2,616 research outputs found

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB

    A Study of the Conformers of the (Nonafluorobutanesulfonyl)imide Ion by Means of Infrared Spectroscopy and Density Functional Theory (DFT) Calculations

    Get PDF
    Pyrrolidinium-based ionic liquids with anions of the per(fluoroalkylsulfonyl)imide family are particularly interesting for their use as electrolytes in lithium batteries. These ions have several geometric isomers and the presence of different ion conformers and their distribution affects the ILs (Ionic liquids) physical and chemical properties. In the present work, we report the temperature dependence of the infrared spectra of the N-butyl-N-methyl-pyrrolidinium(trifluoromethanesulfonyl) (nonafluorobutanesulfonyl)imide (PYR14-IM14) ionic liquid; DFT (Density Functional Theory) calculations performed with different models provides indications about the IM14 conformers and their vibrational spectra. Moreover the temperature dependence of the intensity of the lines identified as markers of different conformers provide indications about the conformers’ distribution and the difference of their enthalpy in the liquid phase

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    An analysis on health care costs due to accidents involving powered two wheelers to increase road safety

    Get PDF
    Powered Two Wheelers (PTWs) provide a convenient mode for a large portion of population in many cities. At the same time PTWs present serious system problems, the most important being poorer safety if compared to other motorized modes. But even when lower safety levels are acknowledged, problems behind are far from being solved. Rome is an example: although PTWs accidents rates are not negligible, the need for a specific safety policy is still unmet. Therefore the local Mobility Agency appointed the authors of this paper for a study of PTWs accidents occurring in the urban area. An assessment of the associated health care costs was also required. The objective of the paper is to report the main outcomes of this study highlighting recurring features of PTWs accidents, the high health care costs and how to quantify the economic resources to improve safety. The methodology was based on three steps: i) an analysis of the causes of PTWs accidents, which resulted into the location of black spots and assessment of the severity of the events; ii) the estimation of health care costs after a scientific literature review; iii) the association of health care costs to black spots and accidents severity to rank interventions to improve PTWs safety. This led to a final list of roads where PTWs accidents of the highest severity occurred and the required economic resources to improve their safety level. This stressed, for the first time, the unaffordable expenditures due to PTWs accidents. In conclusion, the issue whether the awareness of such costs can be used as leverage for more mindful behaviors among the riders is addressed

    Emerging giant resonant exciton induced by Ta-substitution in anatase TiO2_{2}: a tunable correlation effect

    Full text link
    Titanium dioxide (TiO2_2) has rich physical properties with potential implications in both fundamental physics and new applications. Up-to-date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nano-engineering. However, understanding the role of dd-electrons in materials and possible functionalization of dd-electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high energy optical conductivity, and of the state-of-the-art {\it ab initio} electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low concentration Ta-substitution in anatase TiO2_{2} films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The dd- and ff- orbitals localization, due to Ta-substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2_{2} films and on the possibility of tuning electronic properties by Ta substitution

    Formation and observation of a quasi-two-dimensional dxyd_{xy} electron liquid in epitaxially stabilized Sr2x_{2-x}Lax_{x}TiO4_{4} thin films

    Full text link
    We report the formation and observation of an electron liquid in Sr2x_{2-x}Lax_{x}TiO4_4, the quasi-two-dimensional counterpart of SrTiO3_3, through reactive molecular-beam epitaxy and {\it in situ} angle-resolved photoemission spectroscopy. The lowest lying states are found to be comprised of Ti 3dxyd_{xy} orbitals, analogous to the LaAlO3_3/SrTiO3_3 interface and exhibit unusually broad features characterized by quantized energy levels and a reduced Luttinger volume. Using model calculations, we explain these characteristics through an interplay of disorder and electron-phonon coupling acting co-operatively at similar energy scales, which provides a possible mechanism for explaining the low free carrier concentrations observed at various oxide heterostructures such as the LaAlO3_3/SrTiO3_3 interface

    Electronic structure of fluorides: general trends for ground and excited state properties

    Full text link
    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2CaF_{2},SrF2SrF_{2}, BaF2BaF_{2}, CdF2CdF_{2}, HgF2HgF_{2}, β\beta -PbF2PbF_{2}, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2HgF_{2} have been presented
    corecore