discuss its effect for the case that one imposes the strong constraint. Below the

integral the order ℓ4s correction to this two-product can be written as
∫

dXe−2d T AB DAf DBg =

∫

dX∂M (. . .)M

+

∫

dXe−2d
[

(FA −DA)T AB − 1

2
T CD FCD

B
]

f DBg .

(4.14)

Employing the Bianchi identities (3.28) and (3.29) and the strong or the closure constraint,

from (4.9) we derive the continuity equation for the energy-momentum tensor

(DA −FA)T AB +
1

2
FCD

B T CD = SCADB
(

DAFC −
1

2
FAFC

)

. (4.15)

Thus, due to the strong constraint the second line in (4.14) vanishes and the order ℓ4s
correction to the two-product gives a total derivative below the integral. Note that such a

two-product implies a two-bracket

[xi, xj ] =
ℓ4s
9
T ij . (4.16)

Thus, we conclude that, due to higher order and source term corrections to the equa-

tions of motion, the tri-product needs to be adjusted accordingly. For the matter source

term, we showed explicitly that at order ℓ4s this is indeed possible. We find it compelling

that the definition of a tri-product and the DFT/string equations of motion are related

in this intricate manner. Deforming the underlying geometry in this non-associative way

does not effect the on-shell DFT.

4.2 A tri-product for FABC

Now consider the DFT generalization of the tri-product (1.6)

f △g△h = f g h+
ℓ4s
6
FABC DAf DBgDCh+O(ℓ8s) . (4.17)

Note that, once the strong or closure constraint is imposed, the order ℓ4s term in (4.17)

transforms as a scalar under generalized diffeomorphisms if f, g, h are scalars. In addition

this tri-product is also invariant under local double Lorentz transformations. However, a

second look reveals that this is trivial as, imposing either constraint, one immediately real-

izes that due to (3.22) the whole order ℓ4s term actually vanishes. Thus, in this constrained

DFT framework this tri-product is actually trivial.
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For illustrative purposes, nevertheless let us apply a partial integration to the tri-

product (4.17) written below an integral. The order ℓ4s term can be written as

∫

dXe−2dFABC DAf DBgDCh =

∫

dX ∂M (. . .)M

−
∫

dXe−2d
[

(DC −FC)FCAB

]

DAf DBg h

(4.18)

where the term in the last line can be written as

∫

dXe−2d
[

ZAB − 2D[AFB]

]

DAf DBg h . (4.19)

Here we have used FMN [AFMN
B] = 0. Consistently, due to the Bianchi-identity (3.29) and

the relation (3.24) this expression vanishes for both constraints. Since the terms appearing

in this computation are related to the ones appearing in a topological Bianchi identity and

not a dynamical equation of motion, one might expect that there are no stringy higher

order derivative corrections to the, in general, non-constant tri-product parameter FABC .

Comments on relaxing the closure constraint. Relaxing even the closure constraint

is the only option to get a non-trivial tri-product (4.17). For compact configurations it is

clear that string theory contains momentum and winding modes not subject to the weak

and consequently the strong constraint. For instance, for a toroidal compactification, the

level matching condition becomes

L0 − L0 = α′ p · w +N −N = 0 (4.20)

whereN andN denote the number of left and right-moving oscillator excitations. Including

these modes is expected to go beyond the realm of DFT.

Another way of relaxing the closure constraint could be by splitting the fluxes into

backgrounds and fluctuations and relaxing the strong and closure constraint between the

two. Whether this is an allowed relaxation in DFT remains to be seen and is beyond the

scope of this paper. Here we just discuss its consequences for the tri-product.

Independent of how actually the constraints are relaxed, let us now discuss the conse-

quences for the tri-product. Up to boundary terms, after partially integrating the order ℓ4s
term under the integral we get

∫

dXe−2d
[

(DC −FC)FC[AB] + 2ΩCD[AFB]
CD
]

(DAf) (DBg)h . (4.21)

The additional term compared to (4.18) arises from the Ω term in the commutator (3.32)

when violating closure. Taking into account that, in string theory, non-associativity should

still be vanishing at least on shell, we can imagine two ways to proceed from here.

First, we can require a new constraint

ζAB DAf DBg = 0 (4.22)

– 16 –



J
H
E
P
0
4
(
2
0
1
4
)
1
4
1

with

ζAB = (DC −FC)FC[AB] + 2ΩCD[AFB]
CD (4.23)

that is weaker than the closure constraint. The second possibility is to cancel these terms

by an appropriately adjusted tri-product

f △g△h = f g h+
ℓ4s
6
FABC DAf DBgDCh

+
ℓ4s
18

ζAB

(

f DAgDBh+DAf DBg h+DBf gDAh
)

.

(4.24)

Note that one can rewrite the adjusted tri-product (4.24) as

f △g△h = f g h+ e2d ∂M

(

ℓ4s
6
EA

Me−2dFABC f DBgDCh+ cyclf,g,h

)

(4.25)

showing that it is really designed to give a boundary term below the integral. One can

show that also the induced two-product gives a boundary term if written under an integral.

Summarizing, relaxing the closure constraint, one can either impose (4.22) or define

the tri-product deformation trivially as a total derivative. In both cases one formally has

non-vanishing brackets (1.3) and (1.4) that leave no trace under an action integral.

Holonomic basis. In order to see more concretely what is happening here, let us consider

as an example a holonomic basis with Bab = 0, fab
c = 0 and f̃ab

c = 0. In this case

one finds

FABC DAf DBgDCh = Rijk ∂if ∂jg ∂kh+ (4.26)

Qk
ij
(

∂if ∂jg
(

∂̃k + βkl∂l
)

h+ cyclf,g,h

)

= 3
(

∂̃[iβjk] + β[im∂mβjk]
)

∂if ∂jg ∂kh

− 3
(

β[im∂mβjk]
)

∂if ∂jg ∂kh+ ∂kβ
ij
(

∂if ∂jg ∂̃
kh+ cyclf,g,h

)

where we have split the R-flux as

Rijk = R̂ijk +Rijk
cl = 3

(

∂̃[iβjk] + β[im∂mβjk]
)

. (4.27)

Therefore, the second and third term cancel and the sum of the first and fourth vanish by

the constraint. In particular, this means that in DFT the classical part Rijk
cl = β[im∂mβjk]

does not contribute to the tri-product.

In order to derive the tri-bracket among three coordinates, let us choose for the three

functions f = xi, g = xj and h = xk. Without imposing neither the strong nor the closure

constraint3 the resulting tri-bracket is then given by

[xi, xj , xk] = ℓ4s R̂
ijk , (4.28)

and, in particular, only contains the R-flux R̂ijk.

3The CFT computations performed in [5–9] were not imposing any constraints so that they can be

considered to be reliable for the compact torus case for which the level matching condition is (4.20).
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Let us also consider the general commutator (1.4) for the case that both Q- and R-flux

is present in more detail. Our DFT analysis suggests that the commutator for general

functions should be defined as

−3i~

ℓ4s
[f, g] = Rijk∂if ∂jg ∂k +Qk

ij
(

∂if ∂jg
(

∂̃k + βkl∂l
)

+
(

∂̃k + βkl∂l
)

f ∂ig ∂j + ∂jf
(

∂̃k + βkl∂l
)

g ∂i

)

.

(4.29)

Inserting the definition of the R-flux (4.27), again the term Rijk
cl completely cancels against

terms appearing in the Q-flux contribution and we are left with

−3i~

ℓ4s
[f, g] = R̂ijk∂if ∂jg ∂k

+Qk
ij
(

∂if ∂jg ∂̃
k + ∂̃kf ∂ig ∂j + ∂jf ∂̃kg ∂i

)

.

(4.30)

Note that, invoking the constraint, the commutator vanishes. Computing the commutation

relations for the coordinate functions, without imposing any constraint, one finds

[xi, xj ] = i
ℓ4s
3~

(

R̂ijk∂k +Qk
ij ∂̃k

)

,

[xi, x̃k] = −i
ℓ4s
3~

Qk
ij∂j .

(4.31)

Thus, DFT suggests that the interpretation of the commutation relation (1.4) in terms of

derivatives is (4.31). In particular, the contribution Rijk
cl drops out and all commutators

vanish after imposing any constraint.

Higher order corrections. At leading order in derivatives of FABC there is a natural

candidate for the all order in ℓ4s tri-product, namely

(f △g△h)(X) = exp

(

ℓ4s
6
FABC DA

X1
DB

X2
DC

X3

)

f(X1) g(X2)h(X3)
∣

∣

∣

X
. (4.32)

At leading order in (DFABC), except fgh, all terms give a total derivative below the

integral. The appearing derivatives can be canceled by defining the overall tri-product as

f N gNh = f △g△h+
∞
∑

k=2

ℓ4ks
3 6kk!

{

FA1B1D DD (FA2B2C2 . . .FAkBkCk
)

(

(DA1 . . .DAkf)(DB1 . . .DBkg)(DC2 . . .DCkh) + cycl{f,g,h}

)

}

.

(4.33)

This product is designed to satisfy

∫

dX e−2d f N gNh =

∫

dX e−2df g h . (4.34)

A possible generalization of the tri-product to the product of K functions is presented in

the appendix.
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5 Conclusions

Using the flux formulation of DFT, we have analyzed the consequences of introducing non-

associativity via a non-trivial tri-product for the functions on the manifold. We analyzed

two different such non-associative deformations. For the first the deforming flux was given

by F̆ABC and for the second by FABC . The first case is the DFT generalization of the

H ijk-flux deformation and the second one the generalization of the Rijk-flux deformation.

We argued from conformal field theory that on-shell any non-associative deformation

should not lead to any physical effect. Note that in the open string case, the situation

is different. There the DBI action can be expressed in the Seiberg-Witten limit as a

non-commutative gauge theory and the higher orders in the star-product really contribute

physical terms to the deformed action. However, also here cyclicity and associativity are

preserved on-shell.

The F̆ABC flux case is conceptually very close to its open string analogue. Similarly,

we found that, at leading order in ℓ4s, the deformation gives a boundary term under the

integral if the DFT equations of motion are satisfied and the strong or closure constraint

is employed. We showed that, for additional matter contributions, the tri-product can be

adjusted accordingly. This led to a new deformation of the two-product, whose on-shell

triviality was guaranteed by the continuity equation of the energy momentum tensor. This

means that on-shell DFT or string theory cannot distinguish between on ordinary smooth

geometry and a fuzzy one with fundamental tri-bracket

[xi, xj , xk] = ℓ4s H
ijk . (5.1)

Even though from [5–9] we do not have any evidence for such a non-associative behavior

of the coordinates, we find this a remarkable property of DFT. Turning the logic around,

up to the dilaton sector, one can derive the DFT equations of motion from the concept

of the absence of on-shell non-associativity. We emphasize, that in the flux formulation

of DFT also the gravity part is fully encoded in the generalized three-form flux. At least

in spirit, this is very similar to the familiar magnetic monopole example discussed in the

first section.

The FABC flux case is the one where non-associativity was expected. We realized that

in the DFT framework this tri-product actually vanishes after imposing either the strong

or the closure constraint. Therefore, in order to get something non-trivial even the closure

constraint need to be weakened. Only then one could obtain a non-associative deformation

of the target space action with the three-bracket for the internal coordinates xi being

[xi, xj , xk] = ℓ4s R̂
ijk . (5.2)

Again note that the R̂ijk only contain the winding part of the full R-flux, the classical part

has canceled out.

On a more speculative level, we also proposed a generalization of the tri-product to

higher orders in ℓ4s and for products of K-terms.

Summarizing, the resolution to the initially raised paradox is that one can have a non-

associative deformation of the target space, while nothing of it is immediately apparent
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Figure 1. Stringy equivalence between fuzzy non-associative geometry and smooth Riemannian

geometry.

in the effective string and DFT actions for the massless modes. Deforming the product

to a tri-product we have found two different ways how such a deformation can become

trivial (on-shell).

One could imagine that, due to the finite size and resolution of the string, there exists

a certain non-associative deformation of the target space that is “under the radar” of the

string. Therefore, string theory can very well admit such non-geometric space as honest

backgrounds. An artist’s impression of this picture is presented in figure 1.

It would be interesting to carry out a similar analysis for the (precursor) non-

commutative closed string star product defined on phase space, which was introduced

and discussed in [12, 13]. Moreover, one could contemplate what other deeper conceptual

consequences the existence of such a non-geometric regime of string theory might have.

Including also the massive string states, can it be generalized to string field theory? Does

there exist an analogous structure for M-theory?
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A K tri-product

In this appendix we discuss how to treat terms which involve for instance a product of K

functions. Clearly, e.g. forK = 4 this is not defined by an iteration of the tri-product (4.32).

From the analysis of multiple tachyon scattering amplitudes in CFT, in [7] a proposal was

made, how to deform the product ofK functions. Analogously, at leading order in (DFABC)

(or (DF̆ABC)) we now define the K-fold tri-product as

(f1△K f2△K . . .△K fK)(X)
def
= (A.1)

exp

(

ℓ4s
6
FABC

∑

1≤a<b<c≤K

DA
Xa
DB

Xb
DC

Xc

)

f1(X1) f2(X2) . . . fK(XK)
∣

∣

∣

X
.
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Below we prove the remarkable feature that for each K all terms beyond leading order give

a total derivative under the internal integral, i.e.
∫

dX e−2d f1△K f2△K . . .△K fK =

∫

dX e−2df1 f2 . . . fK . (A.2)

Moreover, this K tri-product has the property

f1△K . . .△K 1 = f1△K−1 . . .△K−1 fK−1 (A.3)

which suggests to define f1△2f2 = f1 · f2, i.e. the two tri-product is the ordinary multipli-

cation of functions.

Note that the total derivative property does not hold for a similar definition of an K

star-product

(f1 ⋆K f2 ⋆K . . . ⋆K fK)(X)
def
= (A.4)

exp

(

i
ℓ2s
2
θIJ

∑

1≤a<b≤K

∂Xa

I ∂Xb

J

)

f1(X1) f2(X2) . . . fK(XK)
∣

∣

∣

X
,

This is why for the open string case, the non-commutativity of the underlying space-time

has a non-trivial effect on the action.

Proof. Here we present the proof that at leading order in DFABC theK tri-product (A.1)

gives a total derivative under the integral, i.e.
∫

dX e−2d f1△K . . .△K fK =

∫

dX e−2df1 . . . fK . (A.5)

We first consider just the order ℓ4s term, which is given by

ℓ4s
6
FABC

∑

1≤a<b<c≤K

DA
Xa
DB

Xb
DC

Xc

(

f1(X1) f2(X2) . . . fK(XK)

)

∣

∣

∣

X
.

Inspection reveals, that the
(

K
3

)

terms can be grouped together as

DA(f1) DBf2 DC(f3 . . . fK)

+DA(f1f2) DBf3 DC(f4 . . . fK)

+DA(f1f2f3) DBf4 DC(f5 . . . fK)

+ . . .

+DA(f1 . . . fK−2) DBfK−1 DC(fK) .

(A.6)

Note that the sum fixes the order of the derivatives and the number of terms is correct,

since
(

K

3

)

= 1 · (K − 2) + 2 · (K − 3) + · · ·+ (K − 2) · 1. (A.7)

As one can see, the K tri-product splits into K − 2 three tri-products and therefore shares

its properties under an integral. The higher order terms follow immediately by iteration.

This is owed to the fact that, in the derivation of the total derivative property, only first

three derivatives are relevant.
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