173 research outputs found

    Insider Threat Detection using Virtual Machine Introspection

    Get PDF
    This paper presents a methodology for signaling potentially malicious insider behavior using virtual machine introspection (VMI). VMI provides a novel means to detect potential malicious insiders because the introspection tools remain transparent and inaccessible to the guest and are extremely difficult to subvert. This research develops a four step methodology for development and validation of malicious insider threat alerting using VMI. A malicious attacker taxonomy is used to decompose each scenario to aid identification of observables for monitoring for potentially malicious actions. The effectiveness of the identified observables is validated using two data sets. Results of the research show the developed methodology is effective in detecting the malicious insider scenarios on Windows guests

    On the detection of virtual machine introspection from inside a guest virtual machine

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015With the increased prevalence of virtualization in the modern computing environment, the security of that technology becomes of paramount importance. Virtual Machine Introspection (VMI) is one of the technologies that has emerged to provide security for virtual environments by examining and then interpreting the state of an active Virtual Machine (VM). VMI has seen use in systems administration, digital forensics, intrusion detection, and honeypots. As with any technology, VMI has both productive uses as well as harmful uses. The research presented in this dissertation aims to enable a guest VM to determine if it is under examination by an external VMI agent. To determine if a VM is under examination a series of statistical analyses are performed on timing data generated by the guest itself

    Method of Information Security Risk Analysis for Virtualized System

    Get PDF
    The growth of usage of Information Technology (IT) in daily operations of enterprises causes the value and the vulnerability of information to be at the peak of interest. Moreover, distributed computing revolutionized the out-sourcing of computing functions, thus allowing flexible IT solutions. Since the concept of information goes beyond the traditional text documents, reaching manufacturing, machine control, and, to a certain extent – reasoning – it is a great responsibility to maintain appropriate information security. Information Security (IS) risk analysis and maintenance require extensive knowledge about the possessed assets as well as the technologies behind them, to recognize the threats and vulnerabilities the infrastructure is facing. A way of formal description of the infrastructure – the Enterprise Architecture (EA) – offers a multiperspective view of the whole enterprise, linking together business processes as well as the infrastructure. Several IS risk analysis solutions based on the EA exist. However, lack of methods of IS risk analysis for virtualization technologies complicates the procedure, thus leading to reduced availability of such analysis. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter introduces the problem of information security risk analysis and its’ automation. Moreover, state-of-the-art methodologies and their implementations for automated information security risk analysis are discussed. The second chapter proposes a novel method for risk analysis of virtualization components based on the most recent data, including threat classification and specification, control means and metrics of the impact. The third chapter presents an experimental evaluation of the proposed method, implementing it to the Cyber Security Modeling Language (CySeMoL) and comparing the analysis results to well-calibrated expert knowledge. It was concluded that the automation of virtualization solution risk analysis provides sufficient data for adjustment and implementation of security controls to maintain optimum security level

    Automated Virtual Machine Introspection for Host-Based Intrusion Detection

    Get PDF
    This thesis examines techniques to automate configuration of an intrusion detection system utilizing hardware-assisted virtualization. These techniques are used to detect the version of a running guest operating system, automatically configure version-specific operating system information needed by the introspection library, and to locate and monitor important operating system data structures. This research simplifies introspection library configuration and is a step toward operating system independent introspection. An operating system detection algorithm and Windows virtual machine system service dispatch table monitor are implemented using the Xen hypervisor and a modified version of the XenAccess library. All detection and monitoring is implemented from the Xen management domain. Results of the operating system detection are used to initialize the XenAccess library. Library initialization time and kernel symbol retrieval are compared to the standard library. The algorithm is evaluated using nine versions of the Windows operating system. The system service dispatch table monitor is evaluated using the Agony and ProAgent rootkits. The automation techniques successfully detect the operating system and system service dispatch table hooks for the nine Windows versions tested. The modified XenAccess library exhibits an average initialization speedup of 1.9. Kernel symbol lookup is 10 times faster, on average. The hook detector is able to detect all hooks used by both rookits

    Insider Threat Detection on the Windows Operating System using Virtual Machine Introspection

    Get PDF
    Existing insider threat defensive technologies focus on monitoring network traffic or events generated by activities on a user\u27s workstation. This research develops a methodology for signaling potentially malicious insider behavior using virtual machine introspection (VMI). VMI provides a novel means to detect potential malicious insiders because the introspection tools remain transparent and inaccessible to the guest and are extremely difficult to subvert. This research develops a four step methodology for development and validation of malicious insider threat alerting using VMI. Six core use cases are developed along with eighteen supporting scenarios. A malicious attacker taxonomy is used to decompose each scenario to aid identification of observables for monitoring for potentially malicious actions. The effectiveness of the identified observables is validated through the use of two data sets, one containing simulated normal and malicious insider user behavior and the second from a computer network operations exercise. Compiled Memory Analysis Tool - Virtual (CMAT-V) and Xen hypervisor capabilities are leveraged to perform VMI and insider threat detection. Results of the research show the developed methodology is effective in detecting all defined malicious insider scenarios used in this research on Windows guests

    A forensic acquisition and analysis system for IaaS

    Get PDF
    Cloud computing is a promising next-generation computing paradigm that offers significant economic benefits to both commercial and public entities. Furthermore, cloud computing provides accessibility, simplicity, and portability for its customers. Due to the unique combination of characteristics that cloud computing introduces (including on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service), digital investigations face various technical, legal, and organizational challenges to keep up with current developments in the field of cloud computing. There are a wide variety of issues that need to be resolved in order to perform a proper digital investigation in the cloud environment. This paper examines the challenges in cloud forensics that are identified in the current research literature, alongside exploring the existing proposals and technical solutions addressed in the respective research. The open problems that need further effort are highlighted. As a result of the analysis of literature, it is found that it would be difficult, if not impossible, to perform an investigation and discovery in the cloud environment without relying on cloud service providers (CSPs). Therefore, dependence on the CSPs is ranked as the greatest challenge when investigators need to acquire evidence in a timely yet forensically sound manner from cloud systems. Thus, a fully independent model requires no intervention or cooperation from the cloud provider is proposed. This model provides a different approach to a forensic acquisition and analysis system (FAAS) in an Infrastructure as a Service model. FAAS seeks to provide a richer and more complete set of admissible evidences than what current CSPs provide, with no requirement for CSP involvement or modification to the CSP’s underlying architecture

    Digital Forensics Investigation Frameworks for Cloud Computing and Internet of Things

    Get PDF
    Rapid growth in Cloud computing and Internet of Things (IoT) introduces new vulnerabilities that can be exploited to mount cyber-attacks. Digital forensics investigation is commonly used to find the culprit and help expose the vulnerabilities. Traditional digital forensics tools and methods are unsuitable for use in these technologies. Therefore, new digital forensics investigation frameworks and methodologies are required. This research develops frameworks and methods for digital forensics investigations in cloud and IoT platforms
    corecore