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Abstract

Let’s Look Out For Each Other: A Distributed Framework for
Botcloud Detection

Twisha
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Cloud Computing (CC) has gained increasing attention from the in-
dustry for on-demand rapid provisioning of shared pool of resources and services
(R&S). This set of R&S is configured as per the users’ requirement and are acces-
sible through virtual machines (VMs). This infrastructure enables VMs to access
user data, thus increasing the risk of losing it, particularly given the fact that
VMs maybe much more vulnerable to theft or loss in comparison with conven-
tional computing devices such as workstations. Therefore, more stringent security
provision is needed in this environment.
The initial literature study in the topic of VM security shows that VMs are
susceptible to a number of security attacks such as distributed denial of service
(DDoS), side channel, man-in-the middle attacks and more, with DDoS as the
most common. These attacks can be performed by a malware-infected VM resid-
ing on the same system or by an outsider. The attacks performed from within the
system are difficult to track. Moreover, the strength of these attacks increases
drastically when a group of malicious VMs attack simultaneously. These are the
VMs infected by the same malware (bot) known as botVMs and the attack is
known as botCloud attack. The high impact of a botCloud attack has motivated
us to investigate how to strengthen the security of VMs and minimize the effect
of such attacks. To this end, the thesis makes the following novel contributions.
The thesis proposes and evaluates a novel BotVM Detection (bVMD) framework
to detect a set of botVMs in an effective and efficient manner. The novelty of
the framework lies in that it uses a two-staged approach to botCloud detection:
in Stage-1, a peer-VM mutual monitoring based, suspected botVM identification
method is used to identify suspected malicious VMs (S-VMs) and, in Stage-2, a
detailed examination of run-time state is carried out on each identified suspected
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botVM. This two-staged approach to botCloud detection reduces the number
of VMs on which run-time state examinations are carried out, thus reducing
overhead costs and making the detection more efficient. The peer-VM mutual
monitoring based, suspected botVM identification method allows each VM be-
ing watched by any peer VM, potentially increasing the true positive detection
rate, thus making the detection more effective. In addition, the run-time state
examination of each S-VM is done by using an improved method to minimize the
number of examiners, thus reducing the overhead costs.
The bVMD framework consists of four types of components: (i) a VMWatcher,
which is a VM monitoring component residing in each VM monitoring and record-
ing the behaviour of each peer VM communicating with this VM, (ii) an S-VM
Detector (S-VMD), an analysis component, collecting data from VMWatchers,
analysing the collected data to identify any S-VMs, (iii) a Forensic VM (FVM), a
mini-VM dispatched to any identified S-VM to analyse its run-time state and (iv)
a BotVM Detector (BotVMD), the component that controls the FVMs and makes
decision as which S-VM is confirmed as a botVM. Components (i) and (ii) work
in Stage-1 and (iii) and (iv) in Stage-2. In proposing this framework, we have
also studied different parameter value settings and feature extraction techniques
to increase detection accuracy, while, at the same time, minimizing overhead
costs. The bVMD framework is implemented and evaluated using the Omnet++
simulation tool. The evaluation results are compared against the most relevant
work in the literature. The simulation study shows that bVMD outperforms the
relevant protocol in terms of the true positive and false negative detection. These
enhancements make bVMD more effective in detecting a group of botVM(s). In
addition, the bVMD framework minimizes the associated overhead costs, thus
improving the efficiency of the system.
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Chapter 1

Introduction

1.1 Background

This section provides the background information for the work reported in this
thesis, namely cloud computing and its security concerns.

1.1.1 Cloud Computing

Cloud is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks, servers, storage, appli-
cations and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction [1]. It supports three service
models, namely Cloud Software as a Service (SaaS), Cloud Platform as a Service
(PaaS) and Cloud Infrastructure as a Service (IaaS). SaaS is a software distribu-
tion model in which a cloud provider hosts applications and makes them available
to end users over the internet [2]. PaaS is a platform distribution model which
provides a broad set of cloud-based application infrastructure and middleware
(AIM) resources through cloud [3]. IaaS is an infrastructure distribution model
which provisions the hardware resources such as storage space, computing power
and network communication capabilities as on-demand services. According to re-
cent research, the global cloud computing industry size is expected to increase at
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16.3 percent Compound Annual Growth Rate (CAGR) from USD 445.3 billion in
2021 to USD 947.3 billion in 2026, indicating mass adoption of cloud computing
by corporate giants to unicorn start-ups [4]. As the figures suggest, an increasing
number of businesses are moving to cloud and it is expected to continue to grow
with time. This is because of the feature of massive cost savings combined with
increased IT agility. Despite these positives, there are some barriers holding back
the companies for faster adoption of cloud computing. According to a report by
The National Institute of Standards and Technology (NIST), the major barri-
ers to broader cloud adoption are security, interoperability and portability [5].
A survey done by Cloudsecurity Insiders in 2020 specified organizations’ lack of
qualified staff (39%) as the biggest impediment to faster adoption of cloud com-
puting, followed by data security issues (34%) and legal & regulatory compliance
(32%) [6]. In addition, Phaphoom in [7] did a logistic regression analysis on the
criticality of security concerns in cloud computing and the results show that it is
responsible for an up to 26-fold increase in the non-adoption likelihood. In the
next section, we discuss about the security concerns in cloud computing.

1.1.2 Security Concerns in Cloud

Using cloud computing is very advantageous but is still susceptible to attacks.
Based on our literature study in the topic area of cloud security issues [8], we
classify them in four categories, i.e. Data, Access, Compliance and Network.
Data issues [9] refer to issues caused in handling stored data, like data leakage,
redundancy, etc. Access issues [10] refer to issues raised due to inauthentic access
of cloud services and data. Compliance issues [11] refer to issues raised due to lack
of security standards, legal aspects etc. Network issues [12] refer to the attacks
mounted by the help of cloud network, i.e. attacks like DDoS, flooding, etc.

DDoS attack is one of the major security issues in a cloud environment.
A report in 2013 on the rate of DDoS attacks [13], reported that in a 12-month pe-
riod, 76% of the participating companies experienced DDoS attack. It concluded
that cloud services are very tempting for DDoS attackers and it stated that as
more cloud services come into use, DDoS attacks on them will become more com-
monplace. A report [14] published by Cloud Security Alliance in 2013 identified
DoS as fifth critical threat to cloud security. However, the same research group
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published a similar report [15] in 2020 wherein DoS was not included as one of the
critical threats to cloud security, whereas it was identified as one of the technical
impacts of the threats. Also, in another report [16] in 2022 by the same research
group, DoS was not identified in the top ten critical threats. In addition, accord-
ing to a research done by a cloud anti-DDoS vendor, Link11 reported that the
frequency of DDoS attacks nearly doubled from a period of February to Septem-
ber 2020. These attacks were on an average 98% higher than in the same period
in 2019 [17]. A 2021 report [18] also showed a massive 17% increase in the DDoS
attacks from quarter 1 to quarter 3 in 2021. As the figures suggest, DDoS attacks
are increasing rapidly in cloud environment. This can lead to unavailability of
cloud resources and connectivity issues. These can deactivate the cloud service,
which can inflict immense business and financial losses for customers [19].

Generally, DDoS attackers can be categorized in two groups [20]: 1) Out-
sider Attackers and 2) Insider Attackers. Outsider Attackers are those which
reside outside the network and they either have little or no internal information
about the network. Insider attackers are the ones who reside within the network
and thus have internal network information. Today, insider DDoS attackers pose
a great challenge for the cloud environment [21]. This is because insider attacker
can directly communicate with other reachable benign nodes of the network as
being legitimate nodes of the network [22].

In a cloud environment, a VM infected by a malware, namely botVM,
is referred to as a malicious insider attacker. In addition to DDoS attacks [23],
these botVMs can launch phishing attacks [24], pay-per-click fraud attacks [25],
etc. Moreover, these botVMs can infect other benign VMs through spamming
attacks [26] [27], VM escape attack [28] and side-channel attack [29]. Using side-
channel attacks, a botVM might deduce current encrypted operation executing
on the physical machine from a co-located benignVM, it might run a computer
intensive MPI job or a data intensive job such as Hadoop/Spark.

These botVMs infect benign VMs with an aim of forming a group of
botVMs and attacking simultaneously, thus increasing the attack strength. This
group of botVMs which work simultaneously under the supervision of same at-
tacker is called a botcloud or cloud-based botnets [30] [31]).
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1.2 Research Motivation and Challenges

From the above discussions, it is clear that security against botcloud should be
strengthened. Through our literature study of state-of-the-art in the topic area
of botcloud detection, it was discovered that most of the existing solutions are
designed to detect specific malicious activities. They are largely based on attack-
evidence, i.e. detection decisions are made based on the data generated on the
back of attacks. These solutions are not effective for early detection of botcloud.
Furthermore, in terms of satisfying the efficiency requirements, thus making a
botcloud detection solution more scalable, there is still much room for improve-
ment. These observations have motivated the research conducted in this thesis.
The research is aimed at investigating how to strengthen botcloud detection in
terms of effectiveness, efficiency and scalability. We answer this question by de-
signing and evaluating a two-stage detection framework with stage-1 focussing
on network based anomaly detection to identify a set of most suspicious mali-
cious VMs and stage-2 focussing on signature-based detection wherein a forensic
analysis of the identified suspected malicious VM is conducted. In doing so, the
following challenging issues are identified.

• Trade-off between Accuracy and Overheads: A two-stage detection
framework might increase the effectiveness (in terms of detection accuracy)
of the solution. However, the additional dual analysis might introduce addi-
tional complexity, thus decreasing the efficiency of the solution. Therefore,
consideration should be given as how to optimize the trade-off between ac-
curacy and overheads. This may be possible by adjusting the overheads
as much as possible with as high accuracy as possible. This research aims
to investigate how to facilitate botnet detections in the context such that
the accuracy of the detection can be as high as possible and/or the over-
head incurred can be as low as possible. At each stage of the design, we
will examine alternative ways of performing the operations, including the
selection of parameter values, and make the decisions accordingly.

• Minimising Communication Overheads: A two-stage detection frame-
work might introduce additional communication overheads for exchanging
data between the stages. Therefore, consideration should be given as how
to minimize this communication overhead as much as possible.
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1.3 Research Aim and Objectives

The aim of this research is to investigate how to effectively and efficiently detect
members of a botcloud (botVM) in a single cloud environment. By effective, we
mean that our designed solution should be able to identify botVMs as early as
possible and the detection rate should be as high as possible. By efficient, we
mean that the costs incurred in botVM detection should be as low as possible,
and these costs are al communication cost and storage cost. This aim is supported
by the following objectives.

1. To investigate and analyse the architecture and working of botcloud, its
way of spreading and attacking the cloud system.

2. To investigate and critically analyse related work in the topic area of bot-
cloud detection with the aim to identify gaps in knowledge and investigate
novel measures and ideas to improve existing solutions in terms of efficiency,
effectiveness and scalability

3. To analyse and specify requirements for an effective, efficient and scalable
botcloud detection solution.

4. To design a two-stage botcloud detection solution to detect botVMs in a
cloud environment with as high accuracy, and as low cost, as possible. In
designing this system, we also investigate the effects of various parameter
settings on the performance of the designed solution.

5. To evaluate the performance of botcloud detection solution. In addition,
analyse the attacks that can be mounted on the solution and evaluate its
performance under these attack scenarios.

6. Collect scientific evidence to demonstrate the levels of effectiveness, effi-
ciency and scalability of the designed solution. The effectiveness can be
estimated by calculating the true positive, true negative, false positive and
false negative rates. The efficiency of the solution can be estimated by cal-
culating the communication overheads and the storage overheads involved.
The scalability of the solution can be estimated by analysing the perfor-
mance of the solution with increase in the number of VMs. The results
obtained are then compared with the most related solutions.
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1.4 Research Methodology

The research methodology followed in this research comprises of three key compo-
nents: literature survey and critical analysis of the related work, system design,
and implementation and evaluation.

1.4.1 Literature Review

The first task carried out in this research was to do an in-depth study of the
related work in the literature. We started by investigating the topic area of
botcloud detection. The purpose of this study was to become familiar with the
current detection techniques used for detecting botcloud. From this study, it
became apparent that an effective, efficient and scalable solution for detecting
botcloud is required. The next step was to critically analyse the existing solutions
to identify their strengths and limitations, with the aim to build our solution on
the strengths of existing solutions but overcome their limitations. The insights
gained from the analysis have led us to the design of our effective, efficient and
scalable botVM detection solution. In addition, literature review was carried on
throughout the duration of this research. As new work was published, it was
reviewed, and necessary findings were taken into consideration. Performing the
literature review and critically analysing the literature satisfied our objectives 1,
2 and 3.

1.4.2 Design Work

Following the literature review, several research gaps were identified. Based on
these identified gaps and the research aims, measures and ideas were formed to
design the solution that addresses these gaps. The measures and ideas were re-
peatedly refined by considering input from the existing work and by our progres-
sively insightful thinking towards the research problem. Careful considerations
were given to reduce any additional overheads imposed in the proposed solution.
At the conclusion of this stage, a novel architecture with four design components
was proposed. The solution is called bVMD Framework and its components are
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VMWatcher, Suspected VM Detector (S-VMD), Bot VM Detector (Bot-VMD)
and Forensic VM (FVM). The design of the framework and the components sat-
isfied our objectives 3 and 4.

1.4.3 Implementation and Evaluation

The next stage of our research was to implement and evaluate the designed so-
lution. The performance of the framework was evaluated using simulation. The
implementation of the simulation-based evaluations was carried out using Om-
net++ Programming platform [32]. Before the implementation, it was first nec-
essary to perform two tasks (i) define the evaluation metrics, and (ii) design the
evaluation methods. Following these tasks, the simulations were implemented
using the evaluation methods to provide accurate measures of the metrics. The
simulations were carried out in three stages. In the first stage, the simulation
was run under various parameter settings to evaluate the impacts of different
parameter value settings on the performance of bVMD Framework. In the sec-
ond stage, the simulation was carried out to evaluate the performance of the first
stage of the bVMD Framework. In the third stage, the simulation was carried
out to evaluate the performance of bVMD Framework and to compare it with
the most relevant work to demonstrate the merits of the proposed framework
over the related work. The analysis and evaluations satisfy our objectives 5 and
6. Conclusions were drawn from the evaluations of the designed solution, and
directions for future research were identified.

1.5 Novel Contributions

The research work presented in this thesis has led to the following novel contri-
butions.

Novel Contribution 1: Novel framework for detecting botVMs (bVMD Frame-
work)
This is a novel botVM Detection Framework which aims to detect botVMs in an
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effective, efficient and scalable manner. This was achieved by enabling a two-
stage detection system and analysing a VM twice before accusing it as being
a botVM. The performance of the bVMD Framework is evaluated in terms of
detection accuracy. Storage and communication overheads are also discussed.
These results are compared with the related work. The following novel contri-
butions are carried out for supporting this novel claim.

Novel Contribution 2: The design, analysis and evaluation of a novel trust-based
VM monitoring component, called VMWatcher
This is a novel monitoring component which enables normal working VMs to
monitor the communication patterns of the VMs with whom they are commu-
nicating, called peerVMs. The main novel features of VMWatcher are twofold.

• It analyses and processes the monitored data locally at each working VM,
and only transmits the result of analysis. This can reduce the volume of
data poured into the underlying network, thus minimizing the communica-
tion cost.

The evaluation of VMWatcher in terms of the storage and communication over-
heads introduced on each working VM is conducted. The design and analysis
are presented in detail in Chapter 4.

Novel Contribution 3: Novel algorithm for minimizing the resources used for
in-depth analysis of memory log of a VM
This is a novel algorithm which determines the number of analysers (called
Forensic VM, FVM) used in second stage (of bVMD framework) for in-depth
analysis of the suspected malicious VMs identified from stage-1. The main
novel feature of this algorithm is that it minimizes number of FVMs used, thus
improving the scalability of the bVMD solution. The evaluation of the algorithm
is conducted in terms of the number of FVMs required with increase in number
of VMs to be analysed. The design and analysis are presented in detail in
Chapter 6.
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1.6 Thesis Structure

The remainder of this thesis organised as follows. Chapter 2 presents a detailed
investigative study of botcloud detection methods and techniques. It describes
the related work in the area of botcloud detection solution. Based on the identified
strengths and weaknesses of the existing work, the chapter identifies research gaps
in this work and makes recommendations for a way forward. Chapter 3 presents
the design of the first novel contribution of this research, i.e. bVMD framework.
The measures and ideas used in the design of the bVMD framework are based
on the recommendations made in Chapter 2. Chapter 4 presents the design and
evaluation of the stage-1 components of the bVMD Framework, i.e. VMWatcher
and S-VMD. This chapter presents the second novel contribution of this research.
The stage-1 components are evaluated against the related work. Chapter 5
presents the design of stage-2 components of bVMD framework and the evaluation
of bVMD framework. This chapter presents the third novel algorithm of this
thesis. Chapter 6 presents the results of performance of bVMD Framework.
Chapter 7 concludes this thesis and suggests directions for future research. The
structure of the thesis is further illustrated in Figure 1.1.
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Chapter 2

Botcloud Detection Methods: A
Literature Survey

2.1 Chapter Introduction

This chapter gives a survey of the botnet detection techniques and the state-of-
the-art solutions for detecting a botcloud. These techniques can be classified into
Honeypots and Intrusion Detection Systems (IDS). The IDS techniques can fur-
ther be classified into two groups: Signature-based and Anomaly-based IDS. This
chapter critically analyses the state-of-the-art solutions to identify their strengths
and limitations so that, in the design of our proposed solution, we can maintain
the strengths while overcoming their weaknesses. This chapter also discusses
the requirements for an effective, efficient and scalable botcloud detection solu-
tion and studies the existing solutions against these requirements. Through this
study, the chapter identifies areas of improvement for an effective, efficient and
scalable botcloud detection solution.
Section 2.3 gives details of a botcloud. Section 2.4 outlines the classifications of
botnet detection techniques. Section 2.5 describes the requirements for an effec-
tive, efficient and scalable botcloud detection solution. Section 2.6 describes the
existing botcloud detection solutions, their strengths and weaknesses. Section 2.7
outlines the gaps between the state-of-the-art solutions. Section 2.8 presents the
way forward to address these gaps. Finally, Section 2.9 concludes the chapter.

35
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2.2 Cloud Overview

A cloud is a type of parallel and distributed system consisted of a collection of
inter-connected and virtualized computers that are dynamically provisioned and
presented as one or more unified computing resource(s) [33]. These virtualized
computers (software or OS) are called Virtual Machines (VM(s)) [34]. They are
the building blocks of a cloud and they are created & managed by a Hypervisor
(Hyper-V) (also called Virtual Machine Monitor) [35]. It supports multiple VMs
by virtually sharing the resources of a physical server. These includes memory,
processor, network connection, hard drive, and an operating system (OS) for
running programs and applications [36].

Physical
Host 1

Physical
Host 2

Physical
Host 3

Physical
Host 4

Figure 2.1: Cloud Overview

There are two main types of Virtual Machine Monitor (VMM), ’Type 1’
(or ’bare metal’) and ’Type 2’ (or ’hosted’). A type 1 VMM acts like a lightweight
operating system and runs directly on the hosts’ hardware, while a type 2 VMM
runs as a software layer on an operating system, like other computer programs
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[37]. The most commonly deployed type of hypervisor is the type 1 or bare-metal
hypervisor, where virtualization software is installed directly on the hardware
where the operating system is normally installed. These VMMs provides simple
primitives (start, stop, suspend, etc.) to manage VMs which are placed on a
single host. However, when these VMs are spread across multiple hosts, Virtual
Infrastructure Management (VIM) provides the required primitives to schedule
and manage them. OpenStack and OpenVIM are the two most common VIMs
used [38].

An important concept of Containerization [39] has become a major trend
in software development as an alternative or companion to virtualization. It
aims to encapsulate software code and all its dependencies so that it can run
uniformly and consistently on any infrastructure. Containers are often referred to
as ‘lightweight’, meaning they share the machines’ operating system kernel and do
not require the overhead of associating an OS within each application. Therefore,
they are inherently smaller in capacity than a VM and require less start-up time,
allowing far more containers to run on the same compute capacity as a single
VM. The emergence of the open source Docker Engine [40] in 2013, an industry
standard for containers with simple developer tools and a universal packaging
approach, accelerated the adoption of this technology. In addition, Kubernetes
[41] is perhaps one of the most popular container orchestration system.

2.3 Botcloud

This section first provides an overview of botcloud, followed by its communication
channel. In addition, this section describes the lifecycle of a benign VM which
gets infected and becomes a botVM.

2.3.1 Overview

A botcloud [42][43] is defined as a network of malicious-infected VMs (called
botVMs) controlled by an attacker (called a botmaster) using Command-and-
Control (C&C) communication mechanisms. These mechanisms allow botVMs
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to receive commands and malicious codes from the botmaster. The main objective
of a botcloud is to carry out simultaneous attacks through a group of botVMs [30]
[31]. These attacks could be DDoS attacks [23], phishing attacks [24], pay-per-
click fraud attacks [25], etc. The strength of these botcloud attacks grows rapidly
with an increase in the number of botVMs. Therefore, in addition to performing
the above attacks, a botmaster also attempts to increase the number of botVMs
in its botcloud network. This can be done by attacks like spamming attacks [26]
[27], VM escape attacks [28] and side-channel attacks [29]. Comparing to botnet
attacks which are performed in a physical environment, the botcloud attacks are
easier and quicker to accomplish. This is because a botcloud can be put together
in a couple of minutes just by purchasing space in the cloud, therefore making the
deployment much faster as compared to traditional botnet [25] [44]. In addition,
strategic placement of an attacking VM can be used by attacker to perform side-
channel attacks on co-resident virtual machines [45]. According to a research done
by Ristenpart [46], it was found out that just a few dollars invested in launching
a VM can produce a 40% chance of placing a botVM on the same physical server
as a target VM, therefore increasing the chances of side-channel attacks.

2.3.2 Communication Structures

As discussed above, botmaster [47] is a VM directly controlled by the attacker
and it sends malicious commands to the botVMs [48]. To send these commands,
it should be connected to the botVMs which can be done by using one of the
following structures as shown in Figure 2.2.

2.3.2.1 Centralised Structure

Centralised structure [49] is the earliest of the three structures which is mostly
used by a botcloud. In this structure, the botmaster is directly connected to each
of the botVMs as shown in Figure 2.2 (a). It follows the traditional client and
server architecture, where the botVMs work like a client and the C&C server
works like a server. This C&C server receives commands from the botmaster
and sends them to the botVMs. This structure is very effective in terms of the
strength of attack performed. This is because the direct connection minimizes the
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communication time between the botmaster and botVMs, thus the commands can
reach to the target quickly. In addition, as all the botVMs receive the commands
at almost the same time, they can start the attack simultaneously. On the other
hand, this structure has a single-point-of-failure, i.e. the C&C server. That
means detection of this server can lead to all the botVMs in its network. Also,
because of the direct connections, the detection of any one of the botVMs can
lead to the C&C server. The major protocols used in this structure are Internet
Relay Chat (IRC) [50] and HyperText Transfer Protocol (HTTP) [51].

2.3.2.2 Decentralised Structure

Decentralised structure [49] [52] follows a peer-2-peer (P2P) structure, where
the botmaster is directly connected to one of the botVMs, which is, in turn,
connected to one or more botVM(s) and so on, as shown in Figure 2.2(b). The
commands are distributed by the botmaster to its p2p botVM and further to its
p2p botVM(s) and so on. This structure is effective as compared to centralised
structure as it doesn’t have the disadvantage of single-point-of-failure. Also, the
detection of the botmaster or any of the botVMs does not result in the failure of
the entire p2p network. This is because the undetected botVMs can continue to
work as usual. However, in this structure, the botVMs are slow in convergence
and response. This is because of the additional time (as compared to centralised
structure) taken for a command to propagate to all the botVMs. In addition, this
structure is difficult to manage [53] as compared to centralised structure because
it is difficult to keep a track whether all the botVMs have received the commands
on time or not.

2.3.2.3 Hybrid Structure

Hybrid structure [54] [55] is the latest structure which is used by botcloud. In this
structure the botmaster is connected to one or more botVMs and each botVM
can work in one of the following ways: 1) as a centralised node and have a couple
of botVMs as sub-nodes (centralised structure) or 2) as a p2p node and have
p2p connected botVMs or 3) combination of the above ways, i.e. they act as a
centralised nodes for a couple of botVMs and at the same time they have a couple
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of p2p botVMs. This is shown in Figure 2.1(c). Botclouds using this structure
have strong inter-connected botVMs, which means that commands sent by a
botmaster can reach the botVMs through different routes. If one route is seized,
another route can be used to send these commands, thus making it hard to shut
down the botVMs.

VM1

C&C Server

VM2

VM3

VM4

Botmaster Botmaster

VM1

VM2

VM3

VM4

VM5

Figure 2.1 (b): Decentralized
Structure

Figure 2.1 (a): Centralized
Structure

Botmaster

VM1

VM2

VM3

VM4

VM8 VM9 VM10VM6 VM7

VM5

Figure 2.1 (c): Hybrid Structure

Figure 2.2: Botcloud Communication Structures

The functioning of the botcloud is shown in Figure 2.3. The botmaster
starts the botcloud by first deciding a communication structure to be used, the
malicious attacks to be performed and the targetVM to be attacked. As per these
decisions, it sends appropriate commands to the botVMs. Once the botVMs
receive the commands, it circulates the commands among its p2p botVMs (if
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required) and then performs attacks such as DDoS, spamming attack, etc. on the
targetVM(s).

Centralized
Structure

Centralised Structure

Botmaster Decentralised
Structure

Hybrid Structure

VM Escape
Side-channel
Spamming

DDoS
Spam
Generation
Pay-per-click

STRUCTURES ATTACKS

TargetVMs

Figure 2.3: Botcloud Functioning

2.3.3 Botcloud Lifecycle

As shown in Figure 2.4, the lifecycle [56] of infecting a benign VM is divided into
four stages.

Stage1. Infection stage: In this stage, a botmaster or a botVM exploits a vulner-
ability of a benign VM by injecting a malicious script. A benign VM might
get infected and become a botVM after accessing that malicious script.

Stage2. Connection stage: In the stage, the newly formed botVM attempts to
establish a connection with the C&C server (botmaster) through a variety
of methods. Once it is able to establish a connection, it becomes a part of
a botcloud.
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Figure 2.4: Botcloud Lifecycle

Stage3. Commands from botmaster: In this stage, the botVM request for com-
mands from the botmaster to begin malicious activities.

Stage4. Update & multiplication: In this stage, the botVM is commanded to
update its scripts, typically to defend against new attacks and improve their
functionality. In addition, they are instructed to infect other benign VMs.

2.4 Botnet Detection Techniques

Botnet detection techniques can be classified into two categories [57], honeypots
and Intrusion Detection System (IDS).

2.4.1 Honeypots

A honeypot [58][59] is a tool that is used with the purpose of being attacked and
possibly compromised [60]. They are deliberately allowed to be compromised,
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and the attack is then analysed. They use special software which suspects ev-
ery packet transmitted through it to collect data about the procedures and tools
used by attacker. As honeypots are designed to collect network traffic passing
through its own node, the data set for analysis is smaller as compared to traffic
data for the whole network. This minimizes the computational overhead involved
in analysing the network traffic data. However, they have limited effectiveness as
they can only detect a malicious VM when it directly interacts with the honeypot.
In addition, if the honeypot is compromised, it can be used for attacks on other
VMs in the network.
Freiling [58] uses honeypots to detect a botnet. To do this, the solution deploys
honeypot software on network resources like computers, routers, switches, etc.
These resources are probed, attacked and compromised. The compromised re-
sources regularly collect data about the system behaviour with the help of special
software and facilitate automatic post-incident forensic analysis. From the results
of the automatic analysis, important information necessary to observe malicious
actions of a botnet is collected. This solution is implemented for an IRC-based
botnet.

2.4.2 Intrusion Detection System

Intrusion in a system or network is defined as attempts to compromise the con-
fidentiality, integrity, availability, or to bypass the security mechanisms of the
system or network. Intrusion detection is the process of monitoring the events
occurring in a system or a network and analysing them for signs of intrusions
[61]. An Intrusion Detection System (IDS) [62] [63] is a software application or
a hardware machine which aims to detect intrusions by observing and inspecting
the vulnerabilities in network traffic or on the host. IDS can be classified into
two types of approaches, signature-based and anomaly-based.

2.4.2.1 Signature-Based IDS

A signature-based IDS aims at recognizing unique trends and characteristics ex-
hibited by a malware; these are known as signatures. It monitors the network data
to identify a signature. This identified signature is compared with the database
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of known signatures and any suspicious behaviour is flagged. This approach is
effective with attacks performed by known malware (i.e. the malware whose sig-
nature is known). In addition, the database used to store the known signatures
might introduce additional overheads as it needs to be regularly updated with
new signatures.
Authors in [62] proposed a signature-based passive monitoring botnet detection
system. It monitors network traffic to identify a set of signatures, i.e. unusual
or suspicious IRC nicknames, IRC servers, and uncommon server ports. These
signatures are identified and compared with the stored ones. They have proved
that the system is effective in early detection of infected hosts. However, the
system is limited to detect bots with known signatures, and they might not be
effective in detecting non-IRC traffic or encrypted traffic.

2.4.2.2 Anomaly-Based IDS

An anomaly-based (or behaviour-based) detection approach [64] aims at identify-
ing unusual VM behaviour patterns that do not conform to expected behaviour,
called outliers. These unusual patterns could be network traffic irregularities like
traffic passing through unusual ports, increased traffic volume, etc. To detect the
outliers, firstly a baseline profile of normal VM activity is created and, thereafter,
a deviation from normal VM activity is treated as malicious. This technique is
more effective than signature-based technique as it can detect both known and
unknown attacks. However, the detection results are based on the identified base-
line profile. This profile may not always be effective as a botVM can hide itself
by working within the identified baseline profile. Anomaly-based approaches are
further divided into Host-Based and Network-Based approaches.

2.4.2.2.1 Host-Based IDS A Host-Based IDS (HB-IDS) [65] is designed to
monitor individual hosts to identify any suspicious action. It can aim to either
monitor the network traffic at the host level or monitor the file system on the host,
i.e. logon processes, running processes, system logs, etc. This approach might
be more effective than a Network-Based approach in scenarios where the network
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data is encrypted. However, this approach is not scalable, as each host requires
a separate IDS machine. In addition, this approach might use the computing
resources of the hosts they are monitoring, therefore inflicting a performance cost
on the monitored systems. In a cloud environment, a botcloud detection system
based on HB-IDS can either be placed at the hypervisor, or at the VM level.

IDS placed at the hypervisor In this approach, the HB-IDS is
placed at the hypervisor. It is responsible to monitor network traffic or file system
at the hypervisor to detect any suspicious activity. As there is always a single
hypervisor in a host, so this approach requires only one IDS. This might minimize
the overheads as compared to an approach where there is an IDS for each VM,
however analysis of all the network data at a central server (hypervisor) might
have a disadvantage of a single-point-of-failure.

IDS placed at the VM In this approach, the HB-IDS is placed at
the VM level. The HB-IDS can use the following two methods: (1) Centralised
Method: this involves a HB-IDS to monitor all or a group of VMs or (2) Dis-
tributed Method: this involves dedicated HB-IDS for each VM. Method-2 is more
effective than method-1 because, with method-2, each VM is being monitored by
a dedicated detection system. However, this option introduces higher costs as
compared to method-1. In addition, method-2 involves multiple detection sys-
tems, which might increase the overall attack surface. On the other hand, as
method-1 is based on a centralised approach, it might have a disadvantage of
single-point-of-failure.

Authors in [65] proposed a HB-IDS, called BotSwat, which relies on
command-response behaviour. It looks for possible remote bot initiation by track-
ing the programs that use data from unreliable network sources (tainted data).
This tainted data is tracked as it propagates via dynamic library calls to other
memory regions. They have specified a set of gate functions, which are system
calls used in malicious bot activity. When the tainted data is passed as arguments
to the specified gate functions, botnet infection is identified.
Authors in [53] proposed a HB-IDS, called BotTracer, which aims to detect three
stages of a bot with the assistance of VM techniques. These stages are start-up,
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preparation and attack. The BotTracer identify the following features during
each stage: 1) A bot can be started automatically, therefore the BotTracer looks
for VMs which work without any human interactions, especially those with net-
working activities, 2) after start-up, a bot C&C channel should be established
with the botmaster, therefore the BotTracer captures the data from used auto-
matic communication channels and compare them so known characteristics of
bot C&C channels, and 3) a bot performs local or remote attacks sooner or
later, therefore the detection system constantly monitors system-level activities
and traffic patterns of the identified processes. This continuously monitoring of
the vulnerabilities in the system calls for potential botnet activity might involve
computational overhead.

2.4.2.2.2 Network-Based IDS A Network-based IDS (NB-IDS) [43] is de-
signed to monitor the network packets to identify any suspicious activity. To
monitor these network packets, sensors or hosts are placed on various points of a
network. These network packets captured by a host can either be analysed at a
centralised server or it can be analysed locally at the host. The NB-IDS is a cost-
efficient approach as compared to HB-IDS, as a few well-placed monitors (sensors
or hosts) can monitor a large network. However, capturing and analysing all the
network packets introduces computational overheads. Also, the detection system
should be able to quickly analyse the network packets to improve effectiveness of
the solution.
The NB-IDS approach can be classified into two methods, active monitoring and
passive monitoring methods.

Active Network Monitoring In this method, the VMs are contin-
uously monitored in real-time. This method can be applied by injecting test
packets into the network, followed by monitoring the network behaviour. This
method is effective for quicker detection of malware as it benefits from real-time
information. However, injection of test packets during this method can introduce
additional traffic into the underlying network, thus increasing communication
overhead.
Authors [66] proposed a botnet detection system based on active monitoring. It
is based on the process of extracting and analysing flow characteristics, such as
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bandwidth and packet timing. It classifies the traffic into groups that are likely
to be a part of botnet. Then the traffic is correlated to observe common commu-
nication patterns that can lead to the detection of botnet activity. A set of 1.34
million real-time flows over a span of 4-months was examined by the authors and
evidence of botnet activity was collected.

Passive Network Monitoring In this method, the live network traf-
fic is captured and then analysed for malicious activities. This method involves
three components, one for monitoring the network traffic, the second for storing
the monitored data and the third for analysing the stored data. These compo-
nents can be deployed in the following two ways.

• Centralised Deployment Structure: In this structure, the monitored
data is stored in a central server, where it is further analysed. This structure
has a disadvantage of a single-point-of-failure due to a centralized server.
Also, with increase in the size of monitored data, the central server might
get burdened, and take additional time for the detection process.

• Distributed Deployment Structure: In this structure, the monitored
data is stored in separate local servers for further analysis. Each local
server has a dedicated component to analyse the data. These servers work
in parallel and could complete the detection process quicker as compared
to the centralised structure. However, with an increase in the number of
VMs, the numbers of servers also increase. This increase in the number of
servers could result in 1) decrease in the cost-efficiency of the solution with
scalability and 2) increase in the attack surface of the solution, thus making
it less secure.

The passive monitoring method in NB-IDS can be applied using a number of
protocols and applications such as machine leaning, data mining, IRC protocol
etc. [53] Some of the research work using these protocols and applications is
discussed below.

Authors in [67] proposed a detection system that focuses on detecting
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P2P bots by using network traffic behaviours. A number of features are ex-
tracted from the network traffic and these are analysed using five machine learn-
ing techniques, namely Support Vector Machine (SVM), Artificial Neural Network
(ANN), Nearest Neighbours Classifier (NNC), Gaussian Based Classifier (GBC),
and Naive Bayesian Classifier (NBC). They specify three requirements for online
botnet detection, namely adaptability, novelty detection, and early detection.
The results show that none of these techniques satisfies the requirements of an
online botnet detection framework.

Authors in [68] proposed a novel black-box unsupervised behaviour learn-
ing and anomaly prediction system for Infrastructure-as-a-Service (IaaS) clouds.
It leverages self-organizing maps learning techniques to capture emerging system
behaviours and predict unknown anomalies. It achieved high prediction accuracy
with up to 98% true positive rate and 1.7% false positive rate and raise advance
alarms with up to 47 seconds lead time.

Authors in [69] proposed a passive monitoring botnet detection system,
called BotHunter. It is capable of detecting bots regardless of the C&C structure
and network protocol. It consists of a correlation engine that aims at detecting
specific stages of the malware infection process, such as inbound scanning, exploit
usage, etc.

Authors in [70] proposed a network-based botnet detection system, called
BotSniffer, for detecting bots using HTTP and IRC protocols. It is independent
of botnet signature and C&C server address. It is based on spatial-temporal
correlation, which means that bots belonging to same botnet perform identical
activities. These activities include coordinated communication, propagation &
attack and fraudulent activities. These spatial-temporal correlations are identi-
fied in the network traffic and statistical algorithms are used to detect botnets.
The results show that BotSniffer can detect bots with high accuracy and has a
low false positive rate.

Authors in [71] proposed a data mining-based botnet detection frame-
work, called BotMiner. It is independent of the botnet C&C structure and proto-
col. It aims to detect groups of compromised machines that are a part of a botnet.
To achieve this, the detection system clusters similar communication traffic and
similar malicious traffic. Then it performs cross-cluster correlation to identify
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the hosts that share both similar communication patterns and similar malicious
activity patterns. These hosts are assumed to be bots in the monitored network.
The results show that BotMiner has a high detection rate and a low false positive
rate.

Authors in [72] proposed a statistical-based passive-monitoring botnet
detection system. It is designed to identify P2P botnets, even in the case when
malicious activities may not be observable. To achieve this, first it identifies all
hosts involve in a P2P communication. These P2P communications are used to
derive statistical fingerprints, and these are used to distinguish between hosts
that are part of legitimate P2P networks and P2P bots. The results confirm that
the proposed system can detect stealthy P2P bots with a high detection rate and
a low positive rate.

2.5 Requirement Specification for a Botcloud
Detection Solution

Through literature research, the following high-level requirements are required
that are necessary to detect a botcloud in an effective, efficient and scalable
manner.

Req.1. Functional (FUL): It should be able to detect botVMs which launch
known and unknown attacks. In addition, the detection system should be
independent of inter-botVM communications.

Req.2. Effective (EFF): It should be able to detect a botVM as early as possible
in botcloud lifecycle.

Req.3. Efficient (EFY): It should be able to detect a botVM with as low over-
heads as possible.

Req.4. Scalable (SCY): It should be efficient in protecting a large number of
VMs.

It should be mentioned that the requirements introduced in this chapter are the
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high-level requirements for a botcloud detection solution. More specific require-
ments are specified in upcoming chapter. After identifying the requirements for
botcloud detection solution, it is important to investigate and analyse the related
work (what has been done so far) with regards to these requirements.

2.6 Critical Analysis of Existing Botcloud De-
tection Methods

This section gives a critical analysis of the botcloud detection solutions proposed
in literature, highlighting their strengths and weaknesses with respect to the
requirements specified in Section 2.5. The botcloud detection solutions can be
divided into Network-based Intrusion Detection System (NB-IDS) and Host-based
Intrusion Detection System (HB-IDS).

2.6.1 Network-based Botcloud Detection Solutions

These are solutions based on Network-based intrusion detection system (NB-IDS).

Sol1. MAP REDUCE: J. Francois [73] proposed a botcloud detection solution
that uses an anomaly-based detection system (i.e. one of the NB-IDS).
It is a distributed computing framework that leverages a host dependency
model and an adapted PageRank algorithm. The solution follows a passive
monitoring scheme and captures network data from all the VMs. This
captured data is stored at a central processing unit, called the Netflow
Collector. The data is further analysed for determining connections between
VMs, followed by forming a dependency graph. This graph is fed into a
PageRank algorithm to determine densely connected VMs, as the solution
assumes that densely connected VMs are botVMs.
The use of a PageRank algorithm in this solution makes it highly scalable
with large number of VMs. The results show that this solution minimizes
the computation overhead required for large number of network connections,
i.e. for more than 1 million connections. The results also show a high level
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of detection with a low false positive rate, i.e. 3%. However, the solution
might have high false negative rate. This is because of their assumption
about a densely connected VM being a botVM. This may not be always
true as p2p nodes are also densely connected. In addition, using a central
server to collect the network flow of VMs may introduce a high level of
overheads affecting the scalability of the solution. The central server can
also become a single-point-of-failure.

Sol2. CAN’T HIDE: Baohui [74] proposed a method for detection of DDoS
attacks generated by a botcloud, called srcTrace. The system firstly iden-
tifies the flow of attacks and then traceback the malicious processes based
on the attack flow address information. The system uses two components:
Bot-chase and MP-Trace and relies on the analysis of traffic flows’ entropy
variation. The experimental results show that srcTrac can traceback mal-
ware, reducing the impacts upon cloud tenants and attack targets.

Sol3. EXTRUSION: TulasiRam [75] proposed an Extrusion detection system
(EDS) based on NB-IDS. It aims to detect DDoS attacks by analysing and
detecting anomalous behaviour in the communication pattern of VMs. To
do so, the network packets are collected for all the VMs at a central server
and a traffic dispersion graph is formed showing the network flow between
the VMs. This graph is used to extract communication patterns to identify
any outliers, i.e. anomalous behaviour. The solution may not be efficient in
handling a huge amount of network data generated by an increasing number
of VMs, thus it may have scalability issues [76]. This is because a central
server may get overburdened and can act as a single-point-of-failure. In
addition, the experimental evaluation of the method is incomplete.

Sol4. COGNITIVE: Kebande [77] proposed a botcloud detection approach based
on NB-IDS which uses Artificial Immune System (AIS) to identify a ma-
licious activity pattern. To do so, AIS detectors monitor network packets
of all the VMs and store them at a central server, followed by analysing
activity patterns. Then the VMs with similar activity patterns are recog-
nized and are marked as botVMs, because of their observation that botVMs
originating from a particular botnet are expected to exhibit similar activ-
ity patterns. The solution is based on an independent Poisson process and
detection is based on the negative selection method. The experimental
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evaluation of this approach is incomplete.

Sol5. MALICIOUS: Bazm [48] proposed a NB-based botcloud detection ap-
proach which uses a combination of two machine learning methods, entropy
and clustering methods. The traffic of all the VMs are captured and then
classified. Once a dataset is obtained, the entropy value of the selected
parameters for a VM is calculated. Then, the clustering method is applied
on the entropy values of all the monitored VMs to detect any outliers, i.e.
malicious VMs. The results proved the efficiency of the solution with hun-
dreds of VMs. However, a centralized approach to collect the initial data
might introduce additional overheads with scalability issues.

Sol6. PEBBLETRACE: Wenjie [78] presented a PebbleTrace scheme and pro-
posed an approach to traceback to the botmaster. This study is focused
on the attacks where a botmaster attempts to steal sensitive data from
victim machines and the tracing pebbles can be spread along the stolen
data back to the botmaster. The process first identifies cryptographic keys
of the botnet communications for configuring botnet operations and then
traces back to the botmaster. The approach can be applied beyond multi-
ple clouds without deployment of monitors, router updates, or ISP support.
The approach is implemented, and it shows promising results.

2.6.2 Host-based Botcloud Detection Solutions

The following botcloud detection solutions are based on Host-based intrusion
detection system (HB-IDS).

Sol7. PCA: Badis [79] (PCA) proposed a botcloud detection method based on
HB-IDS which relies on the previous activity of a VM and detects any
new changes in its behaviour. It uses a statistical technique, the Principal
Component Analysis (PCA) method [80], to detect the anomalies which are
assumed to be signs of a botcloud. To do so, all the VMs are monitored
and data such as CPU and memory usage, packets sent and received are
collected at a central analyser. The collected data is analysed using the
PCA method to detect any outlier, i.e. data which is different from the



CHAPTER 2. BOTCLOUD DETECTION METHODS: A LITERATURE SURVEY53

most of the data or doesn’t assume the same statistical distribution model.
The solution has shown a high detection accuracy in scenarios where the
detection system could correctly record the usage of resources of a VM
before it gets infected. However, the solution may not be able to detect
botVMs which mount attacks by using legitimate resources. In addition,
the use of a central analyser might become a single-point-of-failure.

Sol8. EYECLOUD: Memarian [81] proposed a botVM detection system based
on HB-IDS that detects distributed botVMs using a combination of ma-
chine learning techniques, i.e. Clustering and Virtual Memory Introspec-
tion (VMI). VMI enables a VM (called Forensic VM) to inspect the memory
space of another VM. The detection system uses one FVM per VM to in-
spect their memory space. The FVMs collect and store the system level
metric values of the VMs at a central coordinator. Based on these met-
ric values, the VMs are grouped; infected VMs are separated from benign
VMs. The detection system has high detection accuracy as each VM is
continuously monitored by an FVM and any change in VM metric value is
reported immediately. However, this might not be cost-efficient when the
number of VMs is large, as every VM is analysed by a dedicated Forensic
VM (FVM). In addition, a central server might get overburdened with an
increasing number of VMs and become a single-point-of-failure.

Sol9. COLLABORATIVE: Hammi [82] proposed a botcloud detection approach
based on HB-IDS which uses monitoring probes (placed at the hypervisor
level) to observe the system activity of all the VMs. The approach uses
the PCA algorithm to calculate the factorial space describing a VM activ-
ity. The factorial space of a VM is depicted using a tree structure. Then
the solution uses a signature-based approach, where the factorial space of a
VM is compared with the factorial space representing DDoS flooding attack
activity. Any dissimilarity is reported as a DDoS attack. The detection sys-
tem uses a tree-based hierarchical architecture which allows it to apply the
detection algorithm on a small set of VMs, thus minimizing the execution
time and execution complexity of the detection algorithm. However, the
solution may not be effective in detecting unknown attacks, due to the use
of signature-based approach.
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Sol10. LAR SCL: Cogranne [83] proposed a HB-IDS solution which aims to de-
tect botVMs with low malicious activities, e.g. botVMs which mount at-
tacks by using legitimate resources. To do so, monitoring probes are used
to capture the usage of resources consumed by each VM. These monitoring
probes are located on the physical host and they use a virtualisation layer
to capture metrics related to the usage of resources consumed by the VMs.
Firstly, the detection algorithm estimates the cloud workload of the virtual
hosts to enable the detection algorithm to get the reference of what a nor-
mal behaviour is, while the second stage compares outliers to the signature
of well-known resource consumption attack patterns. The detection sys-
tem has shown high efficiency and effectiveness with large number of VMs.
However, the detection algorithm may not be effective against attacks other
than DDoS attack and the algorithm may not be able to detect botVMs
which are infected before the detection system was installed. In addition,
this approach can detect botcloud in scenarios where an attacker creates
VMs dedicated to the attack activity. That means all the activities of these
botVMs are malicious. However, there can be scenarios where a botVM can
generate a legitimate load due to the legitimate user’s activity as well as
the malicious load due to the attacker’s activity. The combination of both
activities modifies the behaviour of the VM, making this approach not able
to detect such form of abuse.
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Table 2.1: A Summary of the State-of-the-art botcloud detection solutions

Solutions Detection Method Working
Characteristics

Strengths Limitations

Sol1 (2011) Anomaly-based (Machine
Learning): Dependency
graph & MapReduce

It leverages a host de-
pendency model and an
adapted PageRank algo-
rithm.

Efficient (computation
overhead) for large
number of network con-
nections, i.e. more than 1
million connections.

The assumption that
densely interconnected
VMs are botVMs can
result in a high false
negative rate. This is
because other nodes such
as p2p nodes are also
highly interconnected.

Sol2 (2015) Anomaly-based (Statisti-
cal)

Defence method leveraged
by CSPs to trace back
malware based on at-
tack flows address infor-
mation.

Can effectively identify
hidden malware.

Can trace back the mal-
ware when an attack has
already taken place and it
also suffers in scalability
due to the size of data col-
lected.

Sol3 (2013) Anomaly-based (Machine
Learning): Pattern
matching

It aims to examine the
communication patterns
of VMs to detect any
anomalous behaviour.

– This might not be cost-
efficient with scalability.
In addition, the experi-
mental evaluation of the
methods is incomplete.

Sol4 (2014) Anomaly-based (Machine
Learning): Artificial Im-
mune System (AIS)

It aims to detect mali-
cious activity patterns of
botnet using AIS proba-
bility.

– –

Sol5 (2015) Anomaly-based: Entropy
and clustering

It clusters VMs into
classes that share similar
behaviour based on their
network parameters.

High detection accuracy. Less efficient with large
number of VMs; the cen-
tral storage unit may be-
come a bottleneck or a
single-point-of-failure.

Sol6 (2012) Anomaly-based It identifies the crypto-
graphic keys of botnet
communication to config-
ure botnet operation and
then trace back to the
botmaster.

No requirements of moni-
tors and router updates.

can detect attacks at later
stages as they tend to
pebble trace once attacks
are done.

Sol7 (2014) Anomaly-based (Statisti-
cal): Principal Compo-
nent Analysis (PCA)

It uses PCA-based ap-
proach to detect anoma-
lies that can be signs of
botcloud’s behaviour.

Effective in cases where
the VM is infected after
the detection system has
recorded the normal ac-
tivity of the VM.

Less efficient with in-
crease in the number of
VMs. Not effective in
cases where a VM was in-
fected before the detec-
tion system is introduced.

Sol8 (2015) Anomaly-based (Machine
Learning): Virtual
Machine Introspection
(VMI) & Clustering
method

It uses VMT technique to
reduce target group un-
der inspection and then
cluster VMs based on in-
consistencies detected by
VMI.

High detection accuracy. Less efficient with large
number of VMs; dedi-
cated FVM for each VM.

Sol9 (2015) Signature & Anomaly-
based (Statistical): PCA

It uses monitoring probes
located at hypervisor
level that monitor system
activities of VMs.

Fast reaction time and
low complexity.

Cannot detect unknown
bots as it relies on signa-
ture based approach; less
effective for detecting low
footprint attacks.

Sol10 (2017) Signature & Anomaly-
based (Statistical): PCA

It uses a decentralized
PCA based approach for
estimating current work-
load of virtual hosts to
highlight outliers by re-
jecting legitimate activ-
ity and then comparing
the footprint of residual
activity to known signa-
tures.

Efficient with large num-
ber of VMs and less false-
positive rate.

Cannot detect newly
introduced botVMs
and botVMs which
are already existing in
the system before the
detection solution was
implemented.
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From the above discussions Table 2.1, we can summarise the strengths
and limitations of the existing solutions. The strengths are:

Str1. The solution [73] uses MapReduce programming model to deal with huge
volumes of data in a cloud network. MapReduce enables the monitored
network data to be distributed into multiple units which are processed si-
multaneously and the results from the units are aggregated to get the final
result. This parallel computing paradigm is well suited for a cloud network.

Str2. The solution [77] uses Artificial Immune System (AIS) method and shows
that it could be one of the best solutions for detecting botclouds since the
botVMs follow a malicious pattern.

Str3. The solution [81] uses Virtual Memory Introspection (VMI) method in
which the memory space of a VM is inspected by another VM. This en-
sures a high detection rate.

Str4. Existing solutions [48][79][83] use source-based detection system and Prin-
cipal Component Analysis (PCA) method for botcloud detection. Source-
based detection enables them to study the behaviour of source of attack,
i.e. VMs. PCA is a descriptive statistical method which aims at easing the
analysis of high-dimensional vectors of input data, thus can be helpful for
large volume of cloud data.

The limitations are:

Lim1. Limited effectiveness

(a) Existing anomaly-based solutions either leverage a network-based ap-
proach by analysing and making detection decision based on the usage
of network-level resources such as bandwidth [1, 4, 5, 9] or a host-based
approach by analysing and making detection decision based on the us-
age of host-level resources such as CPU, memory, storage resource [3,
6-8, 10]. These approaches have following limitations.

i. A network-based solution cannot detect a botcloud which only
exploits host-level resources and, similarly, a host-based solution
cannot detect a botcloud which only exploits network resources.



CHAPTER 2. BOTCLOUD DETECTION METHODS: A LITERATURE SURVEY57

To detect both categories of botcloud attacks, solutions with both
approaches need to be deployed.

ii. Solutions with these approaches may not be able to detect bot-
clouds that consume resources within the (legitimate resource work-
load) limit allocated by the CSP.

iii. Solutions are designed to detect a particular attack and they can-
not detect other forms of attacks.

(b) Existing solutions cannot detect botVMs that are already installed in
the system but have not yet exhibited any malicious behaviour and/or
botVMs that were already infected prior to the deployment of such
solutions.

Lim2. Post-attack detection: The existing solutions [1, 3-10] largely focus on
detecting a botcloud after it has launched an attack. Little effort has been
made on examining how to detect and stop botcloud attacks as early as
possible in the lifecycle of a botVM attack.

Lim3. Use dedicated components for botcloud detection: Detection of bot-
cloud consists of two major functions: 1) VM monitoring & storage of
monitored data and 2) analysis of the monitored data. In existing solutions
monitored data is stored in a centralized way which may create a bottleneck
in the network.

Lim4. Conflict between detection accuracy and overhead imposed: Ex-
isting network/host-based solutions require the collection of network/host
related data from all the VMs in the underlying environment for a fixed
period. If this period is set to a smaller value so that less data is collected
thus a lower level of overhead, then the detection result may not be accu-
rate. If this period is set to a larger value to improve the accuracy, then
that will increase the storage overhead.

2.7 What is Missing?

This section outlines the findings from our survey of the existing botcloud detec-
tion solutions. These findings are depicted in Table 2.2, which summarises the
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botcloud detection solution requirements with the solutions surveyed above.

Table 2.2: State-of-the-art of the existing botcloud detection solutions against
desired requirements

Solutions FUL EFS EFY SCY

Sol1 7 3* 7 3*
Sol2 7 3* 3* 3*
Sol3 3 3 7 7

Sol4 7 7 7 7

Sol5 7 7 7 7

Sol6 7 3* 7 7

Sol7 7 3 7 7

Sol8 7 3* 7 3*
Sol9 7 3 7 7

Sol10 7 3* 3* 3

3: The solution has considered the corresponding requirement.
3*: The solution has considered the corresponding requirement, however there is a scope

of improvement.
7: The solution has not considered the corresponding requirement.

From the Table 2.2, it is evident that none of the existing solutions has satisfied all
the identified requirements. The observations are:

• Most of the existing solutions are designed for detecting some specific malicious activities,
like DDoS. They are largely based on attack-evidence, i.e. detection decisions are made
based on the data generated as the result of attacks. These solutions are not effective
when being used to detect botVMs in the early stages of the attacks. In addition, owing
to their dependencies on the frequency of monitored data collection, the effectiveness of
the existing solutions also depends on the attack intensity. They are more effective when
the attacks are high-footprint attacks.

• In addition, in terms of satisfying the efficiency requirements, thus making a botcloud
detection solution more scalable, there is much room for improvement.

– For example, in the design of solution [1], the scalability requirement has been
considered and addressed by using a MapReduce model, a large-scale parallel and
distributed computing paradigm. However, the solution only addresses the scala-
bility problems as caused by processing and storage overheads. It is still subject to
scalability issue as caused by potentially high communication overheads incurred
in the use of a central storage server and the collection of traffic logs by the server.
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– Solutions [1-7] require the monitored data to be sent to a central analyser. This
makes the resulting communication overheads increase proportional to the number
of VMs being monitored’ particularly, the monitored data need to be sent regularly
at certain intervals. The value of this interval directly impacts the effectiveness
of the botcloud detection. In other words, the smaller the interval, the higher the
effectiveness in detecting botcloud, but the higher the level of the communication
overheads generated in the network. This indicates that there is a trade-off between
effectiveness and efficiency/scalability.

The following section highlights our vision in designing a botcloud detection solution
considering the requirements specified in Section 2.5.

2.8 The Way Forward

We aim to design a solution that could overcome the limitations in the existing solutions and
satisfy the requirements highlighted earlier in this chapter. More specifically, the designed
solution should be able to detect a botcloud irrespective of the types of attacks it executes and
as early as possible.
We would aim to design a solution that integrates the strengths of HB-IDS and NB-IDS with an
aim of effectively detecting botVMs. To do so, we will investigate the idea of two-stage detection
combined with a VM suspension measure upon the completion of the first stage (monitoring
stage) and in-depth analysis of any VMs that have been identified as suspicious upon the
completion of the second stage (analysis). This two-stage approach may allow us to detect any
malicious VMs as early as possible. In addition, the solution should be efficient in that it imposes
as little overhead as possible and the risks of creating a performance bottleneck in the system
is as low as possible. As the process of botcloud detection consists of two stages, monitoring
of VMs and analysis of monitored data, we will use a distributed approach with the idea of
localised monitoring and maximising local processing of monitored data. It is anticipated that
these measures may reduce traffic poured into the network, making the solution more scalable.

2.9 Chapter Summary

This chapter has given an overview of botnet detection techniques and described some related
work. It then outlined a critical analysis of the existing botcloud detection methods, identifying
their strengths and limitations. Based on this critical analysis, it has presented some new ideas
to detect botcloud in an effective and efficient manner. The next chapter presents the building
blocks used to implement the novel ideas and methodology used to evaluate the implementation.



Chapter 3

bVMD Architecture and
Evaluation Methodology

3.1 Chapter Introduction

This chapter describes the architecture of a novel botVM detection framework called BotVM
Detector (bVMD). The bVMD framework is designed to detect VMs infected by a botcloud in a
multi-host environment in an effective, efficient and scalable manner. The main idea used in the
design of bVMD framework is inspired by a local vigilance scheme known as ’Neighbourhood
Watch’. This scheme actively seeks support of local people to watch each other’s activity and
report anything suspicious. This scheme is assumed to be cost effective because of the support
of existing local people and minimizing the requirement of recruiting more police officers and
stepping up patrols [84]. This same idea is used in bVMD framework whereby a local moni-
toring component (i.e. local people) is placed within each VM instead of having a centralized
component (i.e. police), thus minimizing the chances of creating a bottleneck or a single point
of failure. However this idea might introduce additional overheads due to an increase in the
number of monitoring components and to minimize these additional overheads, bVMD design
has made use of the following five measures: (i) hybrid approach of botcloud detection based on
a network parameter and system parameters, (ii) use of in-VM monitoring component, (iii) local
processing of the monitored data at VM level, (iv) collective and accountable decision made by
each component at VM level, and (v) an adjustable dispatcher for system parameter analysis
components. In addition, the bVMD framework introduces four architectural components: (a)
VMWatcher, (b) Suspected-VM Detector (S-VMD), (c) Bot-VM Detector (Bot-VMD), and (d)
Forensic VM (FVM). This chapter also describes the different parameter value settings to in-
vestigate their impact on the performance of the bVMD framework. The design and evaluation
of the bVMD framework is one of our novel contributions in this thesis.

60
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The structure of the remaining part of this chapter is as follows. Section 3.2 gives
an overview of bVMD Architecture and Section 3.3 specifies the measures taken in the design
of bVMD framework. Section 3.4 gives design preliminaries, the assumptions, the definitions
used in the design and the design requirements for an effective, efficient and scalable botcloud
detection solution. Section 3.5 describes the architecture of the framework and its components.
Section 3.6 outlines the bVMD evaluation methodology and Section 3.7 presents the simulation
configuration used. Section 3.8 discusses the simulation scenarios and settings, and finally
Section 3.9 summarises the chapter.

3.2 bVMD Architecture Overview

This section presents an overview of bVMD architecture on a single cloud, multi-host environ-
ment. The bVMD architecture is based on an Autonomic Computing [85][86] Approach with
four architectural components as shown in Figure 3.1. These components are: 1) VMWatcher,
2) Suspected VM Detector (S-VMD), 3) BotVM Detector (Bot-VMD) and 4) Forensic VM
(FVM) (∆).

Hyper-V Bot-VMD

VM3

VMWatcher

Virtual servers
VM1

VMWatcher

Physical Servers

S-VMD
Virtualization

Layer

Hardware Layer

--   FVM**

VM2

VMWatcher

Figure 3.1: An Overview of bVMD Architecture

These components along with their functions are highlighted below and described in
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more depth in the upcoming chapters.

VMWatcher: This is a network monitoring component placed at the VM level.
It is located in every VM and is responsible to acquire network communication data at the
residing VM. The acquired data is analysed locally and is sent to its local S-VMD for further
analysis.

S-VMD: This is a network analysis component placed in the hypervisor and is
responsible for acquiring the individually analysed data from all the local VMs (i.e. VMs
residing on the same physical host) and collates it, resulting in a set of suspected VMs (S-
VMs). It then notifies the Bot-VMD of each S-VM.

Bot-VMD: This is a system analysis component placed in the hypervisor and is
responsible to analyse system parameters of S-VMs. To perform the analysis, it decides the
number and type of FVMs required and instructs them accordingly. In addition, it receives
results from FVMs and provides the final list of botVMs.

FVM: This is a system analysis component placed at the VM level and is responsible
to check the system parameters of S-VM as instructed by Bot-VMD. It reports the results back
to Bot-VMD.

3.3 Design Measures

In this section, we discuss the measures used in the design of bVMD framework.

3.3.1 Hybrid approach of botcloud detection based on
analysis of network parameter & system parameter

Based on our literature study, the existing botcloud detection solutions proposed are mainly
based on network-based IDS or host-based IDS. Another way to design a solution is to use
a hybrid approach by integrating both the methods. This means analysing each VM twice,
i.e. using both these methods. On one hand this dual analysis of a VM might minimize
false detections, however on the other hand it might introduce additional overheads. bVMD
framework uses this hybrid approach with an aim of optimizing trade-off between accuracy and
overheads. To do so, it uses a two-stage analysis process with stage-1 implemented to reduce
the target group under inspection and stage-2 implemented to perform an in-depth analysis
of the identified target group. Stage-1 uses a network-based anomaly detection method and
stage-2 uses a host-based anomaly detection method.
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3.3.2 Use of in-VM monitoring component

In stage-1 of bVMD framework, the VM network traffic volume data is monitored by a compo-
nent which can either reside at hypervisor level or VM level. Residing at the hypervisor level
might require only one centralized component which can monitor the network communication
data of all the local VMs (i.e. VMs residing on the same physical host), thus having an econom-
ically effective solution. On the other hand, this centralised component can create a bottleneck
and increase the chances of a single point of failure. In addition, this method might require all
the network communication to pass through this monitoring VM (further discussed in Chapter
4), which is not feasible with an increase in number of VMs and might introduce high overheads
with scalability.

Residing at the VM level, the network communication data can be monitored by (1)
a centralised approach with dedicated additional VM – a single VM monitoring all the VMs or
(2) a distributed approach with dedicated additional VMs – a VM monitoring each VM. The
centralised approach requires only one monitoring VM, thus minimizes the overheads. However,
it may have similar issues as discussed above (at the hypervisor level). These issues are overcome
by using a distributed approach which requires dedicated set of VMs monitoring the VMs in
parallel, thus leading to faster detection. However dedicated components might involve high
maintenance cost and they might increase the attack surface of the framework thus making the
solution less secure.

To minimise these overheads, bVMD introduces a distributed approach with no ad-
ditional VMs, rather it uses a monitoring component which resides within each VM. This com-
ponent is responsible to monitor network communication data received at its residing VM, thus
reducing the overhead cost of placing and maintaining dedicated VMs & improving scalability.

3.3.3 Local processing of the monitored data at VM level

The VM traffic volume network data monitored by each component has to be analysed for
further actions. As discussed, this data is monitored at VM level, and further actions are taken
at hypervisor level, therefore the monitored data can either be analysed at VM or at hypervisor.
In the case of analysing at the hypervisor, raw, monitored data from all VMs should be directly
communicated to their hypervisor, thus introducing a high communication overhead due to
the volume of raw data. In case of processing at VM locally and communicating the analysis
results to the hypervisor might minimize the communication overhead as compared to the above
method. Moreover, the result could be processed faster at VM level as the monitored data is
analysed in parallel at all VMs, rather than a centralized component. Furthermore, in case of
processing the data locally at VM level, each VM can have a local protection scheme in which
it can take any immediate actions based on its locally analysed data. This protection scheme
might be helpful in case of a compromised hypervisor.
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3.3.4 Collective and accountable decision making by each
VM

As discussed above, a monitoring and analysis (M&A) component resides in each VM; however,
these VMs are vulnerable to attacks. A malicious VM might influence the M&A component
residing within and forge or alter their true M&A results. For example, it might mislead by (i)
showing an uninfected VM as malicious, or (ii) a malicious VM as an uninfected VM. These
forgeries are addressed by taking following two measures. Firstly, the trustworthiness of each
VM is calculated based on the collective feedback from its local VMs and this is fed into the
decision-making process. Secondly, the final decision result is generated in a collective manner,
i.e. taking into account the M&A results from all the available VMs. These measures might
increase the accuracy of the system and minimize the effect of an attack done by a malicious VM.
However, these might introduce additional computational and storage overheads. To study the
performance of a malicious VMWatcher and effect of these measures, a security risk assessment
is carried out in Section 4.7.

3.3.5 An adjustable dispatcher for system parameter anal-
ysis components

Stage-2 of bVMD Framework is inspired by the high detection rate in [81] discussed with the
strengths of existing solutions (Section 2.6). In [81] the VM parameters are collected by a
component, known as the Forensic Virtual Machine (FVM) and the number of FVMs depend
on the number of VMs to be analysed. However, the number of FVMs could also be dependent
on the number of parameters to be checked [87]. This means that it can either be (1) equal
to the number of VMs, i.e. a FVM analysing all the system parameters of a VM, or (2) equal
to the number of system parameters to be analysed, i.e. a FVM analysing a system parameter
of all the VMs. An increase in any of these can increase the number of FVMs, which might
introduce following issues: (1) an increase in computational overhead involved in maintaining
the FVM, and (2) an increase in the attack surface of the solution. To address these issues a
hybrid approach of determining the number of components is introduced in bVMD framework,
wherein the number of components is equal to the lesser of the two, i.e. the number of VMs and
the number of system parameters. This might minimise the number of FVMs required with an
increase in number of VMs or system parameters.

3.4 Design Preliminaries

This section details the assumption and definitions used in the design of bVMD framework and
its design requirements.
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3.4.1 Assumption

To scope our design, the following assumption is used.

A1 The hypervisor is assumed to be secure, as assumed in numerous studies [88] [89] [90][91].

3.4.2 Definitions

The definitions and performance metrics used in bVMD framework are as follows.

1. Definitions:

• False Positive (FP): A benign VM wrongly detected as a botVM.

• True Positive (TP): A botVM which is correctly detected.

• False Negative (FN): A botVM which is wrongly classified as uninfected VM.

• True Negative (TN): A benign VM which is correctly detected.

• False Positive Rate (FPR) [92]: Proportion of benign VMs wrongly detected as a
botVM, i.e.

FPR = FP

(FP + TN) (3.1)

• True Positive Rate (TPR) or Sensitivity [93]: Proportion of botVMs correctly
detected, i.e.

TPR = TP

(TP + FN) (3.2)

• False Negative Rate (FNR) or Miss Rate [94]: Proportion of botVMs wrongly clas-
sified as uninfected VM, i.e.

FNR = 1 − TPR (3.3)

• True Negative Rate (TNR) or Specificity [95]: Proportion of benign VMs correctly
detected, i.e.

TNR = 1 − FPR (3.4)

• False Positive Time (FPT): The instance of time when first benign VM was
wrongly detected as a botVM.

• True Negative Time (TNT): The instance of time when all the benign VMs were
correctly detected.
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2. Performance metrics: To evaluate accuracy performance of a botcloud detection solution,
three metrics are commonly used: (1) Receiver Operating Characteristic (ROC) Curve,
(2) Accuracy and (3) Matthews’ Correlation Coefficient (MCC). The definition of these
metrics is given below.

• Accuracy: The accuracy of a test is its ability to differentiate the infected and
benign cases correctly. It is evaluated as the proportion of true positive and true
negative cases among the total number of cases.

Accuracy = TP + TN

TP + TN + FP + FN
(3.5)

• Matthews’ Correlation Coefficient (MCC) [96] : It is correlation coefficient between
groups of observed and predicted VMs, i.e.

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.6)

To evaluate the overhead performance of a botcloud detection solution, two metrics are
used: (1) Communication overhead and (2) Storage overhead

• Communication Overhead (C-OH): The number of messages and the length of each
message (in bits) exchanged between the architectural components.

• Storage Overhead (S-OH): The number of values recorded by each architectural
component and the length of these values (in bits).

3.4.3 Design Requirements

In addressing the design challenges for an effective, efficient and scalable botcloud detection
solution (identified in Section 2.5), three set of requirements (functional, performance and
scalability requirements) are specified.

Functional Requirements (FUL)

(FUL1) Detect botcloud with known and unknown signatures: A botcloud signature is a
pattern or string that corresponds to an attack by a botcloud. Botclouds with known
signatures are existing botclouds or botclouds that have been identified. Botclouds
with unknown signature are new botclouds or botclouds that have not been identified.
The solution should be able to detect both these classes of botclouds.

(FUL2) Detect botclouds regardless of their Command and Control (C&C) message for-
mats, structures and protocols: Usually, botVMs of a botcloud are commanded and
controlled by their botmaster or other botVMs and this is carried out with the use
of communication messages. These C&C messages may be encrypted or unencrypted.



CHAPTER 3. BVMD ARCHITECTURE AND EVALUATION METHODOLOGY67

The underlying communication structure used may be centralised (communications
among botVMs are done via their botmaster), Peer-2-Peer (P2P, botVMs can commu-
nicate directly) or a hybrid set of centralised and P2P structure. The protocols used
for C&C may be different too, e.g. HTTP, IRC, etc. The solution should be able to
accommodate all these different message formats, C&C structures and protocols.

Performance Requirements These are divided into two categories: effectiveness and
efficiency.

Effectiveness Requirements (EFS)

(EFS1) Minimize False Positive Rate (FPR): The solution should be able to detect
botVMs with as low FPR as possible.

(EFS2) Minimize False Negative Rate (FNR): The solution should be able to detect
botVMs with as low FNR as possible.

(EFS3) Maximize True Positive Rate (TPR): The solution should be able to detect
benign VMs with as high TPR as possible

(EFS4) Maximize True Negative Rate (TNR): The solution should be able to detect
botVMs with as high TNR as possible.

Efficiency Requirements (EFY )

(EFY1) Low communication overhead: Communication overhead (C-OH) should be as
low as possible.

(EFY2) Low storage overhead: Storage overhead (S-OH) should be as low as possible.

Scalability Requirement (SCY )

(SCY1) bVMD solution should be scalable: Scalability is a characteristic of a system that
describes its capability to perform under an increase or expanded workload [97]. The
solution should be able to have a high Matthews’ correlation coefficient (MCC) value
when the number of VMs increases.

3.5 bVMD Architecture & its Components

This section describes bVMD architecture and its components. The architecture of bVMD
framework is shown in Figure 3.2 and an overview of the interactions between the components
is shown in Figure 3.3.
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Figure 3.2: bVMD Architecture

The bVMD operations can broadly be captured in two stages: Stage-1 (Monitoring
and analysis of VM network communication data) and Stage-2 (System parameter analysis).
In Stage-1 the most suspected malicious VMs are identified using their network communication
data, using VMWatcher and S-VMD components. In Stage-2, the identified suspected VMs are
re-investigated to ensure that they are malicious VMs, using bot-VMD and FVM components.

3.5.1 VMWatcher

VMWatcher uses trust values to quantify the network communication packets received at their
residing VM. These communication-based trust values are initialized and updated using the
following methods: 1) VMT value Initialization and 2) VMT value Update. The Initialization
method is used for initialization of a VM trust value whenever there is a first communication
request from a VM. The Update method is used for updating the VMT values with every
subsequent communication. All these VMT values are stored in VMT trust table (VMT-T).
This component along with its methods are described in more depth in Section 4.2.
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3.5.2 S-VMD

S-VMD aggregates the VMT values received from its local VMWatchers. This is done by using
the following methods: 1) Agg-VMT and 2) Identify S-VM. The Aggregated-VMT (Agg-VMT)
method is used to aggregate the VMT values received from all the local VMWatchers and
calculate an Agg-VMT value for each VMWatcher. Based on the Agg-VMT value of each
VMWatcher, the S-VMD method identifies a set of S-VMs and notifies their respective bot-
VMDs. This component along with its methods are described in more depth in Section 4.3

3.5.3 Bot-VMD

Bot-VMD receives notification from S-VMD and perform the following two methods: 1) FVM
Estimation and Dispatch and 2) Detect botVM(s). The FVM Estimation and Dispatch method
is used to estimate the number and types of FVMs required for analysis and then dispatch them
to identified S-VM. The Detect botVM method is used to receive the recorded results from
FVMs, analyse them and identify botVMs. It then notifies the hypervisor about the result.
This component along with its methods are described in more depth in Section 5.5.

As discussed above, the components S-VMD and bot-VMD are positioned in the
hypervisor. This idea of placing the components in the hypervisor is inspired by hypervisor-
based IDS [98] [99]. Hypervisor-based IDS use the hypervisor layer to secure the monitoring
system. In theory, since hypervisors operate at a lower level than the monitored system, they too
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are isolated and become more secure [100]. This means that although placing the components
in the hypervisor might introduce additional overheads on the hypervisor, but at the same time
they can be more secure. Also, it can be seen from the literature that several solutions are [101]
[102] based on this approach.

3.5.4 FVM

The FVMs check the system parameter values as per the instructions of Bot-VMD. They are
only active for the time of checking system parameters and reporting back. After completing
their work, they are destroyed to minimize the attack surface.

3.6 Evaluation Methodology

This section discusses the possible evaluation methods that may be used to evaluate bVMD
Framework, and this discussion serves as our justification for selection of the methodology used
in the study presented in this thesis. According to literature [103], there are three evaluation
methodologies, real system experiments, mathematical modelling and simulation.

3.6.1 Real System Experiments

The real system experiment evaluation method evaluates the performance of a solution on a
large-scale physical network. Here the network refers to a hardware infrastructure system and
a software framework managing it. This is done using testbeds built on a physical network.
Using these testbeds to evaluate a solution is advantageous as the results are based on real-
istic conditions. These can be helpful for understanding the performance of a solution before
deploying it on a large-scale network [104].

Based on the above discussed reasons, we have chosen this method as the evaluation
methodology for the Stage-2 of bVMD Framework reported in this thesis.

3.6.2 Mathematical Modelling

The mathematical modelling method builds an abstract model that uses mathematical language
to evaluate the behaviour and performance of a framework. Although this method is more
cost effective than the method discussed above, it might not generate valid results in bVMD
framework. This is because bVMD framework is designed for a complex cloud network operating
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in a dynamic environment. To model complex operations, many assumptions have to be made
to keep the analysis traceable, and simplifying these assumptions may limit the usefulness or
validity of the finding.

3.6.3 Simulation

A network simulator method uses a software program to model the behaviour and performance
of a solution. For a cloud network, this method is getting increasingly popular due to three
main benefits [105][106]. Firstly, the simulation method is cheaper as compared to the real
environment. Secondly, it is scalable, i.e. it can be used to simulate a small or large network.
Thirdly, it is less time consuming and repeatable.

Based on the above discussed reasons, we have chosen this method as the evaluation
methodology for the Stage-1 of bVMD Framework reported in this thesis.

To determine a simulator for evaluation of bVMD Framework, we identified the
simulators used by the related work. Authors in [79] and [82] used R tool [107] to build their
own simulator whereas authors in [48] used CloudSim [108] simulator. In addition, we identified
that NS-2 [109] and Omnet++ [110] was used couple of solutions as network simulations.

Cloudsim is a generalised and extensible Java-based simulation tool kit [111]. It is
used by researchers to model and simulate cloud infrastructure and analyse the performance
of the application service in a controlled environment [112]. It can view the availability, power
consumption, and a network traffic of services on a cloud environment; however it cannot
support the Quality of Service [113]. NS-2 is an object-oriented, discrete event simulator for
networking research. It is written in C++ and the command and configuration interface is built
using Object Tool Command Language (OTcl). The advantage of this programming approach
is that it allows for fast regeneration of large scenarios. However, one of its limitation is that
modifying and extending the simulator requires programming and debugging in both languages
simultaneously [114]. In addition, it has another limitation of poor graphical support, i.e. no
Graphical User Interface (GUI). Omnet++ is an extensible, modular, component-based C++
simulation library and framework, primarily for building network simulators. Although it is
not a network simulator itself, it has gained widespread popularity as a network simulation
platform for building up a large user community in the scientific as well as industrial settings
[115]. Unlike NS-2, Omnet++ provides a powerful GUI making the tracing and debugging much
easier. However, there is a problem of compatibility issue, i.e. combining of models developed
separately is difficult to combine and it may result in bugs [116].

Omnet++ has been chosen for simulation evaluation of stage-1 of bVMD Framework.
As discussed, it has been used to write many frameworks in diverse areas: peer-to-peer networks,
mesh network, wireless sensor network, cloud computing and more. Omnet++ uses INET
Framework [117] as one of the major frameworks for modelling communication networks. The
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version of INET 4.2.0 framework is available at [118]. It is compatible for Omnet 5.5.1 or later.
Omnet++ 5.6 [119] with INET 4.2.0 is used as an evaluation tool for the work reported in
this thesis. In the INET framework, an INetworkNode is used to build each node (i.e. each
VMWatcher) and standardhost is used to build the S-VMD component. This INetworknode
maintains regular communication as per the scenario with a rate of 60 packets/minute and
perform an attack with a rate of 120 packets/minute.

3.7 Simulation Configuration

This section explains network configuration, network modelling and performance metrics used
for the evaluation of bVMD framework. In addition, this section explains how some of the
parameter values were chosen during our simulation study.

3.7.1 Nodes

The VMWatchers are also known as nodes. These are divided into three categories: 1) target
nodes (targetVM), 2) bot nodes (botVM), and 3) standard nodes (standardVM). A targetVM
is a node which is attacked by a botcloud and botVM is a node which is a member of a botcloud.
StandardVM is a node which is neither a target nor an attacker. All the nodes have similar
rate of communication.

3.7.2 Peer-to-peer Model

The peer-to-peer model defines the number of peer-VMs of a VMWatcher. In other words, it
defines the number of VMWatchers communicating with a VMWatcher. This model is designed
to study the effect of change in the number of peer-VMs on the performance of bVMD frame-
work. This is done by evaluating the performance of the framework with minimum, average and
maximum number of peerVMs. Here, ‘minimum’ means 1% of the total number of VMWatch-
ers in the system, with an exception of at-least one peer-VM. ‘Average’ and ‘maximum’ means
50% and 100% of the total number of VMWatchers. For consistency, the number of peer-VMs
is assumed to be same for all VMWatchers in bVMD evaluation.

3.7.3 Performance Metric

Six performance metrics are used in our investigation of bVMD framework. They are FPR,
FNR, TPR, TNR, FPT and TNT. These were discussed in detail in Section 3.4.
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3.8 Simulation Scenarios and Settings

The simulation is based on an empirical model [120] wherein the number of experimental vari-
able, such as the number of each type of VM, the time number of peerVMs, and, in particular,
to find experimentally the optimal combination of conditions that provides the optimal results
are identified. To the best of our knowledge, the experimental variables and scenarios discussed
below are unknown. Also, as stated in [121], empirical models might be very useful in such
circumstances where the mathematical relationship is unknown.

The simulation experiment scenarios are designed with an objective of analysing the
performance of bVMD framework during the different stages of a botcloud. The botcloud stages
and the ways of incorporating them into the simulation model are as follows.

Stage 1 (Initial stage) The botcloud has infected one VMWatcher.

Stage 2 (Intermediate stage) The botcloud has infected a larger group of VMWatchers as
compared to initial stage, however there are still some uninfected VMs.

Stage 3 (Final stage) The botcloud has infected all the VMWatchers, except one.

To analyse the above cases, the following factors are considered:

F1 Number of botVMs (numBot): This describes the number of VMWatchers which are in-
fected by botcloud.

F2 Number of targetVMs (numTarget): This describes the number of VMWatchers which are
being attacked by botcloud.

The performance of bVMD framework is evaluated with minimum, average and maximum range
of these factors. Here minimum refers to 1%, average refers to 50% and maximum refers to 99%
of the number of botVMs and targetVMs. In addition, we make sure that there is at-least one
botVM and one targetVM in every scenario. Based on these factors, six scenarios are formed
as described in Table 3.1.

To conclude, the performance of bVMD is analysed for the following.

1 The effect of a large group of botVMs attacking a small group of VMWatchers.

2 The effect of a small group of botVMs attacking a large group of VMWatchers.

3 The effect of a small group of botVMs attacking a small group of VMWatchers.

4 The effect of an attack where the number of botVMs and targetVMs are equally
distributed.
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Table 3.1: Scenarios based on the distribution of three types of nodes

Scenario Distribution of nodes
Scenario A • 1% of the NumBot

• 1% of the NumTarget
• 98% of the StandardVM

Scenario B • 1% of the NumBot
• 50% of the NumTarget
• 49% of the StandardVM

Scenario C • 1% of the NumBot
• 99% of the NumTarget
• 0% of the StandardVM

Scenario D • 50% of the NumBot
• 1% of the NumTarget
• 49% of the StandardVM

Scenario E • 50% of the NumBot
• 50% of the NumTarget
• 0% of the StandardVM

Scenario F • 99% of the NumBot
• 1% of the NumTarget
• 0% of the StandardVM

3.8.1 Settings

The peer-to-peer model described in Section 3.7 is also taken into account in the simulation
experiment evaluation scenarios. This is to analyse the effect of change in performance of
bVMD with the change in number of peerVMs. The different setting values considered for the
number of peerVMs are summarized in Table 3.2

Table 3.2: Settings based on the percentage of peerVMs

Setting (SE) Percentage of the number of peerVMs

SE1 1%
SE2 50%
SE3 100%
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To conclude, Figure 3.4 depicts the 18 cases derived from the above mentioned
scenarios and settings:

NumBot NumTarget StdVM PeerVM Case 1

0% -- -- -- Case 2

1% -- Case 3

49% -- -- -- Case 4

50% -- Case 5

98% -- -- -- Case 6

99% -- -- Case 7

100% -- -- -- Case 8

Case 9

Case 10

Case 11

Case 12

Case 13

Case 14

Case 15

Case 16

Case 17

Case 18

Figure 3.4: The settings (percentage of the number of peerVM) and the set of
Cases derived from the scenarios (indicating the distributions of different types

of nodes)

The first figure in Figure 3.4 shows the colour code assigned to each type of VM and
the percentage of these VMs. Here the x-axis shows the types of VMs and the y-axis shows
the percentage of these VMs. The right figure in Figure 3.4 shows the type and percentage of
VMs in each case. For example, in Case 1, numBot is 1%, numtarget is 1%, stdVM is 100%
and peerVM is 1%.

3.9 Chapter Summary

This chapter specifies a set of five measures and four set of requirements for the design of
an effective, efficient and scalable botcloud detection solution. The measures are: (i) Hybrid
approach of botcloud detection based on a network parameters and system parameters, (ii)
Use of in-VM monitoring component, (iii) Local processing of the monitored data at VM level,
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(iv) Collective and accountable decision made by each component at VM level, and (v) An
adjustable dispatcher for system parameter analysis components. The requirements are FUL1)
Detect botVMs with known and unknown signatures, FUL2) Detect botVMs regardless of their
Command and Control (C&C) message formats, structures and protocols; EFS1) Minimise false
positive rate, EFS2) Minimise false negative rate, EFS3) Maximise true positive rate, EFS4)
Maximise true negative rate; EFY1) Low communication overhead, EFY3) Low storage over-
head; SCY1) Solution should be scalable. To realise these measures and support the identified
requirements, we present an overview of bVMD framework design. The bVMD framework con-
sists of a two-stage novel architecture with the first stage centred on a novel network-based
anomaly detection method and the second stage based on an improved host-based anomaly de-
tection method. This two-stage architecture might improve the detection accuracy by reducing
chances of false-positive detection and making the solution more effective. However, the two
stages add a level of complexity due to dual-analysis. Efforts have been made to reduce the
associated communicational overhead. The methods of evaluation are discussed further, and
simulation is selected as the investigation methodology, and Omnet++ as a simulator. The
configuration of Omnet++ is described in detail and a set of scenarios with related settings
used in the simulation were discussed.



Chapter 4

bVMD Stage-1: VMWatcher &
S-VMD

4.1 Chapter Introduction

This chapter presents the design and evaluation of VMWatcher and S-VMD; two components
used in the Stage-1 of the bVMD architecture. As mentioned in Chapter 3, bVMD uses a
peerVM mutual monitoring-based approach to identify suspected VMs in Stage-1 before carry-
ing out detailed forensic analysis in Stage-2. This peerVM mutual monitoring approach, which
is implemented by using VMWatcher and S-VMD, is aimed at reducing the number of VMs
that should be further analysed in Stage-2. This approach brings a number of benefits. Firstly,
it is designed to monitor the frequency of communications, which is independent of botVM
signatures, communication structure and protocols. Therefore, the detection solution can be
applied for detecting polymorphic malware botVMs and in a communication environment with
varying communication topologies and protocols. Secondly, each VM is monitored by a number
of peerVMs, so if a VM has more peerVMs, then a false reporting by a single peerVM will
have less impact on the overall trust value, thus making the detection result more reliable. In
other words, the more peerVMs a VM has, the harder it is for a single VM to abuse the rating
operation, and thus a more accurate result is expected. However, this approach introduces ad-
ditional overheads on the VMs for monitoring and analysing their peerVMs, efforts have been
made to minimize these overheads.
A notable feature of a botcloud is that it tries to infect as many VMs as possible, thus attack-
ing many peerVMs, so this peerVM mutual monitoring approach may produce some interesting
results which will be evaluated. Also, the monitored data each VMWatcher transmits to the
decision-making component, i.e. S-VMD, is a trust value, rather than the raw data, and the

77
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former is much smaller in volume than the latter, so the communication overhead can be re-
duced. In addition, as the function of VMWatcher is embedded in each working VM, rather
than as a dedicated component, the additional workload is spread across multiple components,
and this can improve the scalability of the system. Lastly, S-VMD component is also embedded
in each hypervisor which spreads the workload across multiple hypervisors, and this can also
improve the scalability of the system.
The structure of the remaining part of this chapter is as follows. Section 4.2 presents the de-
tails of the VMWatcher component. Section 4.3 describes the S-VMD component. Section 4.4
presents the operations of bVMD stage-1 components and Section 4.5 discusses the experimen-
tal evaluation. The evaluation results and discussions are described in Section 4.6. Section 4.7
discusses the attack model, which identifies possible security threats and attacks that may be
performed against Stage-1 of bVMD Framework and it also describes the results obtained in
these attack scenarios. Section 4.8 presents the key findings of the experimental results, and
finally Section 4.9 summarises the chapter.

4.2 VMWatcher

This section describes the novel VMWatcher component, the methods used to implement it and
set of actions that it can take in response to different attack scenarios.

4.2.1 VM Communication Paths

VMWatcher component analyses the flow of network packets to identify any suspicious activity,
so it should be placed in a location where it can access all the network packets. To determine
such a location, we study the communication paths followed by the VM packets. There is a
need for the VMs to communicate with each other to access set of services offered by each other
and this is done using a communication channel. This channel can use two types of networks,
i.e. physical network and/or virtual network.
A physical network refers to a network of physical hosts that communicate using physical devices
like cables, modem, etc. As illustrated in Figure 4.1, a physical network consists of two main
components: Physical Switches [122] and Physical Network Interface Cards [123].

• Physical Switch (pSwitch): It links physical devices together by relaying network packets
between them. Each pSwitch has multiple ports with each port connecting a physical
device or another pSwitch.

• Physical Network Interface Card (pNIC): It links a physical host to physical network (i.e.
to a pSwitch port) and it has a MAC address to guide packets. In a cloud environment, a
pNIC connects the hypervisor to the physical network. It serves as a hardware interface
bridge between the physical and virtual network.
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Figure 4.1: VM Communication Networks (Physical & Virtual) with their
components

Virtual network refers to a network of VMs that communicate using virtual devices.
As illustrated in Figure 4.1, the virtual network consists of two main components: Virtual
Switch and Virtual Network Interface Cards.

• Virtual Switch (vSwitch): A vSwitch connects a VM to a physical network. Each vSwitch
has multiple ports, called vPorts, with each vPort connecting one or more VM(s). The
vPorts can be configured to form port groups based on various setting like security, traffic
shaping, etc.

• Virtual Network Interface Card (vNIC): The vNIC connects a VM to a virtual network
(i.e. to a vPort). Similar to pNIC, it also has a unique MAC address through which
packets are guided.

During a communication between a pair of VMs, the communication path followed
by the network packets depends on the location of the communicating VMs. These VMs can
either reside on the same physical host, i.e. intra-host VM communication or on different
physical hosts, i.e. inter-host VM communication. The communication paths [9, 10] followed
by the packets (say, from VM1 to VM2) during an intra-host and inter-host communication is
discussed in the following schemes.
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Scheme 1 (Same-host; same-VS; same-
PG): As shown in Figure 4.2,
VM1 (with vNIC1) and VM2 (with
vNIC2) reside on same physical
host and are connected to the same
vSwitch (VS1) and same port group
(PG A).
Flow: The network packets flow
from vNIC1 to VS1 and from there
they travel to vNIC2.
Network(s) used: Virtual

 

Figure 4.2: Scheme 1: Same-host;
same-VS; same-PG

Scheme 2 (Same-host; same-VS; diff-
PG): As shown in Figure 4.3,
VM1 (with vNIC1) and VM2 (with
vNIC2) reside on same physical
host and connected to same vSwitch
(VS1). However, they are con-
nected to different port groups, VM
1 to PG A and VM 2 to PG B.
Flow: The network packets flow
from vNIC1 to VS1, and from
VS1 the packets enter pSwitch us-
ing pNIC. From pNIC the pack-
ets travel back to VS1 and then to
vNIC2.
Network(s) used: Virtual and phys-
ical

Figure 4.3: Scheme 2: Same-host;
same-VS; diff-PG



CHAPTER 4. BVMD STAGE-1: VMWATCHER & S-VMD 81

Scheme 3 (Same-host; diff-VS): As shown
in Figure 4.4, VM1 (with vNIC1)
and VM2 (with vNIC2) reside
on same physical host; however
they are connected to different
vSwitches, VS1 for VM1 and VS2
for VM2. As they are connected to
different vSwitches, the port group
doesn’t affect their communication
path.
Flow: The network packets flow
from vNIC1 to VS1, and from
VS1 the packets enter pSwitch us-
ing pNIC. From pNIC the packets
travel to VS2 and then to vNIC2.
Network(s) used: Virtual and phys-
ical

 

Figure 4.4: Scheme 3: Same-host;
diff-VS

Scheme 4 (Diff-host): As shown in Fig-
ure 4.5, VM1 (with vNIC1) and
VM4 (with vNIC4) reside on dif-
ferent physical hosts; therefore they
have different vSwitches, VS1 for
VM1 and VS4 for VM4 and dif-
ferent pNIC, pNIC1 to VM1 and
pNIC2 to VM4.
Flow: The network packets flow
from vNIC1 to VS1, and from
VS1 the packets enter pSwitch us-
ing pNIC1. Through pSwitch, the
packets reach pNIC2. From here
they travel to VS4, and then reach
VM4 through vNIC4.
Network(s) used: Virtual and phys-
ical

 

Figure 4.5: Scheme 4: Diff-host

From Figure 4.2 to Figure 4.5, we observe that the network packets can use virtual
and/or physical networks to communicate with each other. In one of the schemes (i.e. Scheme
1 – Same-host; same-VS; same-PG), the network packets only use a virtual network and do not
enter the hypervisor level. Thus, VMWatcher placed at the hypervisor might not be able to
analyse some network packets, thus affecting the detection accuracy. To overcome this limita-
tion, we have decided to place the VMWatcher inside each VM. It monitors the network traffic
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data at the VM level rather than at the hypervisor level. In addition, placing VMWatchers at
the VM level distributes the monitoring workload among multiple VMs, instead of imposing
the workload on a single hypervisor, enhancing the scalability of the solution.

4.2.2 VM Communication Patterns

This section describes the communication patterns which are used by bVMD framework to
identify a suspicious activity. A communication pattern is associated to the communication
flows between a set of VMs. It can be associated with a number of attributes such as: (1)
the number of packets received from a peerVM within a time window, (2) the average time
taken by a peerVM to send an acknowledgement to VMWatcher, (3) the number of packets
unacknowledged by the peerVM in a time window, etc. A change in any of these attributes
depicts a change in the communication pattern among the set of VMs. Communication patterns
can be classified into two types, benign and malicious communication patterns.

• Benign Communication Patterns: A communication pattern is said to be benign if
the measured attribute values are within certain thresholds over a period. That means
VMs communicate with each other as per their expectations and there is no unexpected
change (in the above mentioned attribute(s)) in an ongoing communication. In other
words, if the communication pattern shows consistencies, the communicating VMs would
trust each other and believe that they are not infected.

• Malicious Communication Patterns: A communication pattern is suspected to be
malicious if communication flows exhibit some unexpected change (above a threshold
value) in the above mentioned attribute(s) during an ongoing communication. An unex-
pected change in a communication pattern indicates that there are unsolicited commu-
nication packets, and this could be an indicator of a malware attack.
As discussed in Chapter 3, bVMD Framework aim to identifying botcloud which per-
form DDoS attacks and the first attribute, i.e. the number of packets received within a
time window, hereafter called Packet Arrival Rate from PeerVM, PARfPVM, is used for
detecting malicious behaviour. This is because the DDoS attack is meant to send large
number of packets to the targetVM and this would reflect in PARfPVM attribute. So,
a sudden change in this attribute would trigger further actions in the Framework. This
PARfPVM is calculated over a time window. The PARfPVM which is calculated in the
current time window is called PARfPVMcurr/prev. This is compared with the PARfPVM
calculated in the previous time window, called, PARfPVMcurr/prev stored in VMT-T.

if(PARfPV Mcurr > PARf∆ × PARfPV Mprev)

is true, then it is classified as malicious pattern, otherwise it is classified as a benign
pattern.
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– If it is classified as benign pattern, then the VMT-T is updated with a new PARf-
PVM using the following equation.

PARfPV Mcurr = PARfPV Mprev + PARfPV Mcurr

2 (4.1)

This PARfPVMcurr is stored in the VMT-T as PARfPVMprev

– If it is classified as a malicious pattern, then the PARfPVMprev value stored in the
VMT-T is not replaced by PARfPVMcurr. This is to make sure that the system
doesn’t classify a malicious pattern as a benign pattern over a period.

Two major parameters which play a major role here are:

1 ∆PAR – This is the difference in the rate of a benign communication pattern and a malicious
communication pattern. A low value can lead to high false positive detections, whereas a
high value can lead to low detection rate. In the bVMD implementation, the ∆ PAR value
is assumed as 2.

2 Window size (WPAR) – This refers to a window size after which the PARfPVM is calculated
and then compared with the one calculated in the previous window. In bVMD, we propose a
flexible window size, WPAR, for each peerVM. This means that every pair of VM has different
WPAR. This is because every pair of VMs has independent communication patterns, and
thus a separate PARfPVM. A high PARfPVM might require a small WPAR, whereas a low
PARfPVM might require a high WPAR. Therefore, we propose to use (Flexi -WPAR) for each
peerVM. This might improve the efficiency of a VM as the computations to be performed
for each VM at the end of each window is at different timings. In addition, it might help to
reduce the burden on the VM at a given point in time.

When an unknown VM requests a communication, then its corresponding window
size is calculated using the following ways.

• Along with the recommendation VMT value, the window size of peerVM is also com-
municated. This value is stored in VMT-T. If there is more than 1 peerVM which has
recommended VMT for the unknown VM, then the final window size is calculated by
taking an average of the recommended VMT value.
For example, VMi has two peerVMs, VMa and VMb, and it requests them for PARfPVM
for VMj. If it receives PARfPVMa

j and PARfPVMb
j from VMa and VMb respectively.

It calculates PARfPVMi
j using the following equation.

PARfPV M i
j =

∑k
i=0(PARfPV Ma

j + PARfPV Mb
j)

k
(4.2)

• If there is no recommendation trust, the window size is calculated by taking an average
of all the window sizes of its peerVMs.
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Using the above example, if VMa and VMb doesn’t have PARfPVM for VMj, then VMi

calculates PARfPVMi
j using the following equation.

PARfPV M i
j =

∑k
i=0(PARfPV M i

a + PARfPV M i
b)

k
(4.3)

When a known VM sends a communication, then the window size is updated at the
end of each window. In bVMD Framework evaluation, the window size is kept constant.

4.2.3 Malicious Communication Pattern Quantification

This section describes the metric and the methods used for the quantification of malicious
communication patterns in bVMD Framework.

• Trust as a Quantification Metric: A VMWatcher quantifies communication patterns
of its peerVM using a generic parameter ‘trust’. Here trust is defined as a level of con-
fidence that a VM has on its peerVM that they have a benign communication pattern.
A benign communication pattern increases the VMT value of the peerVM with every
subsequent communication and on the other hand, a malicious communication pattern
decreases its VMT value with every subsequent communication. A VM (which is regu-
larly communicating) which has a higher VMT value means that it is more trustworthy,
or less likely under an attack, whereas a VM with a lower VMT value means that it is
less trustworthy, or more likely under an attack.

• Direct and Recommended Trust Values: The bVMD Framework uses two types
of trust, direct and recommended trust [124]. Here direct trust is evaluated based on
communication patterns between two known VMs (i.e. VMs which are already commu-
nicating) whereas recommended trust is evaluated when two unknown VMs (i.e. VMs
which don’t have a communication history) communicate. Recommendation trust in-
volves a third party, which is a known VM to both unknown VMs. For example, if there
are two unknown VMs, VMi & VMj and VMj sends network packets to VMi, then VMi

receives a recommendation (in the form of VMT value) of VMj from peerVM of VMi.
Based on the recommended VMT values received, the VMT value of VMTi

j is calculated
as given follows [125].

V MT i
j =

∑k
i=0(CredVMk × V MT k

j)
k

(4.4)

where, VMTi
j is the VMT value of VMi on VMj,

k is the number of peerVMs of VMi which are peerVMs of VMj, and
CredVMk is the credibility value of VMk. The credibility value is defined in Section 4.3.
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• VMWatcher Trust (VMT-T): Each VMWatcher maintains a VMT table storing the
information related to each of its peerVMs. As shown in Table 4.1, the VMT table is
captured using a number of attributes, namely, a VM unique IP address; its trust value,
VMTi, number of packets received by the peerVM in previous time window (Wcurr-1) and
current time window (Wcurr). The trust value, VMTi, and frequency of communication,
for each peer-VM are estimated by using the VM Trust Value Estimation (VMT-VE)
method described in the next section.

Table 4.1: VMT Table stored by each VMWatcher

VM IP Address VMT Value Previous Packet
Count (Wcurr-1)

Current Packet
Count (Wcurr)

Window Size

4.2.4 VM Trust Value Estimation (VMT-VE) Method

This section presents details of VMT Value Estimation (VMT-VE) method used by the VMWatcher
component. As mentioned earlier, one of the tasks each VMWatcher ought to perform in bVMD
is to estimate a VMT value for each of its peerVMs. In this method, VMWatcher estimates a
VMT value for each of its peerVMs based on observing their communication patterns. At each
VMWatcher, VMi, the VMT value assigned to a peerVM, VMj, denoted by VMTk

j, reflects
the confidence of VMWatcher VMi on VMj that it is not a malicious VM. The higher the VMT
value of a peerVM, the higher the confidence the VMWatcher has on the peerVM. A VMT
value is measured in a given range [VMTmin, VMTmax], where VMTi

j
min is the minimum, and

VMTVMTi
j
max is the maximum, VMT value.

The VMT-VE consists of three algorithms, VMT-Initialization (VMT-I) method,
VMT-Update (VMT-U) method and VMT-Exchange (VMT-Exc) method.

• Virtual Machine Trust Initialisation (VMT-I): The VMT-I algorithm is used to
initialise the VMT value when a VM initiates a connection with the VMWatcher. In
other words, the VMT-I algorithm is used when a VMWatcher receives a packet from
an unknown VM. In this case, if there are any peerVMs, then the VMWatcher, VMi,
calculates VMTi

j uses the recommendation trust value given in Equation (4.4).

However, if there are no peerVMs, then the VMWatcher, VMi, calculates VMTi
j uses
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the following Equation.

V MT VMi
j = V MT min + V MT max

2 (4.5)

This neutral value (calculated by Equation (4.5)) indicates that VMWatcher, VMi can-
not yet determine whether this new peerVM is trustworthy or not. With subsequent
communication, the value of VMTi

j is updated by VMi. The bVMD is based on Marsh’s
trust model [126], thus VMTmax value is set to 1 and the VMTmin value is set to -1
[127][128][129][130]. This algorithm is called whenever there is a packet received from an
unknown VM.

• Virtual Machine Trust Update (VMT-U) : The VMT-U method is used to up-
date VMT values of known VMs (or peerVMs). The update is based on the subsequent
communication patterns of peerVMs. As discussed in Section 4.2, the communication
pattern of a VM can be classified into benign or malicious pattern. A benign communi-
cation pattern increases the VMT value of the VMWatcher by a trust factor of VMT∆1,
i.e.

V MT i
j
(t=t0) = V MT i

j
(t=(t0-1) + ∆1 if, k > 0 (4.6)

And a malicious communication pattern decrements the VMT value of the VMWatcher
by a trust factor of VMT∆2, i.e.

V MT i
j
(t=t0) = V MT i

j
(t=t0-1) − ∆2, if, k > 0 (4.7)

Where, VMT∆1 and VMT∆2 are the trust factors. The VMT algorithm along with the
VMT-I and VMT-U algorithms are given below.

Algorithm 1 The VMT-I Algorithm

Input: CredVMk and VMTk
j for each peer-VM, VMk

Output: VMTi
j

1: if (k > 0) then

2: VMTi
j =

∑k

i=0(CredVMk×V MT k
j)

k

3: else
4: V MT ij = V MT min+V MT max

2

5: end if
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Algorithm 2 The VMT-U Algorithm
Input: PARfPV M curr, PARfPV M (curr-1), PARfPV M∆, V MT∆1,

V MT∆2, V MT i
j
(t=t0-1)

Output: V MT i
j
(t=t0)

1: if (PARfPV M curr-1 >= PARfPV M∆ × PARfPV M curr-1) then
2: V MT i

j
(t=t0) = V MT i

j
(t=t0-1) − V MT∆2

3: if V MT i
j
(t=t0) <= (−1) then V MT i

j
(t=t0) = −1

4: end if

5: else
6: V MT i

j
(t=t0) = V MT i

j
(t=t0-1) + V MT∆1

7: if V MT i
j
(t=t0) >= (+1) then V MT i

j
(t=t0) = +1

8: end if

9: end if

• Virtual Machine Trust Exchange (VMT-Exc) Method: As discussed above, rec-
ommendation trust is used by VMWatcher’s to exchange VMT values. This is useful in
cases where two unknown VMs start communication and then a known peerVM can act
as a third party and recommend VMT values. This process can be done by two methods.

– Synchronous method – This is a method in which a VMWatcher sends a request to
its peerVM asking for a recommendation VMT value about an unknown VM. The
peerVM sends a response back with either a VMT value (if it has one) or no VMT
value (if it doesn’t have one). This method might minimise the storage overhead
as a VMWatcher only stores a VMT value if it needs it, otherwise not. However,
this involves an additional time for a VMWatcher to send a request and receive
a response. This might be equal to (2 × T comm + T procc), where Tcomm is the
communication time between the VMWatcher and its peerVM and Tprocc is the
processing time taken by peerVM to process the request and send a response. For
an effective detection, this time should be less than the average time a botcloud
attack lasts. However, this could be very unpredictable as attacks could last from
a few minutes to months. Therefore, this method would not be effective in these
scenarios.

– Asynchronous method – This is a method in which VMWatchers exchange their
VMT values regularly. This means that when a VMWatcher initiates or updates
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a VMT value of a peerVM, it sends this value to other peerVMs. The receiving
peerVMs, use recommendation trust discussed in Equation (4.4) to calculate a
final VMT value. For example, as shown in Figure 4.6 there are four VMs in a
cloud environment, namely VMa, VMb, VMc and VMd. If VMa has two peerVMs,
namely VMc and VMd and an unknown VM, VMb requests for a communication,
then the below mentioned process is followed.

 

Figure 4.6: Exchange of VMT values

Firstly, VMa calculates VMT value for VMb, i.e. VMTa
b, using Algorithm 1. Sec-

ondly, it communicates this value to VMc and VMd. Then they both check their VMT-T for
VMTc

b and VMTd
b respectively.

• Say, if VMc found a VMTc
b

(curr) in its VMT-T, then it updates the VMT value using
the following equation.

V MT c
b =

V MT c
b

(prev) + (CredVMa ×V MT ab)
2

2 (4.8)

• Say, if VMd didn’t find VMTd
b in its VMT-T, then it calculates VMT value using the

following equation.

V MT d
b = CredVMa × V MT a

b (4.9)

This method might have the following weaknesses. Firstly, regular sharing of the
VMT values might increase the communication overheads. Secondly, it would increase the
storage overhead at each VM, as the VMWatcher has to store VMT-values of unknown VMs.
In addition, these overheads might increase with increase in number of VMWatchers. However,
this method minimises the waiting time of a VMWatcher to get a recommendation value about
another VM, thus minimising the overall detection time of the solution. In bMMD Framework,
the VMWatcher uses this asynchronous communication approach.
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4.2.5 VMWatcher Operations

The VMWatcher component can be placed on three types of VMs, namely target VM (tar-
getVM), attacking VM (botVM) and standard working VM (stdVM). These are described
below.

• VMWatcher-on-TargetVM: A target VM is a VM which is attacked by a botVM. VMWatcher
on targetVM is responsible to rate its peerVMs and share these values with S-VMD.

• VMWatcher-on-BotVM: An attacking VM or botVM is a VM which is a member of the
botcloud. It is responsible for attacking target VM(s) by sending high number of packets.
In addition, VMWatcher on botVM is responsible to rate its peerVMs and share these
rating values with S-VMD.

• VMWatcher-on-StdVM: Standard working VMs are the VMs which are neither attacked,
nor an attacker. VMWatcher on stdVM rate their peerVMs and share these rating values
with S-VMD.

In addition, the VMWatcher communicate to share VMT values. Figure 4.7 shows
the packet which is exchanged between VMWatchers.

PeerVM  IP 

Address 
VMT value 

 𝑉𝑀𝑇𝑖
𝑗
 

… … 

 𝑉𝑀𝑇𝑖
𝑛 

 

Figure 4.7: V-to-V Packet

The V-to-V packet contains the IP address of the peerVMs whose value has to be
sent and their respective VMT value. This packet is exchanged among VMWatchers after a
fixed window size. In bVMD this window size was kept as a minute.

4.2.6 Actions Taken

Firstly, each VMWatcher identifies the peerVM which has negative VMT. The details of this
identified peerVM is shared with the local S-VMD. Figure 4.8 gives the V-to-S packet which is
used to share the details with S-VMD.
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PeerVM  IP 

Address 
VMT value 

 𝑉𝑀𝑇𝑖
𝑗
 

… … 

 𝑉𝑀𝑇𝑖
𝑚 

 

Figure 4.8: V-to-S Packet

This packet contains the address of the VMWatcher which has a low VMT value,
i.e. a negative VMT value. Say, if VMi is sending this packet, then it contains the details
of peerVMs of VMi which have negative VMT values in VMi VMT-T. This packet is sent to
VMWatcher as per the Risk Level discussed below.
In a scenario where majority of bVMD components are compromised, the VMWatcher has a
feature of locally protecting itself by taking special actions against suspicious VMs. These
set of actions are decided by a factor called, Risk Level (RL). According to [131], the risk
concept is broken down into two main criteria: (a) the probability, which is the possibility of
an undesirable occurrence, such as a cost overrun, and (b) the impact, which is the degree of
seriousness and the scale of the impact on other activities if the undesirable thing happens.
Using a mathematical description, a risk is described as follows.

R = P ∗ I (4.10)

where R is the degree of risk, P is the probability of the risk occurring and I is the degree of
impact of the risk. Here risk level is defined as a measure of malicious behaviour of a particular
VMWatcher experienced by its peerVM. It is divided into three categories as described below.

• High RL: The scenario is categorised into high risk if all the following are true.

– The VMWatcher’s VMT value in peerVM’s VMT-T is at its lowest, i.e. equal to
(-1 in bVMD Framework).

– The S-VMD has already been notified about this low VMT value, however it has
not yet responded.

– The VMWatcher is still attacking the peerVM and the peerVM cannot reduce the
VMWatcher’s VMT value anymore (because it is already at its lowest level).

Actions Taken: The VMWatcher is suspended by the peerVM, i.e. all the communication
to and from the VMWatcher are immediately stopped and a high alert notification is sent
to the S-VMD. This action of suspending communication with VMWatcher is temporary
and it is revoked after S-VMD responds.
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• Medium RL: The scenario is categorised into a medium risk level if all the following
are true.

– The VMWatcher’s VMT value in peerVM’s VMT-T is below the average VMT
value of the system; however, it should not be equal to minimum VMT value, i.e.
VMTmin. In bVMD Framework it should be between (0, -1).

Actions Taken: With every change in the VMT value of VMWatcher in VMT-T of
peerVM, the S-VMD is notified.

• Low RL: The scenario is categorised into low risk level if all the following are true.

– The VMWatcher’s VMT value in peerVM’s VMT-T should be above average VMT
value of the system. In bVMD Framework it should be between [0, 1].

– The VMWatcher is still attacking the peerVM. As a result, its VMT value in
peerVM’s VMT-T is reducing, compared to the previous time window; however, it
is still above average VMT value.

Actions Taken: Unlike other risk levels, the peerVM doesn’t explicitly notify about this
risk level to the S-VMD. It shares its VMT-T after the window size and continues to
communicate with the VMWatcher.

This idea of Risk Level at VM level can be effective in the following scenarios. (i)
When a botVM is only attacking one of its peerVM (targetVM) and it maintains a benign
communication with other peerVMs (stdVMs). The stdVMs might have more influence on
the credibility of botVM as compared to a single targetVM, thus resulting in a high credit
value of botVM in the system. In such a scenario, this idea of risk level gives a free hand to
the targetVM to notify S-VMD and protect itself locally and (ii) a scenario where S-VMD is
compromised and it doesn’t respond to a high risk scenario, the VMWatcher can locally protect
itself by suspending all the communication from the botVM. This approach of using Risk Level
at VMWatcher level can be seen as a VM-local level trust value approach.

4.3 Suspected VM Detector (S-VMD)

S-VMD is a bVMD component placed on each hypervisor. The details of S-VMD components
are described in this section.

4.3.1 VMT Value Acquisition

Each S-VMD receives VMT values from all the VMWatchers on the same physical host, called lo-
cal VMWatchers. These received VMT values are stored in a table, called S-VMT-T (Suspected-
VMT-Table), shown in Table 4.3.
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A  𝑉𝑀𝑇𝑏
𝑎  𝑉𝑀𝑇𝑧

𝑎 𝐶𝑟𝑒𝑑𝑉𝑀𝑎 

B 𝑉𝑀𝑇𝑉𝑀𝑎
𝑉𝑀𝑏   𝑉𝑀𝑇𝑧

𝑏 𝐶𝑟𝑒𝑑𝑉𝑀𝑏 

…      

Z 𝑉𝑀𝑇𝑎
𝑧 𝑉𝑀𝑇𝑏

𝑧   𝐶𝑟𝑒𝑑𝑉𝑀𝑧 

 

Table 4.3: S-VMD Trust Table (S-VMT-T)

As shown in Table 4.3, VMT values received from VMWatchers and the calculated
CredVMx is stored in this table. The CredVx is calculated using Aggregated VMT Value
Estimation method described in the next section.

4.3.2 Aggregated VMT (Agg-VMT) Value Estimation

As mentioned earlier, one of the tasks a S-VMD ought to perform in the bVMD framework
is to estimate credibility for each of its local VMWatchers. This is done by using Credit
Value (CredVi) estimation method. The CredV of a VMWatcher reflects the reliability of the
VMWatcher in the Framework. The higher the CredV of a VMWatcher, the more reliable it is
perceived in the system. The CredV of a VMWatcher is based on: 1) the VMT values given by
its peerVMs and 2) the CredV of those peerVMs. These CredV are used for detecting suspected
malicious VMs, i.e. the VMs with negative credibility. The credit value of a VMWatcher VMi,
denoted by CredVMi is estimated as follows.

Initially, when VMi newly joins the system, i.e. it has no communication history, a
neutral value is assigned to CredVMi , which is calculated using Equation (4.11).

CredVMx = Credmin + Credmax

2 (4.11)

Where CredVMmin is minimum credit value and CredVMmax is the maximum credit
value. In the bVMD Framework, CredVMmin is set to -1 and CredVMmax is set to 1 [126]
[130]. This neutral value (calculated in Equation (4.11)) indicates that the system cannot yet
determine whether VMWatcher VMi is trustworthy or not. Then, from this point, the value
of CredVMi is updated whenever S-VMD receives a VMT value from a peerVM. If VMi has
‘n’ peerVMs and each peerVM has a CredVMi , then S-VMD calculates the credit value of VMi

using the following equations.
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CredVMx =
∑n

i=1(CredVMa × V MT VMx
VMa)

n
(4.12)

if n > 0, i.e. the VM has at least one peerVM.

If VMWatcher doesn’t have any peerVM, then its CredV is calculated using Equa-
tion (4.11). This is because a VM with no peerVM means that the VM is not communicating
and thus its CredV is assigned as a neutral value.

4.3.3 S-VM Detection and Actions

After receiving the VMT values from peerVMs, the S-VMD checks the Risk Level (RL) specified
by the peerVM. If a peerVM has flagged a high RL, then S-VMD calculates the CredV of
VMWatcher immediately, otherwise if it has flagged a medium RL, S-VMD calculates CredV of
all the VMWatchers immediately and in case of low RL, S-VMD calculates credit value after a
fixed time window. The size of this fixed window might affect the time of S-VM detection. A big
window size might delay the detection process if there are frequent attacks. On the other hand,
a small window size might introduce a high computational cost. Therefore, to overcome this
issue, we used the above mentioned idea of RL. Frequent attacks mean a high RL and therefore
a minimal window size. Less frequent attacks mean a lower RL, and therefore a bigger window
size. In the evaluation, it is assumed the window size equal to the communication time, i.e.
every time there is a communication (and this value is kept constant).

After determining the CredV, a VM is classified as a suspected malicious VM (S-
VM) if it has CredV lesser than an average Cred value. In other words, a VM with negative
VMT value is classified as S-VM. Once the S-VMs are identified, then their local bot-VMDs
are notified. This is done by sending a packet with the IP Address of the S-VM along with
its CredV. In addition, the details of a sub-set of its peerVMs are also sent. This sub-set
contains the peerVMs which satisfy either one of the following: 1) High VMT (close to 1) on
the identified S-VM, 2) identified S-VM has high VMT (close to 1) on VM, and 3) the peerVM
has a negative CredV.

To improve the efficiency of bVMD Framework, S-VMs have a feature of grouping
VMWatchers based on their credit values. This means that VMs with high credit value (most
likely group of benign VM) are grouped together and those with low credit value (most likely
group of botVM) are grouped separately. As botVMs are designed to work in groups, this idea
of grouping at S-VMD might be very useful. Even if S-VMD incorrectly classified the groups,
the groups can be classified correctly after stage-2.
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Grouping at S-VMD is based on the MCC values (described in Chapter 3) of VMWatch-
ers. The MCC values range from -1 to +1 and their meanings are described below in Table 4.4.

MCC value botVM targetVM Meaning 

Positive Negative Positive Correct detection 

Negative Positive Negative Wrong detection 

Zero Negative Negative No detection 

Positive Positive 

 

Table 4.4: MCC value analysis for grouping VMWatchers

• Positive MCC value: A positive MCC is calculated if the botVM have negative CredV
and targetVM has positive CredV. In this case, the groups of botVM and targetVM are
correctly classified and the correct group is detected.

• Negative MCC value: A negative MCC is calculated if the botVM has positive CredV
and targetVM has negative CredV. In this case, the groups of botVM and targetVM are
correctly classified, however they are incorrectly identified. That means botVM group is
detected as malicious and targetVM group is detected as botVMs.

• Zero MCC value: A zero MCC is calculated if both the groups of botVM and targetVM
either have positive CredV or negative CredV. In this case, S-VMD cannot classify them
into groups. However, S-VMD can identify the cases where all the VMWatchers have
negative CredV and marks it as an alarming scenario. Thereafter, it analyses the current
VMT values of all the VMWatchers and try to find a pattern for grouping them. If it
doesn’t find a pattern, then it triggers an alarm to stage-2 of bVMD Framework.
The scenario with all the positive CredV cannot be detected by S-VMD as this resembles
a normal scenario with no botVMs.

4.4 Operations of bVMD stage-1 Components

This section describes the operations of the Stage-1 components, i.e. VMWatcher and S-VMD,
of the bVMD architecture.

Figure 4.9 illustrates a scenario with two physical hosts, X and Y. Each physical
host hosts an S-VMD, S-VMD 1 and S-VMD 2, placed in the hypervisor. Host X has two
VMWatchers, namely VMa and VMb and host Y has one VMWatcher, namely VMc. VMa has
two peerVMs, VMb and VMc, VMb has VMa as its peerVM and VMc has VMa as its peerVM.
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Each VMWatcher has the following components: (1) VMT-Initialize (VMT-I) (2) VMT-Update
(VMT-U), (3) VMT-Exchange (VMT-Exc), and (4) VMT-table (VMT-T). Each S-VMD has
the following components: (1) CredV Estimation method, (2) S-VM Detection method, and
(4) S-VM trust table (S-VMT-T).
In this scenario, there is a regular communication between the pair (VMa, VMb) and the pair
(VMa, VMc). Using VMT-Exc method, VMa sends VMTVMa

VMc to VMb and VMTVMa
VMb

to VMc. These VMT values received by VMb and VMc are used to calculate recommendation
VMT values using Equation 4.1.

 

Figure 4.9: Working of Stage-1 components of bVMD Architecture

As VMc sends a communication request to VMb, this request is received by VMT-I
at VMb and the following steps are followed.
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Algorithm 3 Working of VMWatcher component
Input: Communication packet from VMc to VMb

Output: VMTc
b

1: VMT-I at VMb

2: if VMTb
c != 0 then

3: goto Step 11
4: else
5: if VMTa

c != 0 then
6: V MT b

c = CredVMa × V MT a
c

7: else
8: V MT b

c = (V MT min+V MT max)
2

9: end if
10: end ifgoto Step 24

11: VMT-U
12: if PARfPV M curr-1 >= PARfPV M∆ × PARfPV M curr-1 then
13: V MT b

c
(t=t0) = V MT b

c
(t=t0-1) − V MT∆2

14: if V MT b
c
(t=t0) <= (−1) then

15: V MT b
c
(t=t0) = −1

16: end if
17: else
18: V MT b

c
(t=t0) = V MT b

c
(t=t0-1) + V MT∆1

19: if V MT b
c
(t=t0) >= (+1) then

20: V MT b
c
(t=t0) = +1

21: end if
22: end if

23: VMT-Exc
24: Send VMTb

c from VMb to S-VMD1
25: Send VMTb

c from VMb to VMa

26: VMa sends its VMT-T to S-VMD1
27: VMb sends its VMT-T to S-VMD1
28: VMc sends its VMT-T to S-VMD2
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Algorithm 4 Working of S-VMD component
Input: VMT-T Packets at S-VMD1 and S-VMD2
Output: IP Address of S-VMs

1: CredV Est
2: i = 3
3: while (i!=0) do
4: if (i=3) then
5: x=a
6: else if (i=2) then
7: x=b
8: else
9: x=c

10: end if
11: if (VMx doesn’t have peerVMs) then
12: CredVMx = Credmin+Credmax

2

13: else
14: CredVMx =

∑n

i=1(CredVMa×V MT VMx
VMa )

n

15: end if
16: i = i - 1
17: end while
18: if (CredV VMa < 0) then
19: Send IP Address of VMa to botVMD
20: end if
21: if (CredV VMb < 0) then
22: Send IP Address of VMb to botVMD
23: end if
24: if (CredV VMc < 0) then
25: Send IP Address of VMc to botVMD
26: end if

One S-VMD received the VMT values from VMWatchers, it calculates their CredV
using Equation (4.12) and identifies the S-VMs with negative CredV. These identified S-VMs
are notified to their respective bot-VMD.
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4.5 Experimental Evaluation

This section reports the experiments carried out to evaluate the performance of Stage-1 compo-
nents of the bVMD Framework. It first describes the environment under which the experiments
were carried out and then discusses the experimental results and findings.

4.5.1 Experimental Environment

We have used Omnet++ [32] [110] [115] to evaluate Stage-1 components of bVMD Framework.
The details of Omnet++ are already discussed in Chapter 3. Experiments are carried out to
determine: 1) Delta Values, 2) Number of VMs and 3) Time interval of each simulation run.
In these experiments, performance of bVMD Framework in terms of Matthews Correlation
Coefficient (MCC) curve (described in Chapter 3) is taken into account. The percentage of
each VM type, i.e. botVM, targetVM, stdVM, and the number of peerVM of each VM is
chosen from the cases discussed in Chapter 3. The six scenarios, A-F (Table 3.1) with different
parameter settings are given in Appendix A.

4.5.1.1 Determining Delta Values

As discussed above, delta values (VMT∆1 and VMT∆2) are used in bVMD Framework to
increase and decrease the VMT values. Delta values are measured in a given range VMT∆min,
VMT∆max, where VMT∆min and VMT∆max is respectively the minimum and maximum VMT
delta value. Similar to VMT value range, VMT∆min value is set to -1 and the VMT∆max value
is set to 1. However, VMT∆2 is aimed to decrease a VMT value, therefore the range of delta
values below zero is not functional. The final range of delta values is [0, 1].

For the evaluation of determining the delta values, cases 3, 6 and 12 out of 1-18 are
chosen. The reason for selecting these cases is described next.

Cases with 100% peerVM mean that every VM affects every other VM in the network.
This might lead to high dependency on the performance of each other. On the other hand, 50%
and 10% peerVM will have less dependent VM nodes. Therefore to ensure that our results
include the effect of every VM, we have chosen cases 3, 6, 9, 12, 15 and 18. In addition, to
further ensure that the results include the effect of each VM type, we have chosen the cases
which have at least one VM with all the three VM types. Hence, cases 3, 6 and 12 are chosen
for this evaluation study. These experiments are carried out only once. The reason for this
decision is explained in Section 4.5.1.4.

The performance of the bVMD Framework is analysed with 30 sets of delta values.
These pair of delta value VMT∆1, VMT∆2 is formed using the following steps.
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Step 1 VMT∆1 value – As discussed above, VMT∆1 ranges between 0 and 1. However a zero
delta value might not be useful in the evaluation, so the minimum value is adjusted to
0.01 instead of 0. Then starting from 0.01 (close to 0), it is increased by VMT∆ till
VMT∆max, i.e. 1. This VMT∆ is set at 0.1 in the bVMD Framework.

Step 2 VMT∆2 value – VMT∆2 is calculated using a minimum, average and maximum value
of VMT∆ range. These three values are considered so that the performance can be
studied at boundary values and at a central value.

[V MT∆1 < V MT∆2][132] (4.13)

Therefore, VMT∆2 is calculated using the following equations.

• (Minimum) VMT∆2 is equal to VMT∆1

• (Average) VMT∆2 = floor((VMT∆2+VMT∆max)/2, 0.1)

• (Maximum) VMT∆2 = VMT∆max

Table 4.5: Delta Cases
Delta_Case_Number 

(DCN) 

DCN 

Group 
VMT∆1 VMT∆2  

Delta_Case_Number 

(DCN) 

DCN 

Group 
VMT∆1 VMT∆2 

1 

DCN_I 

0.01 0.01  16 

DCN_VI 

0.50 0.50 

2 0.01 0.50  17 0.50 0.70 

3 0.01 1.00  18 0.50 1.00 

4 

DCN_II 

0.10 0.10  19 

DCN_VII 

0.60 0.60 

5 0.10 0.50  20 0.60 0.80 

6 0.10 1.00  21 0.60 1.00 

7 

DCN_III 

0.20 0.20  22 

DCN_VIII 

0.70 0.70 

8 0.20 0.60  23 0.70 0.80 

9 0.20 1.00  24 0.70 1.00 

10 

DCN_IV 

0.30 0.30  25 

DCN_IX 

0.80 0.80 

11 0.30 0.60  26 0.80 0.90 

12 0.30 1.00  27 0.80 1.00 

13 

DCN_V 

0.40 0.40  28 
DCN_X 

0.90 0.90 

14 0.40 0.70  29 0.90 1.00 

15 0.40 1.00  30 DCN_XI 1.00 1.00 

 

The final values of VMT∆1 and VMT∆2 are given in Table 4.5.

The number of VMs in the evaluation ranges from 3 to 50. A minimum of 3 VMs is
chosen so that there is at least one VM type in each evaluation. This is to make sure that the
results are based on diverse node types. The maximum number of 50 VMs.
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The time of each simulation run was chosen as 3600 seconds. This is because in one
of the papers [133], the authors reported that in the year 2012-13 an average internal DDoS
attack occurred for 3060 seconds. In addition, another report stated that most of the DDoS
attacks in 2018-2022 lasted for 1800 seconds to 3600 seconds. Therefore, we have chosen the
maximum of these values.

A total of 144 experiments were carried out for each DCN. This means that for each
DCN and for each set of VMs, ranging from 3 to 50, three cases (3, 6 and 12) were implemented
for a duration of 3600 seconds. Figure 4.10 depicts the average MCC value calculated. Every
point of blue (case 3), red (case 6) and green (case 12) curves in the graph represents an average
MCC value of 48 set of VMs for 3600 seconds, for a particular case. The purple curve (Average)
depicts the average of all the three cases. In the graph, the x-axis shows the DCN and y-axis
shows the average MCC values. As discussed, a high MCC value (closer to 1) shows better
detection.
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Figure 4.10: Average MCC value of all the delta cases

From Figure 4.10, we make the following observations.

Obs 1 The results show that majority (90.91%) of the cases with unequal delta values show
better results than the other cases in their group (DCN Group), i.e. cases with equal
delta values. This means that DCN 2 and 3 show better results than DCN 1, 5 and 6
show better results than DCN 4 and so on. In addition, the above results also depict
that out of the two cases with unequal delta values in a group, the case with an average
VMT∆2 value depicts better results. This means that DCN 5, 8, 11, 14, 17, 20, 23,
and 26 gives best results in their respective DCN groups. These results are in line with
our thoughts that 1) delta values should not be equal to each other, and 2) they should
not be equal to a boundary value (here ‘boundary value’ means VMTmax and VMTmin.
The reasons for these two thoughts are given below.
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(a) Equal delta values: Cases with equal delta values might not be effective in scenarios
where a set of botVMs attack a set of targetVMs and at the same time they
maintain a regular communication with a set of stdVMs. In this scenario, if
the number of stdVMs equals or exceeds the number of targetVMs, then they
(stdVMs) will be able to overpower CredV estimation of botVMs. This is because
the rate with which the VMT value of a botVM is increased (by targetVMs) is
equal to the rate with which its VMT value is increased by stdVMs.

(b) Extreme delta values: Cases using extreme delta values (VMT∆min & VMT∆max)
might introduce high false detection rates. The use of these extreme delta val-
ues means that instead of a steady increase/drop in the VMT value with every
communication, there will be a steep increase/drop change. Therefore, even a
slight variation in the communication pattern might be wrongly classified as a
botVM/benign VM.

Obs 2 Figure 4.10 shows that case 6 gives better results than cases 3 and 12. This is because
of the obvious reason that case 6 has more targetVMs than botVMs. In addition, we
observe that Case 6 gives better results with higher than average VMT∆ value, whereas
cases 3 and 12 gives better results with lower than average number of VMT∆ values.
This is because of the same reason as discussed above, i.e. case 6 have more targetVMs
which are correctly identified, thus leading to high number of true positives as compared
to cases 3 and 12.

Obs 3 The results show that DCN 8 has the highest average MCC value of 0.33. Therefore, in
this thesis evaluation, we use DCN 8 delta range value. The values are: VMT∆1=0.2
& VMT∆2=0.6.

4.5.1.2 Determining the Number of VMs

To determine the number of VMs for collecting performance results for the bVMD Framework,
we calculate the MCC values for 48 VMs (3-50) over a time of 60 minutes. The aim of plotting
these graphs is to identify a point (number of VMs) from where the performance results are
constant. For this evaluation, the 18 cases (mentioned in Table 3.5) are considered. These cases
can be differentiated based on the number of peerVMs, 10%, 50% and 100% peerVMs. Out
of these cases, the ones with 100% peerVMs (Cases 3, 6, 9, 12, 15 and 18) are chosen for this
evaluation. This is to ensure that the performance results are affected by all the VMs in the
system. For the evaluation, delta values are kept constant at VMT∆1=0.2 and VMT∆2=0.6
(as determined in Section 4.3.1). The MCC values are depicted below in Figure 4.11-4.16.
Every point in these figures shows the MCC value (y-axis) of a particular case for ‘n’ number
of VMs. This is recorded for 60 minutes (x-axis).
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Figure 4.11: Average MCC value for
Case 3
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Figure 4.12: Average MCC value for
Case 6
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Figure 4.13: Average MCC value for
Case 9
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Figure 4.14: Average MCC value for
Case 12
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Figure 4.15: Average MCC value for
Case 15
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Figure 4.16: Average MCC value for
Case 18
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From the results in Figure 4.11 –4.16, we can see that the MCC value is constant after
a certain number of VMs and a certain time. This is because with a regular communication,
the VMT values of the VMs have stabilized to VMTmax or VMTmin. A further increase in the
amount of communication (in terms of increasing the number of VMs or time) cannot further
increase or decrease the VMT value. This is due to a regular communication pattern used
for our evaluation and any change in the communication pattern changes the results. From
Figure 4.11, we can see that the MCC value is constant from 6 numbers of VMs (i.e. VM 6).
Similarly in Figure 4.12 – 4.16, the results are constant from VM 8, 15, 9, 3 and 15. Out of
these values, we chose the highest number of VMs so that all the cases have constant results
from that point. The highest number is 15. Therefore, for all the computations in this thesis
we have considered number of VMs as 15.

4.5.1.3 Determining the time interval for each simulation

To determine the duration of each simulation run, a similar approach is applied. We analyse the
results of cases 3, 6, 9, 12, 15 and 18 and record the time from when the results are constant.

From the results in Figure 4.11, we can see that the MCC values are constant from
3 minutes. Similarly, in Figure 4.12 – 4.16, the results are constant from 19, 7, and 10 minutes
respectively. The maximum time after which the results are constant is 19 minutes, therefore
for all the computations in this this work, we have considered the time window of 19 minutes.

4.5.1.4 Determining Number of Simulation Runs

A simulation result is produced by taking an average of the data collected from ‘n’ independent
simulation runs. For a reliable simulation, the value of ‘n’ should be sufficiently large. We have
used 10 simulation runs for each experiment. However, for experiments determining the delta
values, the number of VMs and the time duration of each simulation run, every experiment is
simulated only once. This is because with every simulation run the position of botVM, targetVM
and stdVM changes. The change in position of these VMs changes the type of peerVMs in every
simulation run. This means that a targetVM might have botVM as a peerVM in one simulation
run, while it might not have it in the next simulation run. This change would not affect cases
3, 6 and 12 (cases used for the above mentioned experiments) as they have 100% peerVM,
therefore a single simulation run is used.
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4.6 Evaluation of Results and Discussion

This section describes the experiments carried out to evaluate the performance of Stage-1 of the
bVMD Framework. The results show MCC values for all the 18 cases evaluated with VMT∆1

and VMT∆2 values as 0.2 and 0.6 respectively. Each simulation has 13 sets of VMs (3-15
VMs described in Section 4.3.2) and it runs for 19 minutes . The x-axis depicts the time (in
minutes) and y-axis depicts the average MCC value. Each point in the graph shows an MCC
value (y-axis) of ‘x’ number of VMs at time ‘t’ (x-axis). Prior to discussing the results of each
case, we discuss a phenomenon observed in these cases. This is called the Dual Effect of VMT
value (DEofVMT) and it is explained below.

 

Figure 4.17: Dual Effect of a VMT value

Figure 4.17 shows a scenario with botVM(s), targetVM(s) and stdVM(s). In the
figure, ‘+ve’ refers a positive VMT value and ‘-ve’ refers to a negative VMT value. In the
scenario, the botVM attacks the targetVM and it maintains a regular (benign) communication
pattern with the stdVMs. This means that the botVM receives positive VMT value to from
stdVMs (peerVMs) and negative VMT value from targetVM. With time, this negative VMT
has the following effects.

1 It directly affects the CredV of the botVM

2 It indirect affects the CredV of the peerVMs of the botVM’s. This is because their (peerVMs
of the botVM) CredV is dependent on the CredV of botVM. This indirect effect propagates
through peerVMs of the botVM and then their peerVM and so on. That means the more
peerVMs, the larger number of VMs are affected by this value.
Similarly, a positive VMT value also propagates in a similar manner and affects the CredV of
peerVMs. However due to Equation (4.13), the Dual Effect of Negative VMT (DEofNVMT)
is larger than Dual Effect of a Positive VMT (DEofPVMT).

The results of each case are described next. In these discussions, a high MCC value
refers to value close to 1 (i.e. between 0.91 to 1), a medium MCC value refers to value close
to zero and a low MCC value refers to value close to -1 (i.e. between -0.91 to -1). These MCC
values are calculated for 13 sets of VMs (3-15 VMs) for a duration of 19 minutes.
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Scenario A: With 1% botVMs, 1% targetVM and 98% standardVM: It
consists of cases 1, 2 and 3.

• Case 1 (Scenario A& SE1): With 1% botVMs, 1% targetVM and 98% standardVM and
1% peerVM
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Figure 4.18: MCC values for Case 1

From Figure 4.18, we observe that the MCC value fluctuates between a medium and a
high value. A high MCC value is achieved as each botVM receives a negative VMT from
targetVM (1%) and a positive VMT value from the same number of peerVMs, therefore
due to direct DEofVMT, the CredV of botVM is positive. On the other hand, targetVM
receives a positive VMT from peerVM (1%), therefore its CredV is positive. A negative
CredV of botVM and a positive CredV of targetVM results in positive MCC value.

A zero MCC value is achieved as the CredV of both targetVM and botVM decreases to
a negative value, This is because with time the DEofNVMT propagates and the CredV
of targetVM reduces, however it is still a positive value. On the other hand, DEofPVMT
propagates and the CredV of botVM increases.

With time, the CredV of targetVM is always positive, however the CredV of botVM
fluctuates between a positive and a negative VMT value. This fluctuation is because of
DEofVMT. From Figure 4.19 and 4.20, we observe that the CredV value of cases with
set of 3 VMs and set of 15 VMs. It can be seen that with increase in the number of
VMs, the fluctuations in CredV increases. This is because, with increase in the number
of VMs, we can observe the following.

1 The indirect DEofNVMT is spread across a larger section, therefore the CredV of
targetVM and stdVM is always positive as the number of VMs increase.

2 The botVM receives direct DEofNVMT and indirect DEofPVMT with time, tar-
getVM has VMT fluctuates between a medium and high VMT value and this puts
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a direct DEofNVMT on botVM, thus the CredV of botVM fluctuated between
high and low VMT value.
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Figure 4.19: CredV value of all VM
nodes with VM3 in Case 1
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Figure 4.20: CredV values of all
VM nodes with VM19 in case 1

The results show that the MCC value of all the VMs is always greater than or equal
to zero. As the MCC values are the cases which can be correctly detected, bVMD can
detect 46.55% sets.

• Case 2 (Scenario A& SE2): With 1% botVMs, 1% targetVM and 98% standardVM and
50% peerVM
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Figure 4.21: MCC values for Case 2

Figure 4.21 shows the MCC value of Case 2. From Figure 4.21, we make the following
observations.

1 With an increase in number of VMs (greater than 4VMs), the MCC value is high
for a maximum of 6 minutes and then stabilizes either at zero or a negative value.
As compared to case 1, the values stabilize with time because of the increase in
number of peerVMs. This results in wider propagation of DEofVMT values and
thus the CredV stabilizes either at -1 or +1.
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2 The sets with number of VMs between 4 to 7, have high MCC for a minute,
sets with number of VMs between 8-13, have high MCC for 2 minutes and sets
with number of VMs between 14 and 15 have high MCC for 3 minutes. This
suggests that with an increase in the number of VMs, the MCC value is high for a
longer duration. This is because with an increase in number of VMs, the indirect
DEofVMT spreads across a larger group of VMs, therefore its effect is visible after
a longer duration.

3 The sets with 3 set of VMs have 1 botVM, 1 targetVM and 1 stdVM. Here the DE-
ofVMT propagates quickly due to a fewer number of VMs. Initially the targetVM
gives negative VMT to botVM, so the MCC value is high. As the negative VMT
value propagates, the CredV of targetVM is mostly affected in all the simulation
runs (due to a smaller number of VMs). This reduces the CredV of targetVM to a
negative value. Next time the targetVM gives a negative VMT to botVM, it turns
out to be a positive CredV (due to negative CredV of targetVM). Therefore, the
MCC value stabilizes at a negative value.

4 The bVMD can detect 100% of sets of VMs within a minute.

• Case 3 (Scenario A& SE2): With 1% botVMs, 1% targetVM and 98% standardVM and
100% peerVM
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Figure 4.22: MCC values for Case 3

Figure 4.12 shows the MCC value of Case 3. The following differences that we observe
are the following.

1 The time before the MCC value stabilizes at zero is less compared to that in Fig-
ure 4.21. In this case, the time is between 1-4 minutes as compared to 1-6 minutes
in case 2. This reduction is because of the increase in the number of peerVMs, thus
the indirect-DEofNVMT value propagates quickly. Although indirect-DEofPVMT
also propagates at the same rate, due to Equation 2.9, DEofNVMT is more than
DEofPVMT.
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2 In this case, the sets with 3 and 4 number of VMs have a high MCC value. In
case 3, the botVM receives negative VMT from targetVM (1%) and positive VMT
from peerVM (98%, stdVM in this case). In case 3 and 4, there are 1 botVM, 1
targetVM and 1 or 2 stdVMs respectively. With low (1 or 2) number of stdVMs,
the DEofNVMT overpower the DEofPVMT and therefore the CredV of botVM is
negative. On the other hand, targetVM receives positive VMT from botVM and
stdVM (all are peerVM). Its CredV is positive. With a positive CredV of botVM
and a positive CredV of targetVM, the MCC value is positive.

3 In a set of 5 VMs, the stdVM is further increased by 1 stdVM as compared to Case
4. We can observe that the MCC is high for 4 minutes and then stabilizes at zero.
This is because the positive VMT given by the additional stdVM (as compared to
Case 3) increases the CredV of targetVM to a positive value. Therefore, it takes
longer time for CredV to drop to a negative value.

4 The bVMD can detect 20% sets within first 6 minutes.

To further analyse the sets with zero MCC value, we study the CredV values of botVM
and targetVM for 6VMs (minimum) and 15VMs (maximum). We have chosen 6VMs
as this is the number from which the MCC value is initially a positive value and then
stabilizes at zero.

 

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
re

d
V

 V
al

u
e 

Time (Minutes) 
botVM 15VM targetVM 15VM botVM 6VM targetVM 6VM

Figure 4.23: Detailed analysis of Case 3

From Figure 4.23 we can observe that with increase in number of VMs, the difference in
VMT value of botVM and targetVM decreases, although the VMT value of targetVM is
always more than the VMT value of botVM till they reach VMTmax. This is because
with 100% peerVM, both botVM and targetVM receive similar positive VMT from all
stdVMs. However, the negative VMT received by botVM from targetVM reduces its
CredV. As the number of VMs increase, the higher is the VMT value of a targetVM and
the direct-DEofNVMT is lower.
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Scenario B: With 1% botVMs, 50% targetVM and 49% standardVM:
It consists of Cases 4, 5 and 6.

• Case 4 (Scenario-B & SE1): With 1% botVMs, 50% targetVM, 49% standardVM and
10% peerVM
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Figure 4.24: Detailed analysis of Case 4

Figure 4.24 shows the MCC value for case 4. From the figure, we can make the following
observations.

1 For all the sets of VMs, the MCC value is high for a minute and then stabilizes at
zero. This is because there are greater number of targetVMs than the number of
botVMs. This means that a larger group of targetVMs give negative VMT to a
smaller group of botVMs. This results in negative CredV of botVM and positive
CredV of targetVM, thus a high MCC value.

2 The S-VMD can detect 100% sets within the first 1 minute.

• Case 5 (Scenario-B & SE2): With 1% botVMs, 50% targetVM, 49% standardVM and
50% peerVM
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Figure 4.25: Detailed analysis of Case 5
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Figure 4.25 (Case 5) shows similar results as compared to Figure 4.24 (Case 4). The
differences we can observe are.

1 The time before the MCC value stabilizes at zero is between 1-4 minutes, whereas
it is 1 minute in case 4. The increase in the duration is due to the increase in the
number of peerVMs. That means botVM receive negative VMT from targetVM
(50%) and positive VMT from similar number of peerVMs. Due to Equation 2.9,
the CredV of botVM is negative.
On the other hand, targetVM receives positive VMT from peerVM (50%), thus a
positive CredV. A negative CredV of botVM and a positive CredV of targetVM
results in a positive MCC value.

2 With time, the DEofNVMT propagates through peerVMs (50%) and decreases
the CredV of targetVM to a negative value. Therefore, the MCC value stabilize
at zero.

3 The time taken by MCC value to stabilize at zero increases with an increase in
the number of VMs. This is because with larger group of VMs, the probability of
targetVM experiencing the indirect-DEofVMT is less.

4 The bVMD can detect 100 % sets within 4 minutes.

• Case 6 (Scenario-B & SE3): With 1% botVMs, 50% targetVM, 49% standardVM and
100% peerVM
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Figure 4.26: Detailed analysis of Case 6

From Figure 4.26 (Case 6) shows similar results as to Figure 4.25 (Case 5). The differ-
ences we can observe are.

1 Sets of VMs greater than 6VMs have high MCC value as compared to average
MCC value in case 5. The reason behind this is increase in the number of peerVMs.
With larger number of peerVMs, the CredV of targetVM doesn’t drop to a negative
value, as in case 5. Due to DEofNVMT on stdVMs, the CredV of botVM is negative
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and this value continues to reduce as the number of stdVMs increase. This results
in a positive MCC value.

2 The bVMD can detect 100% sets within 4 minutes.

Scenario C: With 1% botVMs, 99% targetVM and 0% standardVM:
It consists of Cases 7, 8 and 9.

• Case 7 (Scenario-C & SE1): With 1% botVMs, 99% targetVM, 0% standardVM and 1%
peerVM
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Figure 4.27: Detailed analysis of Case 7

Figure 4.27 shows similar results as to Figure 4.24 (case 4). Although the number of
targetVMs increases from 50% to 99% in case 4 to case 7 and number of stdVMs decrease
from 49% to 0%, the MCC values are similar. This is because of the following reasons.

1 A larger group of targetVMs gives a negative VMT value in case 7. This decreases
the CredV of botVM to a negative value. Although this CredV is less than the
corresponding CredV in case 4, but as both CredV values are negative, the MCC
value is similar. Similarly, targetVM in case 7 has less CredV than case, but as
both CredV are positive, the MCC value is same.

2 The S-VMD can detect 100% sets within the first 1 minute.

• Case 8 (Scenario-C & SE2): With 1% botVMs, 99% targetVM, 0% standardVM and
50% peerVM

From Figure 4.28 (Case 8) shows similar results as to Figure 4.25 (case 5). The differences
we can observe are.

1 The duration after which the MCC values stabilize at zero differs in the sets with
14 and 15 number of VMs. In case 8, they stabilize after 4 minutes, whereas in
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case 5 they stabilize after 3 minutes. This is because there are no stdVMs in case
8, propagation of DEofVMT is slower.

2 The S-VMD can detect 100% sets within the 4 minutes.
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Figure 4.28: Detailed analysis of Case 8

• Case 9 (Scenario-C & SE3): With 1% botVMs, 99% targetVM, 0% standardVM and
100% peerVM
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Figure 4.29: Detailed analysis of Case 9

From Figure 4.29 (Case 9) shows similar results as to Figure 4.26 (case 6).The difference
is that the number of VMs from which the MCC value stabilizes closer to one is higher
(15VMs) than Case 6 (7 VMs). This is because of high number of peerVMs and high
(99%) targetVMs, the negative VMT value given to botVM have an indirect effect on
all the targetVMs, thus reducing their CredV. As the number of VMs increase, the
positive effect of VMT value they give to each other (as they are peerVMs), overcomes
the negative VMT value effect and the MCC value stabilizes near one.
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Scenario D: With 50% botVMs, 1% targetVM and 49% standardVM:
It consists of Cases 10, 11 and 12.

• Case 10 (Scenario-D & SE1): With 50% botVMs, 1% targetVM, 49% standardVM and
1% peerVM

Case 10 gives similar results to Case 4 (Figure 4.24), wherein we observe that the MCC
value is high for a minute and then stabilizes at zero. The reasons behind are (i)
botVMs receive negative VMT from targetVMs (1%) and they receive positive VMT
from peerVMs (1%). Both these reasons combined with Equation (4.13) results a nega-
tive MCC value for botVMs. On the other hand, the targetVM receives positive VMT
from peerVM (1%), thus increases its CredV.
With an increase in time, DEofNVMT propagates and with larger number of botVMs
(50%) the CredV of targetVM falls to a negative value. This results in a zero MCC
value.
Case 4 has low (1%) botVM and high targetVM (50%) as compared to Case 10, which
has high (50%) botVM and low (1%) targetVM, they show similar results. The reason
behind this is discussed below.
As shown in Figure 4.30, Case 4 shows many to one relationship, where a set of tar-
getVMs give negative VMT to a botVM, which shows a drop in the CredV of botVM
to a negative value. This gives an initial high MCC value. However, with time DE-
ofNVMT propagates and it reduces the CredV of targetVMs. On the other hand, case
10 shows one to many relationships where a targetVM gives negative to set of botVMs,
which reduces their CredV to a negative value. This gives an initial high MCC value.
However, with time the DEofNVMT propagates and it reduces the CredV of targetVMs
to a negative value. Therefore, both cases show similar results.

 

Figure 4.30: BotVM & TargetVM Relationship in Case 7 and Case 10

• Case 11 (Scenario-D & SE2): With 50% botVMs, 1% targetVM, 49% standardVM and
50% peerVM
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Case 11 shows similar results to Case 10. The MCC value is high for a minute and
then stabilizes at zero. Although we observe that the CredV of botVM is lower in case
11 compared to case 10 and the CredV of targetVM is greater in case 11 compared to
case 10, still the MCC values are similar. This is because with increase in the number of
peerVMs, the DEofVMT propagates to a larger section. At the same time, the difference
in values is not large enough to be reflected in the final results, i.e. MCC values.

• Case 12 (Scenario-D & SE3): With 50% botVMs, 1% targetVM, 49% standardVM and
100% peerVM
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Figure 4.31: Detailed analysis of Case 12

Figure 4.31 gives the MCC value of case 12. From Figure 4.31, we can observe that case
12 has initial high MCC value for set of VMs ranging from 3 to 8. However, in sets
with greater than 8 VMs, the MCC values is stable at zero. Initially a botVM receives
negative VMT from a targetVM and positive VMT from peerVMs (50%). With sets less
than 9 VMs, the CredV of botVM is negative as DEofNVMT overpowers DEofPVMT.
However, with sets greater than 9 VMs, the CredV of botVM is positive as DEofPVMT
overpowers DEofNVMT. On the other hand, the targetVM receives positive VMT from
peerVM (100%), thus a positive CredV. A negative CredV of targetVM (for a maximum
of 5 minutes) gives a positive MCC value and a positive CredV of targetVM (after 5
minutes) gives a zero MCC value.

Scenario E: With 50% botVMs, 50% targetVM and 0% standardVM: It
includes cases 13, 14 and 15. Cases in this scenario are implemented with even numbers
of VMs, i.e. 4, 6, 8, 10 and 12. This is because the aim of these cases to check the
performance for equal number of botVMs and targetVMs.

• Case 10 (Scenario-E & SE1): With 50% botVMs, 50% targetVM, 0% standardVM and
1% peerVM
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Cases 13 shows similar results as case 10. The MCC value is initially high for a minute
and then stabilizes at zero. Initially the botVMs receive negative VMT from targetVMs
(50%) and a positive VMT from peerVMs (10%). As the percentage of targetVMs is
more than the number of peerVMs, the CredV of botVM decreases to a negative value.
On the other hand, targetVMs receive positive VMT from peerVMs (10%), so it has a
positive CredV. Finally, a negative CredV of botVM and a positive CredV of targetVM
gives a positive MCC. With time, the DEofVMT propagates and, due to Equation (4.13),
the CredV of targetVM decreases to a negative value. This stabilizes the result at zero
MCC.
Cases 14 and 15 give similar results as case 13. This is because with an increase in
number of peerVM, a peerVM could be picked from group of targetVM or botVM (as
there are no stdVMs). As targetVMs are already giving negative VMT to botVM, so
it doesn’t act as its peerVM. In addition, botVMs have negative CredV initially, so a
positive VMT from a co-botVM results in a negative VMT value. This results in zero
MCC and doesn’t change the results as compared to case 13.

Scenario F: With 99% botVMs, 1% targetVM and 0% standardVM:
This includes scenarios 16, 17 and 18.

• Case 16 (Scenario-F & SE1): With 99% botVMs, 1% targetVM, 0% standardVM and
1% peerVM
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Figure 4.32: Detailed analysis of Case 16

Figure 4.32 gives MCC value for case 16. From the figure we can observe that the MCC
value is negative for a maximum duration of 10 minutes and then stabilizes at zero. This
negative VMT value stabilizes to zero till 14 VMs. For set of VM with greater than 14
VMs, the MCC value stabilizes at a negative MCC value. This negative MCC value is
due to the high (99%) number of botVMs as compared to the number of targetVM (1%).
This ensures that targetVM experiences indirect-DEofNVMT and its CredV is negative.
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With a smaller number of VMs, this DEofNVMT is overcome by DEofPVMT with time
and the MCC value stabilizes at zero. However, with larger group of VMs (>14), the
DEofNVMT could not be overpowered within 19 minutes.

• Case 17 (Scenario-F & SE2): With 99% botVMs, 1% targetVM, 0% standardVM and
50% peerVM
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Figure 4.33: Detailed analysis of Case 17

Figure 4.33 shows the MCC value for case 17. From the figure we can observe that it
gives similar results as case 15, however in the set of VMs with greater than 13 VMs,
the MCC value stabilizes (at zero) quickly compared to case 16. This is because with
increase in the number of peerVMs, the DEofVMT propagates to a wider range of VMs
and thus affects the results faster.

• Case 18 (Scenario-F & SE2): With 99% botVMs, 1% targetVM, 0% standardVM and
100% peerVM
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Figure 4.34: Detailed analysis of Case 18
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Figure 4.34 shows the MCC value for case 18. From the figure we can observe that
it gives similar results to case 14. In this case, 100% peerVMs means that VMs give
positive VMT to each other, however as 1% of them is targetVM, so 99% botVMs give
positive VMT to each other. At the same time, they experience indirect-DEofNVMT
from each other. This results in a decrease in VMT value of botVMs. This should have
been reflected in the MCC results, but this decrease is very small, so it is shows similar
MCC values.

4.7 Security Analysis

In this section, we analyse the performance of Stage-1 components of bVMD Framework against
the identified security attacks. These Stage-1 components can be compromised and can attack
the system from within. These attacks are classified as internal attacks (also called insider
attacks). These insider attacks can either be done from a compromised VM or a compromised
S-VMD. Attacks initiated by a compromised VM are classified into three categories[134][135].

1 Bad Mouthing Attack: The botVM aims to degrade the credibility of benign peerVMs. To
do this, it incorrectly rates its benign peerVMs with negative VMT value.

2 Ballot stuffing attack: The botVM aims to increase the credibility of benign botVMs. To do
this, it incorrectly rates its bot peerVMs with positive VMT value.

3 Combined attack: The botVM aims to perform bad mouthing and ballot stuffing attack
simultaneously. For this it incorrectly rates its benign peerVMs with negative VMT value
and bot peerVMs with positive VMT value.

To study the effect of these attacks on the performance of bVMD Framework, we implement
these attacks under all 18 cases. The results are discussed below.

4.7.1 Bad Mouthing (BM) Attack

The performance of all the 18 cases under bad mouthing attack is discussed below.

1 Case 1 :1% botVMs, 1% targetVM and 98% standardVM and 10% peerVM
Figure 4.35 shows the results of Badmouthing attack on case 1. From the results we observe
that the MCC value is initially high and then stabilizes at zero within the first minutes.
BotVM receives negative VMT from targetVM(1%) and positive VMT from peerVM (1%).
Because of Equation (4.13), the CredV of botVM is negative. On the other hand, targetVM
receives negative VMT from botVM (1%) and positive VMT from peerVM (1%). Therefore,
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its CredV is negative. These values of CredV of botVM and targetVM results in a zero MCC
value.

 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
C

C
 

Time (Minutes) 
3VM 4VM 5VM 6VM 7VM 8VM 9VM

10VM 11VM 12VM 13VM 14VM 15VM

Figure 4.35: Bad mouthing attack Case 1

2 Case 2: 1% botVMs, 1% targetVM and 98% standardVM and 50% peerVM
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Figure 4.36: Bad mouthing attack Case 2

From the results in Figure 4.36, we observe that for sets with greater than 3 VMs, the MCC
value is high before stabilizing at zero. As compared to BMCase1, the number of peerVMs
increased which means a larger group (as compared to Case 1) of peerVMs giving positive
VMT value to botVM and/or targetVM. BotVM receives negative VMT from targetVM
(1%) and positive from peerVM (50%) and similar as the with targetVM. Therefore, both
their CredV is low because the VMT value of botVM is negative and that of targetVM is zero
(till 10 decimal place), thus giving a positive MCC value. These zero values of a targetVM
might be different with more than 10 decimal precision.
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3 Case 3: 1% botVMs, 1% targetVM and 98% standardVM and 100% peerVM
Figure 4.37 gives MCC results of case 3 in a badmouthing attack. From the figure we can
observe that the MCC value is zero as both the botVM and targetVM have same CredV.
This is because they give negative VMT to each other and positive VMT to stdVMs. Also,
they receive positive VMT from stdVMs. As they have the same experience, their CredV is
always same and thus the MCC value is zero.
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Figure 4.37: Bad mouthing attack Case 3

4 Case 4: 1% botVMs, 50% targetVM and 49% standardVM and 1% peerVM

This case gives similar results to Figure 4.37, i.e. a zero MCC value. BotVMs receive negative
VMT from targetVM (50%) and positive VMT from peerVM (1%). Therefore, its CredV
is negative. On the other hand, targetVM receives negative VMT from botVM(1%) and
positive from 1% peerVM. Due to Equation (4.13), its CredV is negative. This results in
zero MCC.

5 Case 5: 1% botVMs, 50% targetVM and 49% standardVM and 50% peerVM

Figure 4.38 shows the MCC value of Case 5 with badmouthing attack. We can observe that
with increase in number of peerVMs as compared to Case 5, we can observe that the MCC
value fluctuates before stabilizing at zero.
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Figure 4.38: Bad mouthing attack Case 5

From Figure 4.38 we can make the following observations.

• The sets with VMs ranging from 3 to 7 show similar results as case 4. This is because
with smaller number of VMs, the difference in peerVMs (50% and 100%) is not big
enough to give visible results on the MCC value.

• For set with VMs ranging from 8 to 15, the botVM receives VMT from targetVM
(50%) and positive VMT from peerVM (50%). Due to Equation (4.13), its CredV is
negative. On the other hand, the targetVM receives negative VMT from botVM (1%)
and positive VMT from stdVM (49%). As percentage of botVM is less than that of
stdVM, the CredV of targetVM is positive.

• With time, the DEofVMT propagates and reduces the CredV of targetVM to a negative
value and thus the MCC value decreases to zero. However, in set of 15 VMs, the time
duration for CredV to stabilize at zero is higher. This is because the DEofNVMT takes
more time to show visible effects on CredV of targetVM.

6 Case 6: 1% botVMs, 50% targetVM and 49% standardVM and 100% peerVM
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Figure 4.39: Bad mouthing attack Case 6

Figure 4.39 shows the MCC value of case 6 under badmouthing attack. From the results we
observe that for sets with an even number of VMs, the MCC value is high and for sets with an
odd number of VMs, the MCC value is low. This is because of the difference in the number
of stdVMs. In even number of VMs, the number of targetVMs is greater than the number of
stdVMs and in odd number of VMs, the number of targetVMs. The additional targetVM (in
sets with even number) introduces additional negative VMT and as it propagates, the MCC
value is high.

7 Case 7: 1% botVMs, 99% targetVM and 0% standardVM and 1% peerVM
Case 7 shows similar results to Figure 4.37. In this case, botVM receives negative VMT
from targetVM, so it has a negative CredV. On the other hand, targetVM receives negative
VMT from botVM and positive VMT from peerVM. Due to Equation (4.13), the CredV of
targetVM is negative. Due to negative CredV of botVM and targetVM, the MCC value is
zero.

8 Case 8: 1% botVMs, 99% targetVM and 0% standardVM and 50% peerVM
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Figure 4.40: Bad mouthing attack Case 8
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Figure 4.40 shows the MCC value for Case 8 under badmouthing attack. From the results
we observe that the results are similar when there was no attack. This is because of smaller
number of botVMs, therefore the effect of badmouthing, is not enough so that it creates a
visible effect on the results (MCC value).

9 Case 9: 1% botVMs, 99% targetVM and 0% standardVM and 90% peerVM
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Figure 4.41: Bad mouthing attack Case 9

Figure 4.41 shows the MCC value for case 9 under badmouthing attack. From the results we
observe that it gives similar results as case 8. However, in case 9, the MCC value reduces
from a high value within 2 minutes, whereas it takes 4 minutes in case 8. This is because
of 100% peerVMs due to which the indirect-DEofNVMT propagates among the targetVMs.
This reduces the MCC value faster compared to case 8.

10 Case 10: 50% botVMs, 1% targetVM and 49% standardVM and 1% peerVM

Case 10 shows similar results to Figure 4.37. In this case, the botVM receives negative VMT
from targetVM (1%) and positive VMT from peerVM (1%). Due to Equation (4.13), its
CredV is negative. On the other hand, targetVM receives negative VMT from botVM (50%)
and positive VMT from peerVM (1%), thus its CredV is negative. Due to a negative CredV
of targetVM and botVM, the MCC value is zero.

11 Case 11: 50% botVMs, 1% targetVM and 49% standardVM and 50% peerVM

Case 11 shows similar results to case 10. As compared to case 10, the number of peerVMs
increase in case 11. Due to this increase, the botVM receives positive VMT from a larger
group of peerVMs (50%). However due to Equation (4.13), the CredV of botVM is still
negative. On the other hand, the targetVM also receives positive VMT from a larger group
of peerVMs, therefore its CredV is also negative. Due to negative CredV of botVM and
targetVM, the MCC value is zero.

12 Case 12: 50% botVMs, 1% targetVM and 49% standardVM and 100% peerVM
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Figure 4.42: Bad mouthing attack Case 12

Figure 4.42 shows the results of MCC value for case 12 under a badmouthing attack. In this
case, we observe that set with an even number of VMs, the MCC value stabilizes at a negative
value, whereas, with an odd number of VMs it stabilizes at a positive value. This is because,
with an even number of VMs, the number of botVMs is more than stdVMs, therefore the
DEofNVMT overpowers DEofPVMT on targetVM and the MCC value reduces to a negative
value. In sets with an odd number of VMs, due to the additional stdVM, the DEofPVMT
overpowers and the MCC value stabilizes at zero

13 Case 13: 50% botVMs, 50% targetVM and 0% standardVM and 1% peerVM

Cases 13-15 under badmouthing attack have similar results Figure 4.37. In these cases, the
botVM receives negative VMT from targetVM and positive VMT from peerVM. As there
are no stdVM, the CredV of botVM is negative. On the other hand, the targetVM receives
negative VMT from botVM and positive VMT from peerVM. Again, due to no stdVMs, the
CredV of targetVM is negative. A negative CredV of targetVM and botVM gives a zero
MCC value.

14 Case 16: 99% botVMs, 1% targetVM and 0% standardVM and 1% peerVM

Case 16 under badmouthing attack gives similar MCC results Figure 4.42. In this case, the
botVM receive negative VMT form targetVM (1%) and positive VMT from peerVM (1%).
Due to Equation (4.13), CredV of botVM is negative. On the other hand, targetVM receives
a negative VMT from botVM (99%) and a positive VMT from peerVM (1%). So, its CredV
is negative. As both the botVM and targetVM has negative CredV, the MCC value is zero.

15 Case 17: 99% botVMs, 1% targetVM and 0% standardVM and 50% peerVM
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Figure 4.43: Bad mouthing attack Case 17

Figure 4.43 shows the MCC results for case 17 under badmouthing attack. In this case, the
botVM receive negative VMT form targetVM (1%) and positive VMT from peerVM (50%).
So, the CredV of botVM is positive. On the other hand, targetVM receives a negative VMT
from botVM (99%) and a positive VMT from peerVM (50%). So, its CredV is negative. As
botVM has a positive VMT and targetVM has a negative VMT, the MCC value is negative.
With time, due to DEofVMT, the CredV of botVM and targetVM reduces to a negative
value and thus the MCC value stabilized at zero.

16 Case 18: 99% botVMs, 1% targetVM and 0% standardVM and 100% peerVM

Case 18 under badmouthing attack gives similar results to case 17 under badmouthing at-
tack (Figure 4.43). Although in case 19, the botVMs rate each other, so the DEofNVMT
propagates to wider range of VMs and thus affects the overall result (MCC value) quicker
as compared to case 17BM. However, the CredV is calculated after a fixed duration, i.e. 1
minute in bVMD, so the results are similar.

4.7.2 Ballotstuffing (Bs) Attack

As discussed, a ballot stuffing attack aims to give false positive VMT value to peer-bot. Out
of the 18 cases used for evaluation, cases 1-9 only have single botVM, therefore they are not
considered in this evaluation. Similarly, the cases with 100% peerVMs, i.e. 12, 15 and 18
already give positive VMT to each other, so they are not considered in the evaluation. The
performance of 8 cases, i.e. 10, 11, 13, 14, 16 and 17 under ballot stuffing attack is discussed
below.

1 Case 10: With 50% botVMs, 1% targetVM, 49% standardVM and 1% peerVM It gives
similar results as Figure 4.37, i.e. the MCC value is stable at zero. In this case, the botVM
receives negative VMT from targetVM (1%), positive VMT from peerVM (1%) and positive
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VMT from peer-botVMs. Therefore, the CredV of botVM is positive. On the other hand,
targetVM receives positive VMT from peerVMs (1%), so its CredV is positive. As positive
CredV of botVM and targetVM, the MCC value is zero.

2 Case 11: With 50% botVMs, 1% targetVM, 49% standardVM and 50% peerVM
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Figure 4.44: Ballotstuffing Attack on case 11

Figure 4.44 gives the MCC value of case 11 in ballot stuffing attack. In this case, initially
the botVM receives negative VMT from targetVM, positive VMT from botVMs (50%) and
positive VMT from its peerVMs (50%). This results in a positive CredV of botVM. On the
other hand, targetVM receives negative VMT from the botVMs (50%) and positive VMT
from peerVMs (50%). Due to Equation (4.13), the CredV of targetVM goes down to a
negative value. A positive CredV of botVM and a negative CredV of targetVM results in a
negative MCC. With time, the DEofNVMT propagates and the CredV of botVMs reduces
to a negative value. This results in a zero MCC value.

3 Case 13: With 50% botVMs, 50% targetVM, 0% standardVM and 1% peerVM Case 13
under ballot stuffing attack shows similar results to case 12 under ballot stuffing attacks.
In this case, the botVM receives negative VMT from targetVM (50%) and positive VMT
from co-botVMs and positive VMT from peerVM (1%). This results in a negative CredV
for botVM. On the other hand, targetVM receives positive VMT from peerVMs (1%) and
negative VMT from botVMs (50%), so it has a negative CredV. A positive CredV of botVM
and a negative CredV of targetVM results in a negative MCC. With time the DEofNVMT
propagates and the CredV of botVMs decrease to a negative value. This results in a zero
MCC value.

4 Case 14: With 50% botVMs, 50% targetVM, 0% standardVM and 50% peerVM Case 14
under ballot stuffing attack shows similar results as case 13 under ballot stuffing attacks.
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This is because, as the number of peerVMs increase, the CredV of botVM and targetVM are
not affected.

5 Case 16: With 99% botVMs, 1% targetVM, 0% standardVM and 1% peerVM
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Figure 4.45: Ballotstuffing Attack on case 16

From the results in Figure 4.45, we observe that the MCC value is initially a negative value
and then stabilizes at zero. The negative value is stable for duration of 11 minutes. The
botVM receives negative VMT from targetVM (1%) and positive VMT from peerVM (1%)
and co-botVMs (99%). This leads to a positive CredV of botVM. On the other hand,
targetVM receives positive VMT value from peerVMs (1%) leading to a positive CredV.
A positive CredV of botVM and targetVM results in zero MCC value. With time the
DEofNVMT propagates and the CredV of targetVM and botVMs are affected, leading to
zero MCC.

6 Case 17: With 99% botVMs, 1% targetVM, 0% standardVM and 50% peerVM
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Figure 4.46: Ballotstuffing Attack on case 17
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This case shows similar results as case 16. The botVM receives negative VMT from targetVM,
positive VMT from co-botVMs and positive VMT from peerVM (50%). On the other hand,
targetVM receives negative VMT from botVMs (99%) and positive VMT from peerVMs
(50%). This results in a negative CredV. A positive CredV of botVM and a negative CredV
of targetVM results in negative MCC value. With time the DEofNVMT propagates and the
MCC stabilizes at zero.

4.7.3 Combined (Com) Attack: Badmouthing and Ballot-
stuffing Attack

Similar to Attack 2, the performance of 8 cases, i.e. cases 10, 11, 13, 14, 16 and 17 are discussed
below.

1 Case 10: With 50% botVMs, 1% targetVM, 49% standardVM and 1% peerVM
It has similar results to case 10 under ballot stuffing attack The CredV of botVM is similar to
case 10 under ballot stuffing, however in this case the targetVM receives negative VMT from
botVM (50%), positive VMT from peerVM (1%). So, the CredV of targetVM is negative.
A positive CredV of botVM and negative CredV of targetVM gives a negative MCC value.
With time, the MCC value stabilizes at zero.

2 Case 11: With 50% botVMs, 1% targetVM, 49% standardVM and 50% peerVM
In this case, botVM receives similar CredV (positive) as in case 11 under ballot stuffing
attack. On the other hand, targetVM receives negative VMT from botVMs (50%) and
positive VMT from peerVMs (50%). Due to Equation (4.13), the MCC value is negative.
With time, the MCC value stabilizes at zero.

3 Case 13: With 50% botVMs, 50% targetVM, 0% standardVM and 1% peerVM In this case,
botVM receives similar value as in Ballot stuffing case 13. On the other hand, targetVM
receives positive VMT from targetVMs (1%) and negative VMT from botVMs. This results
in negative VMT. Therefore, a negative CredV of botVM and targetVM gives zero MCC.

4 Case 14: With 50% botVMs, 50% targetVM, 0% standardVM and 50% peerVM In this case,
botVM receives similar CredV as Ballot stuffing case 14. On the other hand, The botVMs
receive negative VMT from 50% targetVMs and positive VMT from 50% targetVM receives
negative VMT from botVM (50%) and positive VMT from peerVM (50%), it also sets a
negative CredV. Due to Equation (4.13), the CredV of targetVM is negative. A negative
CredV of botVM and targetVM results in a zero MCC value.

5 Case 16: With 99% botVMs, 1% targetVM, 0% standardVM and 1% peerVM
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Figure 4.47: Combined Attack on case 16

In this case (Figure 4.47), botVM receives similar CredV as case 16 under ballot stuffing. On
the other hand, targetVM receives negative VMT from botVM (99%). Therefore, its CredV
is negative. A positive CredV of botVM and a negative CredV of targetVM, MCC value
is negative. As the negative VMT propagates with time, the CredV of botVM drops to a
negative value and MCC stabilizes at zero.

6 Case 17: With 99% botVMs, 1% targetVM, 0% standardVM and 50% peerVM
In this case, botVM has similar CredV as case 17 under ballot stuffing attack. On the
other hand, targetVM receives positive VMT from peerVM (50%) and negative VMT from
botVMs (99%). This results in negative CredV. A positive CredV of botVM and a negative
CredV of targetVM gives negative MCC value. With time this value stabilizes at zero. In
addition, we can observe that the MCC value stabilizes faster than case 16 under ballot
stuffing. This is because of increase of number of botVMs giving negative VMT to targetVM
(due to badmouthing).
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Figure 4.48: Combined Attack on case 17
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4.8 Key Findings

The results from our investigations on stage-1 components of bVMD Framework are as follows.

1 No Attack Situation

(a) Changes in number of peerVM: This describes the effects of the changes in the number
of peerVMs on the performance of bVMD Framework.

• Scenario A: Comparison among Cases 1, 2 and 3 (1% botVM, 1% targetVM and
98% stdVM)
From figures 4.20, 2.23 and 4.24 we can observe the following.

– The fluctuation in the MCC value decreases with increase in the number of
peerVMs. As larger number of VMs are involved in the calculations, more
stdVMs give positive VMT as peerVM and the system is more stable.

– Case with maximum peerVMs, i.e. case 3 shows the least false detection.
This is because a greater number of stdVMs give positive VMT value and
thus the MCC value increases.

Case 2, there are 13.36% positive MCC values and 14.57% negative MCC values,
however in case 3, there is 9.72% positive MCC value. Case 3 has an average
MCC of +9.72% as compared to -1.72% with case 2.

• Scenario B: Comparison among Case 4, 5 and 6 (1% botVM, 50% targetVM
and 49 % stdVM) We can observe that the MCC values in all these cases are
either zero or positive. This is because of a larger set of targetVMs as compared
to botVMs. In all these cases, the MCC values are initially positive and then
stabilize at zero. However, the time taken by MCC value to stabilize at zero
differs. The time increases with an increase in the number of peerVMs, i.e. in
case 1 it stabilizes after 1 minute, in case 2 and 3 it stabilizes after 3 minutes.
However, there are certain sets of VMs (greater than 6 VM) in which the values
stabilize at high MCC. The reason is that with increase in the number of peerVMs,
the DEofPVMT is spread across a larger group of VMs, and the DEofNVMT takes
time to affect the CredV of targetVM. Here we say that DEofPVMT spreads faster
than DEofNVMT as the number of VMs receiving positive VMT (i.e. targetVMs)
are much more than the number of VMs receiving negative VMT (i.e. botVMs).
The case 4, 5 and 6 have +5.26%, +10.53% and +72.87% average MCC value
respectively.

• Scenario C: Comparison among cases 7, 8 and 9 (1% botVM, 99% targetVM and
0% stdVM) Similar to above set, with increase in peerVMs, the MCC value is
positive for a longer duration. In addition, in case 9 the MCC value stabilizes at
a high value for set of 15VMs. Here in case 7, 8 and 9 have +5.26%, +12.55%
and +23.88% average MCC values respectively. Therefore case 8 shows best out
of these.
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• Scenario D: Comparison among case 10, 11 and 12 (50% botVM, 1% targetVM
and 49% stdVM) We can observe that cases 10 and 11 show similar results, where
the MCC value is initially high and then stabilize at zero within a minute. Case 12
stabilizes after a maximum of 5 minutes. This is because of DEofVMT propagates
with greater number of peerVMs. Thus, it takes more time to stabilize.
Here in cases 10, 11 and 12, there are +5.26%, +5.26% and +6.48% average MCC
values. Therefore case 12 is the best out of these.

• Scenario E: Comparison among cases 13, 14 and 15 (50% botVM, 50% targetVM
and 0% stdVM) Here the MCC value is same in all these cases, 5.26% positive
MCC values.

(b) Changes in number of botVMs: In this section, we discuss the changes on the perfor-
mance of bVMD Framework with change in the number of botVMs. The cases with
1%, 50% and then 99% botVMs are compared.

• 10% peerVMs (This involves cases 1, 10 and 16)
– With an increase in botVMs, the average MCC value decreases from +46.15%

in case 1 to +5.26% in case 10 and -23.89% MCC value.
– This shows that with increase in number of botVMs, the MCC value de-

creases, thus the minimum number of botVMs is preferable.
• 50% peerVMs (This involves cases 2, 11 and 17)

– With an increase in botVMs, average MCC value of case 2 has a -1.21% MCC
value to +5.26% in case 11 and -23.89% MCC value.

– This shows that with an increase in number of botVMs, the MCC value first
increases and then decreases.

• 100% peerVMs (This involves cases 3, 12 and 18)
– With an increase in number of botVMs, the number of MCC value decreases

from +9.71% in case 3 to +6.48% in case 12 and -23.89 in case 18.
– This shows with an increase in number of botVMs, the MCC value decreases,

thus minimum number of botVMs is preferable.

(c) Changes in number of targetVMs: In this section, we discuss the changes on the per-
formance of bVMD Framework with change in the number of targetVMs.

• 10% peerVMs (This involves cases 1, 4 and 7)
– With an increase in number of targetVMs, the number of average MCC value

decreases from +45.74% in case 1 to +5.26% in case 4 and case 7.
– This shows that, with an increase in number of targetVMs, the MCC value

decreases, thus minimum number of targetVM is preferable.
• 50% peerVMs (This involves cases 2, 11 and 17)

– With an increase in number of targetVM, the case 2 has a -1.21 value to
+10.53% in case 5 and +12.55% in case8 average MCC value

– With an increase in number of targetVMs, the MCC value increases
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• 100%peerVMs (This involves cases 3, 6 and 9)
– With an increase in number of botVMs, the number of MCC value changes

from +9.71% in case 3 to +72.87% in case 6 and +23.88% MCC value in case
9.

– This shows that, with an increase in number of botVMs, the MCC value first
increases and then decreases.

(d) Changes in number of stdVMs: In this section, we discuss the changes on the perfor-
mance of bVMD Framework with change in the number of stdVMs. It includes cases
with 0%(minimum) to 98%(maximum) stdVMs.

• 10% peerVMs (This involves cases 13 (minimum) and 1 (maximum)): With an
increase in number of stdVMs, the number of MCC value increases from -5.26%
in case 13 to net 45.74% in case 1.

• 50% peerVMs (This involves cases 14 (minimum) and 2 (maximum)): With an
increase in number of stdVMs, the number of MCC value increases from -5.26%
in case 13 to net -1.21% in case 1.

• 100% peerVMs (This involves cases 15 (minimum) and 3 (maximum)): With an
increase in number of stdVMs, the number of MCC value increases from -5.26%
in case 13 to net 9.71% in case 1.

This shows that a maximum number of stdVMs gives the best result.

From the above analysis, we made four findings in this situation.

• Low number of peerVMs (i.e. 1%) gives low results. Here low results refer to both
botVM and targetVM either having positive VMT values or a negative VMT values,
thus a zero MCC value. In such a case, these botVMs cannot be detected.

• Medium number of peerVMs (i.e. 50%) gives high results with high number of tar-
getVMs.

• High number of peerVMs (i.e. 100%) gives best results in terms of detection rate,
however there are some false positive detections as well.

2 Badmouthing attack: We made the following finding in this attack situation.

(a) The cases where there is a zero MCC value have either of the following situations.

• Low number of peerVMs (i.e. 1%) (Cases 4, 7, 10, 13, 16)
• Same number of targetVM and botVM with no stdVMs (13, 15, 15)
• Greater number of botVMs as compared to targetVMs and a low or medium

peerVMs (i.e. 1% or 50%) ( cases 16, 17)

(b) The cases where there is a constant positive/negative MCC value have either of the
following situations.

• Positive value: High number of targetVMs and presence of stdVM. It works well
with 100% peerVMs (case 6)
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• Negative value: High number of botVMs and presence of stdVM. It works well
with 100% peerVMs. (case 12)

(c) The cases where there is a positive or negative MCC value for some time and then
settle to zero have either of the following situations.

• Positive to zero: same number of botVMs and targetVMs, and presence of std-
VMs. This includes the medium or high number of peerVMs (i.e. 50% or 100%)
( case 2, 3, 9)

• Negative to zero: Highest number of botVMs with no stdVMs and 100% peer-
choice (case 18)

• Positive to negative to zero: High number of targetVMs (50%) with presence of
stdVMs and 50% peerVMs. (case 5)

3 Ballotstuffing attack: : We made the following findings in this attack situation.

(a) The cases where there is zero MCC value have either of the following situations.

• Low number of peerVMs (i.e. 1%) (Cases 10, 13) and number of botVMs less
than or equal to number of targetVMs

• Greater number of botVMs as compared to targetVMs and a low or medium
peerVMs (i.e. 1% or 50%) (cases 10, 11)

(b) The cases where there is a positive or negative MCC value for some time and then
settle to zero have either of the following situations.

• Positive to zero: None
• Negative to zero: Highest number of botVMs with no stdVMs and 10% or 50%

peerchoice (case 16, 17) or equal number of botVMs and targetVMs with no
stdVMs and 50% peerVMs.

4 Combined attack: We made the following findings in this attack situation.

(a) The cases with no results (i.e. zero MCC) have either of the following situations:

• Low/medium number of peerVMs (i.e. 1% or 50%) (Cases 10, 13, 11, 14) and
number of botVMs less than or equal to number of targetVMs.

(b) The cases where there is a positive or negative MCC value for some time and then
settle to zero have either of the following situations

• Positive to zero: None
• Negative to zero: Highest number of botVMs with no stdVMs and 10% or 50%

peerchoice (case 16, 17).

4.9 Chapter Summary

This chapter has presented the design and simulation study of a novel stage-1 components of
bVMD Framework. The components, VMWatcher and S-VMD aims to identify set of suspected
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malicious VMs based on their network activity while minimizing the use of additional dedicated
components. We use simulation to evaluate the effectiveness of the stage-1 components in
detecting suspected malicious VMs.

The results show that in the case of badmouthing attack, firstly, the scenarios with
either high numbers of botVMs or targetVMs and 100% peerVMs were classified correctly. Sec-
ondly, similar scenarios with average (50%) numbers of peerVMs and scenarios with equal num-
bers of botVMs and targetVMs were classified correctly for initial couple of minutes. Thirdly,
scenarios with lowest (1%) number of peerVMs, same number of targetVMs and botVMs with
no stdVMs and high (1% or 40%) botVMs and medium (50%) or low (1%) peerVMs were not
classified at all.

In the case of ballotstuffing attack, firstly, scenarios with high (99%) botVMs or equal
number of botVMs and peerVMs, no stdVMs and low (10%) or medium (50%) peerVMs were
classified correctly, however they were identified incorrectly. Secondly, scenarios with botVMs
less than or equal to targetVMs and low (1%) peerVMs were not identified at all.

In the case of combined attack, only scenarios with high (99%) botVMs, no stdVMs
and low (10%) or medium (50%) peerVMs were identified incorrectly, whereas all other scenarios
were not identified.

Finally, in the case of no attack, we observe that with equal numbers of botVM
and targetVM, the MCC value stabilizes with increase in number of peerVMs. In scenarios
with high number of targetVM as compared to number of botVMs, the scenarios were correctly
identified for initial couple of minutes and then cannot be identified. These initial minutes
depend on the number of peerVMs and the proportion of number of targetVM and botVM.
In scenarios with high number of botVMs than the number of targetVMs, the scenarios are
correctly identified for initial couple of minutes and then cannot be identified. However, the
MCC values obtained in these cases are less than the MCC values in cases with high number
of targetVMs as compared to the number of botVMs.



Chapter 5

bVMD Stage-2: Bot-VMD and
FVM

5.1 Chapter Introduction

This chapter presents the design and evaluation of two components used in Stage-2 of the
bVMD architecture, namely Bot-VMD and FVM. These components use a host-based intru-
sion detection system which follows Virtual Memory Introspection (VMI) technique to analyse
the physical memory of a VM for any malicious activity. Forensic VMs (FVMs) are proposed in
the literature to implement VMI technique. Our solution proposed a novel algorithm, Hybrid-
FVM, to determine the number and type of FVMs with an aim of improving the effectiveness
(in terms of time taken by FVMs). An experimental evaluation of the algorithm is carried
out by comparing the time taken by FVMs to analyse the set of S-VMs and the associated
overheads against the most relevant work.
The structure of this chapter is as follows. Section 5.2 presents the details of Virtual Mem-
ory Introspection technique. Section 5.3 discusses the related work in literature. Section 5.4
describes the proposed hybrid approach for estimating FVMs. Section 5.5 describes the de-
tails of bot-VMD component. Section 5.6 gives the details of the operations of bVMD stage-2
components. Section 5.7 describes the evaluation methodology and Section 5.8 presents the
experimental results and discussions. Finally, Section 5.9 summarises the chapter.

134
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5.2 Virtual Memory Introspection (VMI)

VMI is a technique proposed in 2003 [136] and explained in Figure 2 in [137]. It is defined as
a virtualisation-based technique that enables an ‘outsider’ to monitor and analyse the state of
a VM by observing its memory pages [138] [139]. This technique allows the detection solution
to be placed out of the probable botVM to detect any malicious event or code executed at run
time (at botVM’s memory location). This isolation might result in lack of awareness of botVM
about the detection solution, thus giving it an added advantage. VMI is used in Intrusion
Detection Systems (IDS) for real time monitoring. The VMI technique is implemented using
a dedicated component, called a Monitoring and Detection (M&D) component, which analyses
and studies the physical memory of a VM. This M&D component can either reside on the
hypervisor (M&D-on-hypervisor) [140] or on a local VM (M&A-on-VM) [136]. The M&A-on-
hypervisor deployment means that there is a single M&D component to monitor all the VMs
on the host that analyse their monitored data. If a hypervisor hosts a large number of VMs,
this approach may overburden the hypervisor and it may also become a single-point-of-failure.
The M&D-on-VM deployment can also be implemented using a centralised or a distributed
approach. A centralised approach means that a dedicated VM hosts the component which
monitors all the VMs on the same host. This might have similar problems as the M&D-on-
hypervisor deployment due to a centralised structure. A distributed approach means that there
is a number of dedicated VMs, each of which hosts a separate M&D component. Each of these
dedicated VMs monitor and analyse the data from one or more VMs. This approach reduces
the burden on the single VM, but it may increase the overheads in maintaining these additional
VMs. This approach is proposed [141], where a special VM, called Forensic VM is used to
detect malware activities in a set of VMs.

5.2.1 Forensic VM (FVM)

FVM is defined as a mini VM that can monitor other VMs to discover malware symptoms in
real-time using the VMI technique. FVMs have the following features 1) they are small in size,
so that they can be easily managed, 2) they work in read-only mode, so that unauthorised
alteration of the monitored data can be prevented, and 3) they inspect one VM at a time,
and can hop between VMs after inspecting a VM. FVMs work according to the following steps
[141][87].

Step 1 Transferring of VMI meta-data: Before launching an FVM, they are given read-
only access to the meta-data (like offset value, address, memory size) of a VM which
is stored in a hypervisor.

Step 2 Determining and utilising OS offsets: The meta-data acquired from the hypervisor
is used to determine the location of VM’s kernel task structure. This task structure
describes the applications recently initiated in the VM. A task structure of a particular
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process is used to determine:1) a pointer to a region that contains page tables that
should be loaded when that process is running, and 2) a list of areas of the application’s
virtual address space that it is using. These two parameters, i.e. the page table and
virtual address space, are then used to determine the system physical memory locations
being used by that application process.

Step 3 Converting known target guest kernel address into machine physical ad-
dress: The machine’s physical address is calculated using the task structure (within
the guest’s virtual address). The physical page at that address is mapped into FVM
for analysis.

Step 4 Crawl through page tables: After identifying the task structure of the guest OS,
the page tables used by the process are located and the corresponding memory regions
are tracked.

These FVMs can be classified into two categories, Symptom-specific FVMs (S-SF)
and VM-Specific FVMs (V-SF).

1 Symptom-Specific FVMs (S-SF)
Scenarios using the ‘Symptom-Specific’ FVM approach are those in which one FVM is re-
sponsible to detect one symptom in all the VMs. In other words, a 1-to-1 ratio is maintained
between the number of FVMs and the number of malware symptoms. This approach involves
a scheduling algorithm, which defines the way in which an FVM has to hop from one VM
to another VM. This method may be more scalable as the number of agents doesn’t depend
on the number of VMs. However, the hopping of FVMs among VMs introduces computa-
tional overheads and the overheads increase as the number of VMs increases. The mobility
algorithm used for scheduling the hopping process generally use priority system. A VM with
less priority might not be checked for a long duration, thus reducing the effectiveness of the
solution. In addition, on-off attacks may be hard to detect with this approach.

2 VM-Specific FVMs (V-SF)
Scenarios using the ‘VM-Specific’ FVM approach are those in which one FVM is responsible
for analysis of all the symptoms in a single VM. In other words, a 1-to-1 ratio is maintained
between the number of FVMs and the number of VMs. This approach may be effective in
terms of early detection compared to scenarios using the S-SF approach. This is because
each VM is continuously monitored by its respective FVM. However, with this approach, the
number of FVMs increases with the increase in the number of VMs, so, as the number of
VMs increases, overheads incurred in managing and securing the FVMs will also increase.

5.2.2 Malware Symptoms

A malware symptom is an indicator of a presence of a malicious activity. They are based
on the observation of a trend of component reusability by writers of malware which produces
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symptoms (detectable traces of activities that facilitate a malicious activity) such as shutting-
down anti-virus, changing registry key values, etc.
Definition: A malware symptom is an abstraction of an observable (via VMI) characteristic,
which can be linked to malicious behaviour and appearance of a symptom indicates possible
malicious behaviour [141].
Some examples of malware symptoms are given below [141][142].

Sym 1 Shutting down the processes: Some malware interrupts the normal working of
important security processes like antivirus, etc. For example, botnet Conflicker C
shuts down almost 20 processes as soon as it enters a system.

Sym 2 Tampering with files: Some malware might create fake files, delete or modify original
files from the system directories. For example, botnets Tidserv and Pilleus malware
does all these three file operations once they enter a system.

Sym 3 Change registry keys: Some malware changes the values in the hierarchy of direc-
tories associated to a registry key. For example, botnet Conflicker adds strings (audio,
image, etc.) to the registry to obfuscate registry configuration changes.

Sym 4 Modifying the time attributes of a file: Some malware modifies the time attribute
of a file so that it deceptively looks like the file exists since the launch of the operating
system. For example, Zeus modifies the time of the creation of some of the malicious
exe files to the time of the installation of the operating systems.

Sym 5 Identifying suspicious snippets of code: Use of crypto algorithms is very popular
with malware writers. Snippets of program code containing known crypto algorithms
can be a sign of malicious behaviour. For example, three variants of Conficker (A, B
and C) make use of RC4, RSA, and MD-6 and keep updating the implementations.

5.3 Related Work

This section describes two pieces of related work, which use FVMs for detecting malware in a
cloud environment.

1 The author [87] uses S-SF approach, where FVMs hop between VMs based on the mobility
algorithms (Round-robin and Random algorithms). These FVMs communicate with each
other and can notify each other about an identified symptom on a VM, thus enabling other
FVMs to check their respective symptoms in the identified VM. The FVM communication is
implemented using a shared message-board mechanism. The FVMs store information about
the VMs they have identified, the time a VM was last visited and a list of symptoms it
has checked. Mini-OS is used for implementation of these FVMs, thus making them com-
putationally cheap to run and less prone to attacks (due to their small size). However, the
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continuous search for a symptom across multiple VMs might introduce additional computa-
tional and communicational overheads. The mobility algorithm used by FVMs might affect
the total time taken for analysis. Scenarios where a VM was infected immediately after it was
inspected by an FVM might have to wait for the next round of inspection before detection.
The use of a black-board mechanism for communication among FVMs might be prone to
attacks.

2 The author [81] uses V-SF FVMs for detection of botcloud attacks. They use an FVM
to monitor all the symptoms of a VM thus minimising the requirement of communication
among FVMs. However, as an FVM is supposed to examine all the symptoms in a VM, they
might require a larger space than the S-SF approach, therefore they may be more expensive
to run. In addition, as the number of VMs increases, the number of FVMs also increases,
thus increasing the associated overheads and the attack surface.

5.4 A Hybrid Approach to FVM Estimation

One of the tasks of a Bot-VMD in bVMD framework is to estimate the number and type of FVMs
required for forensic analysis of the identified S-VMs. This is done by using FVM estimation
method. The method is based on two parameters 1) the number of S-VMs to be analysed and
2) the number of malware symptoms to be checked by each FVM. These parameters affect the
time taken for analysing a S-VM.

Assuming that the number of VMs to be analysed is ‘n’, namely VM1 through to
VMn, and there are a set of ‘s’ symptoms to be analysed, namely Sym1 through to Syms. Then
the number of FVMs is estimated using the following steps.

1 If the number of VMs to be monitored is more than fvm-delta times the number of symptoms,
i.e.

if(n > (fvm − delta × s)) (5.1)

is true, then Number of FVMs = s
Otherwise follow step 2.

2 If the number of VMs to be monitored is less than or equal to fvm-delta times the number
of symptoms, i.e.

if(n ≤ ((fvm − delta) × s)) (5.2)

is true, number of FVMs = n
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5.5 Bot-VMD

A Bot-VMD is responsible for conducting the forensics analysis of S-VMs. This component is
placed in each hypervisor and it carries out the following four tasks: 1) receive S-to-B packets
from S-VMs, 2) determine the number of FVMs, 3) receive monitored data from FVMs, and 4)
analyse the monitored data and take actions.

5.5.1 S-VM Value Acquisition

IP Address CredV VMT Values 

A (S-VM) 𝐶𝑟𝑒𝑑𝑉𝑀𝑎 -- 

B (PeerVM) 𝐶𝑟𝑒𝑑𝑉𝑀𝑏 𝑉𝑀𝑇𝑉𝑀𝑏
𝑉𝑀𝑎 

… … … 

Z (PeerVM) 𝐶𝑟𝑒𝑑𝑉𝑀𝑧 𝑉𝑀𝑇𝑉𝑀𝑧
𝑉𝑀𝑎 

 

Figure 5.1: S-to-B Packet

Bot-VMD receives the S-to-B packet with the details (IP Address, CredV and VMT values)
of S-VMs from S-VMD as shown in Figure 5.1 . The packet includes the IP Addresses of the
S-VM (VMa) along with its CredV (CredVMa). It also includes the IP addresses of the VMs
which has S-VMs as their peerVMs (VMb to VMz), the VMT values they provided (VMTb

a to
VMTz

a) and their CredV (Creda to Credz).

There is a need to pass the information about the VMs which have S-VM as their
peerVM so that bot-VMD can classify them into groups based on the forensic results of S-VM.

5.5.2 FVM Value Estimation

The S-VM values acquired by bot-VMD determine the sequence in which FVMs are estimated,
created and dispatched. If a S-VM has high AL, then it has the highest priority and it is checked
first. Otherwise the S-VMs are checked in the order in which their respective S-to-B packet
is received. The number and type of FVMs are determined using FVM Estimation method
described in Section 5.4. The type and number of FVMs are communicated to FVM Dispatch
& Analysis method using Est Packet given in Figure 5.2.
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IP Address 
Number of S-SF 

FVMs 

Number of 

V-SF FVMs 

A (S-VM) 𝐹𝑉𝑀𝑁𝑢𝑚1 𝐹𝑉𝑀𝑁𝑢𝑚1 

 

Figure 5.2: Estimation Packet

This Est-Packet contains the IP address of the S-VM to be inspected, the number
of S-SF FVMs required, and the number of V-SF FVMs required.

5.5.3 FVM Creation, Dispatch and Analysis (D&A)

Based on the Est-Packet received, the FVMs are created and then dispatched. The results of
analysis are received from the FVMs. These results are stored in bot-VMT-T with a timestamp.
This is because of the following case.

Case 1 Where a S-VM is identified as botVM and is being notified to the hypervisor and there
is another request from a different S-VMD to analyse the same S-VM in the meantime.
In this case, this stored data (with a timestamp) can be checked instead of analysing
the VM again.

Cbse 2 Where a S-VM is identified as a benign VM, but there are repeated requests from
different S-VMDs about the analysis of S-VMs. In this case, the stored data can be
checked and used.

If all the symptoms are detected in the S-VM, then it is identified as botVM.

5.5.4 Actions Taken

The bot-VMD takes the following actions, based on the data received from FVMs.

1 If a VM is confirmed as a botVM, then the Bot-VMD notifies its hypervisor and in addition,
it notifies its local S-VMD. This is to make sure that the S-VMD can take an immediate
action, even before the hypervisor takes an action. In addition, the S-VMD which notified
about the identified botVM is also informed.
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2 If the VM is not identified as a botVM, then the following S-VMDs are notified:

(a) The S-VMD which requested the bot-VMD to analyse the S-VM: this is to ensure
that the S-VMD knows that an analysis is already done, and it is identified as benign.

(b) The local S-VMD where the VM resides: this is to ensure that the local S-VMD can
store this information for future references.

Bot-VMD can also group the S-VMs based on the values received by S-VMD (packet S-to-B).
This is done as follows.

• If the S-VMD is confirmed as benign VM after the forensic analysis, then the peerVMs
of the S-VMD which gave a negative VMT so that VMs are identified. These identified
peerVMs are suspected as malicious VMs and a forensic analysis is done on them.

• If the S-VMD was confirmed as botVM after the forensic analysis, then the peerVMs
of the S-VMD which gave a positive VMT are identified. These identified peerVMs are
also suspected as malicious VMs and a forensic analysis is done on them.

5.6 Operation of bVMD Stage-2 Components

Figure 5.3 illustrates a scenario similar to the one discussed in Section 4.4 in Chapter 4. The
scenario has two physical hosts X and Y. Each physical host hosts a bot-VMD component, bot-
VMD 1 and bot-VMD 2 respectively, which are placed in the hypervisor. Each bot-VMD has
the following components (1) FVM-Estimate method, (2) FVM create, dispatch and analyse
method (D&A), and (3) bot-VM table (bot-VMT-T).

In this scenario, the bot-VMD 2 receives a S-to-B packet (Figure 5.1) from S-VMD1
notifying about a low CredV of VMc. This packet is received by FVM Estimation method.
The information (CredV of VMc and the details about the peerVMs) from this packet is saved
in bot-VMT-T. Based on the number of the S-VMs in the list and the number of malwares
to be analysed, it determines the number of FVMs to be used. This number and types of
FVMs estimated is communicated to D&A method. This method creates the required FVMs
and dispatches them. The FVMs record the symptoms at the VM(s) and save information in
bot-VMT-T. This data is analysed, and appropriate actions are taken.
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Figure 5.3: botVMD and FVM Operations

5.7 Evaluation Methodology

A test environment (similar to the one described in [81]) was set up to evaluate this stage of the
bVMD Framework. A virtualised environment was created using Xen 4.5 [143] as the VMM.
Then several VMs running on HVM mode with Windows-7 professional 32-bit as the operating
systems were created. VMs running on Xen should run either in Hardware-assisted VM (HVM)
or in Para Virtualisation (PV) mode. In HVM, VMs are not aware that they are running in
a virtualised environment, whereas in PV mode, VMs experience some modification and are
aware that they are running on a virtual platform. LibVMI introspection tool [144] is used
to conduct VMI. In conjunction with VMI, volatility framework version 2.4 is also used; it is
a forensic memory analysis framework that can significantly aid in performing useful memory
analysis tasks. The data is collected from Dom0 [145] for these experiments.
Experiments were done by collecting data from 8 VMs [81] and we consider the same number
of malwares, i.e. 8 malwares. We chose the same malware to infect all the VMs. This is to
make sure that the FVM takes similar time to study each S-VM. A botnet related malware we
used is Zbot [146].
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Three scenarios were implemented for comparing the performance and overheads incurred in
using different types of FVMs. The scenarios are 1) the V-SF approach, 2) the S-SF approach
and 3) the proposed hybrid approach. The performance in terms of total time taken for in-
spection is investigated with the size and number of FVMs involved. These experiments were
repeated 10 times and an average is calculated.

5.8 Experimental Results and Discussions

This section describes the results of the experiments carried out to evaluate the performance of
the Stage-2 components of the bVMD Framework. The parameters that have been investigated
are: 1) the time taken by the FVM(s), 2) the number of FVMs, and 3) the total memory
space taken by FVMs. All parameters are studied for all the symptoms across all the S-VMs
with respect to change in the number of S-VMs and the number of symptoms. The results are
depicted in Figure 5.4 to 5.8.
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Figure 5.4 and 5.5 depict the time taken by FVMs to detect S-VMs ranging from
1-8 in scenarios using S-SF and V-SF. Figure 5.4 shows the results of S-SF and each line in
the figure depicts the total time taken by the FVMs to analyse the S-VMs when the number
of symptoms increases. For example, the first horizontal line (blue) from the base shows that
when the number of S-VMs are same and the number of symptoms increases, then the total
time taken by FVMs remains the same. Whereas Figure 5.5 shows the results of V-SF and
each line in the figure depicts that when the number of S-VMs increase and the number of
symptoms remain same, the total time by FVMs increases. From these figures, we make the
following observations.

Obs 1 In scenario S-SF, the total time taken to detect all the symptoms in a S-VM is similar.
This is because in this scenario there is an FVM dedicated for each S-VM and these
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FVMs run simultaneously on all the S-VMs. Therefore, they take similar time to detect
the same number and type of symptoms across different S-VMs.

Obs 2 In scenario V-SF, the total time taken to detect all the symptoms in an S-VM increases
with the increase in the number of S-VMs. This is because an increase in number of
S-VMs leads to increase in the total number of symptoms to be analysed (as there is a
specific FVM for each symptom). Therefore, the total time taken by FVMs increases.
In addition, the total hopping time between S-VMs also increases, thereby increasing
the total time taken.

Figure 5.6 shows the increase in the detection time used by FVMs with increase in
the number of S-VMs. In the figure, S-S-’n’S refers to a scenario using a symptom-specific FVM
with ’n’ number of symptoms and V-SF-’n’S refers to a scenario using a VM-specific FVM with
’n’ number of symptoms. From this figure we make the following observations.

Obs 1 In scenario using V-SF, the total time taken by FVMs (to detect all the symptoms in all
the VMs) increases at a rate of 73% per additional symptom in the number of S-VMs,
whereas in scenario using S-SF, it increases with an average of 9%. This is because
in scenarios using V-SF, with increase in the number of S-VMs, the number of FVMs
increases. An increase of an FVM involves time for step-1 to step 4 (as discussed in
Section 5.2). The more FVMs to be initiated at a time, the more it takes for the host to
initiate an FVM (step-1). Whereas in scenario using S-SF, with an increase in number
of S-VM, the time for steps 2-3 (as discussed in Section 5.2) increases. Therefore, we
can see a steep increase in scenario using V-SF as compared to scenario S-SF.
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Figure 5.6: Time taken for analysis with increase in the number of S-VMs in
scenarios V-SF & S-SF

Obs 2 Comparing the two scenarios in Figure 5.6, we observe that the scenario using V-SF
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takes less time for analysis when the number of symptoms is less than the number
of S-VMs. Whereas S-SF takes less time for analysis when the number of symptoms
exceeds the number of S-VMs. The reason behind this is that, with increase in the
number of symptoms (exceeding number of S-VMs), scenarios using S-SF will have
more FVMs, thus analysing the S-VMs quicker. When the number of symptoms is less
than the number of S-VMs, scenario using V-SF will have more FVMs, thus analysing
the S-VMs quicker.

Figure 5.7 and 5.8 gives the total FVM size required in scenarios S-SF & V-SF with
increase in number of S-VMs & symptoms. Here FVM size is calculated as (total number of
FVMs · size of each FVM). We assume that each FVM requires the same amount of memory
to analyse a symptom. If it requires ‘x’ bytes of memory to store an information for analysing
a symptom & there are ‘s’ symptoms, then total memory space required by the FVMs is ‘x · s’
bytes. This space is shown in Figure 5.7 (scenario using S-SF) and 5.8 (scenario using V-SF).

 

1

4

7

0

2

4

6

8

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f 
Sy

m
p

to
m

s 

To
ta

l s
iz

e 
o

f 
FV

M
s 

(i
n

 t
er

m
s 

o
f 

'x
'  

b
yt

es
 

Number of S-VMs  

Figure 5.7: Number of FVMs with
change in the number of VMs and
symptoms in scenarios using S-SF

 

1

4

7

0

20

40

60

80

1 2 3 4 5 6 7 8 N
u

m
b

er
 o

f 
sy

m
p

to
m

s 

N
u

m
b

e
r 

o
f 

FV
M

s 
(i

n
 t

e
rm

s 
o

f 
'x

 
b

yt
es

')
 

Number of S-VMs 

Figure 5.8: Number of FVMs with
change in the number of VMs and
symptoms in scenarios using V-SF

In scenarios using S-SF, with an increase in number of symptoms, the total size
increases at an average rate of 37%. However, with increase in number of S-VMs, the total size
of FVMs remains same. This is because with increase in S-VMs, neither the number of FVMs
increase nor the size of an FVM increases. In scenarios using V-SF, with increase in the number
of S-VMs or the number of symptoms, the total size of FVMs increases at an average rate of
37%. The reason for a similar rate of increase is that with increase in number of S-VMs, the
number of FVMs increases, whereas with increase in number of symptoms, the size of each FVM
increases. Here we have assumed that the size required for information related to a symptom
and size required for a new FVM is similar, which might not always be the case. The size of a
new FVM might be more than the size required for information related to a symptom and this
would lead to an increase in the total size of FVMs (with increase in the number of symptoms)
in scenario S-SF. The findings from these results are as follows.
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1 When the number of symptoms is more than or equal to the number of S-VMs, scenario
using V-SF gives quicker results, however this might introduce more overheads as compared
to scenarios using S-SF.

2 When the number of symptoms is less than the number of S-VMs, scenario using S-SF gives
quicker results, however it is accompanied with higher overheads as compared to scenarios
using V-SF.

The proposed hybrid method of FVM incorporates these findings. Figure 5.9 and 5.10 show
the results for hybrid method.
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Figure 5.10: Total size of FVMs in
Hybrid Approach

From the figures, we can observe that with increase in number of S-VMs, the total
time taken by FVMs to analyse all the symptoms across all the VMs increases by 41%. In
detail, when the number of symptoms is less than the number of VMs, the time increases by
56% and otherwise the time increases by 25%. Also, with increase in number of S-VMs, the
total size of FVMs increases by 24% In detail, when the number of symptoms is less than the
number of VMs, the total size of FVMs increases by 25%, otherwise it increases by 23%.

5.9 Chapter Summary

This chapter has presented the design and simulation study of stage-2 components of bVMD
Framework. The components, Bot-VMD and FVM aim to detect the set of botVMs by doing an
in-depth forensic analysis on the identified S-VMs. A novel algorithm is proposed to determine
the number of FVMs, and the effectiveness is depicted along with the overheads. The simulation
study has shown that with increase in number of S-VMs, the detection time increases at a rate
of 41% with an increase of 24% overheads.



Chapter 6

bVMD Overall Evaluation and
Discussions

6.1 Chapter Introduction

This chapter gives a detailed analysis of the results (in terms of effectiveness, efficiency and
scalability) obtained from the evaluation of the bVMD Framework. The results are studied
against the requirements specified for an effective, efficient and scalable botcloud detection
solution. Also, performance of the bVMD is analysed in scenarios with no attacks and in
scenarios with attacks. This chapter also compares the obtained results with the most related
work.
The structure of this chapter is as follows. Section 6.2 analyses the bVMD Framework in terms
of requirements, detection accuracy and security. Section 6.3 compares the results with the
most relevant work. Finally, Section 6.4 summarizes the chapter.

6.2 Analysis of the bVMD Performance

The bVMD Framework analysis is performed in terms of requirements, detection accuracy and
security analysis.

6.2.1 Requirements Analysis

The section analyses the bVMD framework against the requirements specified in Section 3.4.

147
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1 Functional Requirements (FUL)

• FUL1: The FUL1 requirement is fulfilled by bVMD Framework, i.e. it can detect bot-
clouds with known and unknown signatures. This is achieved by using anomaly-based
techniques instead of signature-based techniques. These anomaly-based techniques are
network-based IDS (Stage-1) and host-based IDS (Stage -2).

• FUL2: The FUL2 requirement is fulfilled by bVMD Framework, i.e. it can detect
botclouds regardless of their Command and Control (C&C) message formats, structures
and protocols. This is achieved by using frequency of packets for detection malicious
activities. This is independent of the contents, protocols or structures of the packets.

2 Effectiveness Requirements (EFS)

• (EFS1) Minimise False Positive Rate (FPR): The EFS1 is partially fulfilled by
bVMD Framework, i.e. it detects botVMs with as low FPR as possible in some cases.
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Figure 6.1: Average FPR for each case

The Figure 6.1 shows average FPR for 18 cases. To study the FPR of each case, an
average FPR is calculated for 13 set of VMs ranging from 3 to 15 over a period of 19
minutes. Every point in the graph depicts the average FPR for a case. From Figure 6.1
we can make the following observations.

– The cases with 10% peerVMs (∆) always have lower FPR than the other cases in
its scenario (Figure 6.2). This is because, in these cases, CredV of a VM is affected
by a smaller number of VMs as compared to other cases. Thus, the propagation
of negative VMT is slower, leading to a low FPR.
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Table 6.1: EFS for bVMD Framework

Effectiveness Requirements 

Scenarios Cases 
EFS1 

Minimise FPR 

EFS2 

Maximise 

TPR 

EFS3 

TNR 

EFS 4 

FNR 

A 

1 10.77% 54.23% 89.23% 45.77% 

2 88.08% 85.38% 11.92% 14.62% 

3 7.31% 17.31% 92.69% 82.69% 

B 

4 7.31% 7.69% 92.69% 92.31% 

5 90.00% 100.00% 10.00% 0.00% 

6 27.31% 100.00% 72.69% 0.00% 

C 

7 7.31% 7.69% 92.69% 92.31% 

8 88.08% 100.00% 11.92% 0.00% 

9 76.92% 100.00% 23.08% 0.00% 

D 

10 7.31% 7.69% 92.69% 92.31% 

11 95.00% 100.00% 5.00% 0.00% 

12 28.46% 35.00% 71.54% 65.00% 

E 

13 7.31% 7.69% 92.69% 92.31% 

14 100% 95.00% 0.00% 5.00% 

15 100% 95.00% 0.00% 5.00% 

F 

16 7.69% 7.31% 92.31% 92.69% 

17 100% 90.00% 0.00% 10.00% 

18 100% 76.92% 0.00% 23.08% 

Average 52.71% 60.38% 47.29% 39.62% 

 

– The cases with 50% peerVMs (�) always have high FPR as compared to the other
two cases in its scenario. Comparing with corresponding case with 10% peerVM,
the negative VMT value propagates faster, thus the FPR increases. Compared
to corresponding cases with 100% peerVM, the negative VMT propagates faster,
however at the same time, the number of VMs rating each other increases. This
increases the effect of positive VMT value and decreases the overall effect of
negative VMT. Therefore, the FPR decreases.

– As the proportion of targetVM to botVM increases (i.e. from scenario A to B to
C), the FPR increases with increasing the number of peerVMs. This is because
with higher number of targetVMs, the CredV of botVM goes down swiftly and
with increasing number of peerVMs, this CredV propagates quickly.
In scenario D, the proportion of targetVM and botVM is equal, leading to a
decrease in FPR. This value is almost equal to Case 6, i.e. 50% targetVM and
100% peerVM. This is because with equal number of targetVMs, the CredV of
botVM is affected in a similar way. The difference in the number of botVMs
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doesn’t impact the results.
In scenario E and F, the FPR is high. This is because of high number of botVMs
in these scenarios.

– As the percentage of botVMs increases in these cases, the FPR increases. This
is because of the obvious reason of an increase in the number of botVMs, which
makes the effect of negative VMT propagate quickly.

– The results are shown in Table 6.1. The average FPR is 53%. The FRR with
10% peerVM is 8%, with 50% peerVM is 94% and with 100% peerVM is 57%.

• (EFS2) Minimise False Negative Rate (FNR): The EFS2 is partially fulfilled by
bVMD Framework, i.e. it detects botVMs with as low FNR as possible in some cases.
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Figure 6.2: Average FNR for each case

The Figure 6.2 shows average FNR for 18 cases. Every point in the graph represents
the average FNR for a case. The average FNR is 40%. The FNR with 10% peerVM is
85%, with 50% peerVM is 5% and with 100% peerVM is 23%.

• (EFS3) Maximize True Positive Rate (TPR): The EFS3 is partially fulfilled by
bVMD Framework, i.e. it detects botVMs with as high TPR as possible in some cases.
The Figure 6.3 shows average TPR for 18 cases. To study the TPR of each case, an
average TPR is calculated for 13 set of VMs ranging from 3 to 15 over a period of 19
minutes. Every point in the graph depicts the average TPR for a case.
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Figure 6.3: Average TPR for each case

From Figure 6.3 we can make the following observations.

– The cases with 50% peerVM always have more TPR as compared to the other
two cases in the same scenario. This is because, with high peerVMs (50%) as
compared to option-1, more peerVMs affect the CredV of a VM, giving positive
VMT value. Therefore, the TRP increases.

– With increase in peerVMs from 50% to 100%, the TPR is high (close to 1) for
scenarios B and C. It decreases for scenarios E and F and further reduces in
scenario D and then A.
In case 6 and 9, the number of targetVMs increases as compared to the number
of botVMs. With increase in number of targetVMs, the TRP increases. As the
number of botVM increases as compared to targetVMs, the TRP decreases. This
is because of the obvious reason of increase in botVMs which increases the indirect
effect of negative VMT.
In cases 3 and 12, the TRP decreases. This is because of the same number
of botVMs and targetVMs. In case 3, botVM and targetVM receives similar
positive VMT from stdVM (peerVM). BotVM gives positive VMT to targetVM
and targetVM gives positive VMT to botVM. As negative VMT propagates, the
CredV of targetVM decreases, thus decreasing TRP. Similarly, in case 12, the
negative VMT of botVM propagates, thus decreasing TRP.

– In addition, as the number of targetVMs increases as compared to the number
of botVMs, the TPR also increases. This is because of the obvious reason of
targetVMs increasing and giving negative VMT to the botVMs. However, as
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the number of botVMs increase, the TPR value reduces. This is because of the
propagation of negative VMT by a large set of botVMs.

– The results are shown in Table 6.1. The average TPR is 60%. The TPR with
10% peerVM is 15%, with 50% peerVM is 95% and with 100% peerVM is 71%.

• (EFS4) Maximise True Negative Rate (TNR): The solution should be able to
detect botVMs with as high TNR as possible.
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Figure 6.4: Average TNR for each case

The Figure 6.4 shows average TNR for 18 cases. Every point in the graph represents
the average TNR for a case. The average TNR is 47%. The TNR with 10% peerVM
is 92%, with 50% peerVM is 6% and with 100% peerVM is 43%.

3 Efficiency Requirements (EFY)

• (EFY1) Low communication overhead: The EFY1 is fulfilled by bVMD Frame-
work. C-OH is calculated by the number of messages and the length of each of the
messages (in bits) exchanged between the architectural components. To do so, we
study the messages sent between the architectural components.

– Exchange between VMWatchers: V-to-V packets (Figure 4.7)
– VMWatcher to S-VMD: V-to-S packets (Figure 4.8)
– S-VMD to bot-VMD: S-to-B packets (Figure 5.1)

The size of each of these are given below.
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– The total size of V-to-V packet is 40 bits for each peerVM. If there are ‘p’ peerVMs
of a VMWatcher, then the total size of this packet is (40 × p) bits.

– The total size of V-to-S packet is 40 bits for each peerVM which has negative
VMT value. The maximum number of such peerVMs can be ‘p’, therefore the
maximum size of this packet is (40 × p) bits and the minimum size is (40 × 1)
bits.

– The total size of S-to-B packet is (48 × (p1+1)), here p1 is the number of peerVMs
of the S-VM which has high VMT on S-VM and low CredV.

The total size of the communication packets is ((80 × p) + (48 × (p1+1))) in bits.
Referring to Figure 4.9, the total communication overhead will be calculated as Ta-
ble 6.2.

Type of Packet Prime VMWatcher
VMWatcher related to 

Prime VMWatcher
Size of Packets (bits)

V-to-V VMa 2 (VMb and VMc) 80

VMb 1 (VMa) 41

VMc 1 (VMa) 41

V-to-S VMa, VMb and VMc 3 120

S-to-B S-VMD2 to botVMD (VMc) 1 96

378Total size of packets

Table 6.2: Communication overhead for Figure 4.9

The Table 6.2 shows the packet size which is used for communication in an example
Figure 4.9. As per the figure, there are a total of three VMWatchers, VMa, VMb and
VMc and two S-VMDs (1 and 2). The first packet V-to-V is sent from a VMWatcher to
its peerVMs, so here VMa sends a V-to-V packet each to VMb and VMc. The second
packet V-to-S is sent by each VMWatcher to its corresponding S-VMs, therefore three
are three packets. The third packet S-to-B is sent from S-VMD to bot-VMD for only
an identified S-VM. Here we assume that VMc is a S-VM, therefore one packet is sent
to its botVMD. The total of 378 bits are communicated during this process.

• (EFY3) Low storage overhead: The EFY3 requirement is fulfilled by bVMD
Framework. S-OH is calculated by the length of data stored by each component.
To do so, we study the data stored by each architectural component.

– VMWatcher: It stores VMT-T
– S-VMD: It stores S-VMT-T
– Bot-VMT: It stores Bot-Cred-T

The VMT-T table requires 64 bits space for each peerVM, therefore (64 × p) bits for
‘p’ peerVMs. The S-VMD-T requires (136 × n) bits for ‘n’ number of VMWatchers
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in the system. The bot-VMT-T has to store S-to-B packet, therefore requires (48 ×
(p+1)) bits for each VMWatcher. If a ‘x’ VMWatchers send this S-to-B packets, then
it requires a space of ((48 × (p+1)) × x). This could range from ((48 × (p+1)) × 1)
to ((48 × (p+1)) × n), where ‘n’ is the total number of VMWatchers in the system.
The total storage space required by bVMD Framework is ((64 × p × n) + (136 × n)
+ ((48 × (p+1)) × n)) bits.

Storage Table Prime VMWatcher
VMWatcher related to 

Prime VMWatcher
Total size (bits)

VMa 2 (VMb and VMc) 128

VMb 1 (VMa) 64

VMc 1 (VMa) 64

S-VMT-T VMa, VMb and VMc 3 408

Bot-VMT-T S-VMD2 to botVMD (VMc) 3 288

952

VMT-T

Total size of packets

Table 6.3: Storage overhead for Figure 4.9

The Table 6.3 shows the total storage size which is used in example Figure 4.9. The first
table VMT-T is stored by each VMWatcher. The second table S-VMT-T is stored by each
S-VMD and the third table bot-VMT-T is stored by each botVMD. From the table we can
see that a total of 952 bits are stored during this process.

4 Scalability Requirements (SCY)

• (SCY1) bVMD solution should be scalable: The SCY1 is fulfilled by bVMD Framework.
This is analysed by the MCC curve for all the 18 cases.
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Figure 6.5: Average MCC curve for Cases with 10% peerVMs
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Figure 6.6: Average MCC curve for Cases with 50% peerVMs
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Figure 6.7: Average MCC curve for Cases with 100% peerVMs

The Figures 6.5 - 6.7 shows the average MCC of 13 sets of VMs ranging from 3 to 15 VMs
for 19 minutes. They depict the average MCC value of each case with increasing number of
VMs. From the Figures we can observe that the average MCC values either increase (Case
9) or stabilize as the VMs increase. This means that with increase in the number of VMs,
the effectiveness of bVMD either increases or stabilizes, thus supporting scalability.

6.2.2 Detection Accuracy

The detection accuracy of the bVMD Framework is divided into two categories. First is the
effectiveness by which the group of botVMs and targetVMs are grouped correctly and second
is the effectiveness with which the groups are identified correctly. The Figure 6.8 shows the
effectiveness of bVMD Framework in terms of grouping.
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Figure 6.8: Grouping Accuracy

Every point in the graph represents the percentage of the cases of VMs (3-15) which
have correctly grouped the VMs into two sections. Here ’correctly’ means that all the botVMs
are in one group and all the benign VMs are in the other group. The green dots in the graph
show that the VMs are correctly grouped and correctly identified, whereas red dots in the
graph show that the VMs are correctly grouped but wrongly identified. The results taken from
18 cases for 13 set of VMs, show that in 92% sets, the VMs are correctly grouped. Out of
these sets, 83% cases are correctly identified, and rest 17% cases are wrongly identified. The
effectiveness of bVMD in terms of detecting the botVMs is same as effectiveness of bVMD in
terms of grouping shown in Figure 6.8. This is because if VMs are grouped correctly, then the
following can happen.

• The groups can be identified correctly or cannot be correctly identified by Stage-1.

If the groups are identified correctly, then Stage-2 detects them within ‘t’ minutes. Otherwise,
the time taken by Stage-2 to detect the correct group increases to ‘2·t’ minutes. This is because,
first it analyses the incorrectly identified VMs and when it finds that these VMs (first set) are
not botVMs, then it analyses the other set (second set) of VMs. This wrong identification of
the first set of VMs is due to the incorrect trust values given to them by the second set of
VMs during stage-1 of bVMD Framework. Therefore, the second set of VMs are most likely
the correct set of botVMs. This overall process of analysing two set of VMs before identifying
the correct set of botVMs increases the overall time for detection, however doesn’t affect the
detection accuracy.
In the calculations below, total 234 sets were considered. Each Case had 13 sets (VM3-15),
therefore with 18 cases the total sets considered were 234.
The bVMD can correctly detect botVMs in 92% sets. In more detail, bVMD can correctly
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detect 100% sets in cases all the cases except case 3, 12 and 17. In case 3, bVMD can detect
23% sets of VMs, in case 12 and 17 it can detect 46% and 86% cases respectively.

6.2.3 Security Analysis

The performance of the bVMD Framework is analysed in scenarios with three types of attack:
i) badmouthing, ii) ballot stuffing and iii) combined attack. The results are shown in Table 6.4.
In a badmouthing attack, the bVMD can correctly detect 57% sets. In detail, 100% sets in
Case 1, 2, 8, 10, 11 and 13% sets in Case 3, 7, 14, 15, 16 and 17. 85% sets in Case3, 78% sets
in Case 5, 46% in Case 6, 54% sets in Case 12, 85% sets in Case 9 and Case 18. Out of the
57% sets, 66% sets were correctly identified by bVMD Stage-1.

Table 6.4: Detection Accuracy in Scenarios without attack and with attack

 Detection Accuracy (%) 

 No Attack Scenario 
Bad Mouthing 

Attack 

Ballot 

Stuffing 

Attack 

Combined 

Attack 

Case 1 100% 100% -- -- 

Case 2 100% 100% -- -- 

Case 3 23.08% 84.62% -- -- 

Case 4 100% 100% -- -- 

Case 5 100% 77.92% -- -- 

Case 6 100% 46.15% -- -- 

Case 7 100% 0% -- -- 

Case 8 100% 100% -- -- 

Case 9 100% 84.62% -- -- 

Case 10 100% 100% 0% 0% 

Case 11 100% 100% 0% 0% 

Case 12 46.15% 53.85% -- -- 

Case 13 100% 100% 0% 0% 

Case 14 100% 0% 100% 0% 

Case 15 100% 0% -- -- 

Case 16 100% 0% 100% 84.62% 

Case 17 85.62% 0% 100% 76.92% 

Case 18 100% 84.62% -- -- 

Overall 91.88% 57.27% 50% 26.92% 
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In a ballot stuffing attack, the bVMD can correctly detect 50% sets. In detail, sets in
cases 10, 11 and 13 cannot be detected at all, while sets in cases 14, 16 and 17 can be correctly
detected 100%. Out of the 50% sets which can be detected, there are no sets which are correctly
identified by bVMD Stage-1. In a combined attack, the bVMD can correctly detect 27% sets.
In detail, sets in cases 10, 11, 13 and 14 cannot be detected at all, while sets in case 16 can be
detected 85% times and sets in case 17 can be detected 77% times. Out of the 27% sets which
can be detected, there are no sets which are correctly identified by bVMD Stage-1.

6.3 Comparison with Related Work

This section compares the bVMD Framework against the desired requirements and the most
related solution.

6.3.1 Comparison against the desired requirements

This section analyses the bVMD Framework against the desired requirements specified in Sec-
tion 2.5.

Table 6.5: State-of-the-art of the solutions against desired requirements

Solutions FUL EFS EFY SCY

Sol1 7 3* 7 3*
Sol2 7 3* 3* 3*
Sol3 3 3 7 7

Sol4 7 7 7 7

Sol5 7 7 7 7

Sol6 7 3* 7 7

Sol7 7 3 7 7

Sol8 7 3* 7 3*
Sol9 7 3 7 7

Sol10 7 3* 3* 3

bVMD 3 3+ 3+ 3+

3: The solution has considered the corresponding requirement.
3*: The solution has considered the corresponding requirement, however there is a scope

of improvement.
3+: The solution has considered the corresponding requirement; however it is not satisfied

in all the cases.
7: The solution has not considered the corresponding requirement.
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6.3.2 Comparison of MCC value against the most relevant
work

This section describes the effectiveness of bVMD in comparison with related work [82]. To the
best of our knowledge, the evaluation in this related work is the most relevant to our work. The
performance comparison is based on the detection accuracy in terms of MCC values.

To compare the MCC values with [82], we evaluated the bVMD Framework with sim-
ilar approach of using UDP flood attack. To compare the number of parameters (i.e. botVMs,
targetVMs and stdVMs), we identified that [82] uses 39 botVMs, 24 targetVMs and a large
number of stdVMs (1250-24). The nearest bVMD scenario comparable to these parameters is
scenario A as it has 1% botVM, 1% targetVM and 98% stdVM. So, the bVMD case 1, case 2
and case 3 (Scenario A) are analysed against the results in [82]. In Figure 6.9 the results of
case 2 (red) overlaps the results of case 1 (blue).

 

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12 13 14 15

M
C

C

Set of VMs

Case 1 Case 2 Case 3

Figure 6.9: bVMD MCC for Case 1, 2 and 3

The results in [82] show that the best MCC value is increasing from 0.72 to 0.78.
Whereas, the bVMD Framework shows that the best MCC value is 0.99 (i.e. for 15 set of VMs
in the cases 1 and 2). In addition, bVMD Framework shows an average MCC value of 0.99 for
cases 1 and 2. This is higher than the best MCC values in [82]. However, case 3 in bVMD
Framework has an average MCC value of 0.21, which is lower than the best MCC value in [82].
From these results, we conclude that bVMD shows better results in case 1 and 2, as compared
to [82]. As the peerVMs in bVMD increase (case 3), the results deteriorate. The MCC curves
of bVMD Framework shown in Figure 6.9.
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6.4 Chapter Summary

This chapter has presented the evaluation results of bVMD Framework. The results are analysed
in terms of requirements, detection accuracy and security. In addition, these results were
compared with the most relevant work.



Chapter 7

Conclusions and Future Work

The focus of this thesis has been to investigate how to detect a botcloud in an effective, efficient
and scalable manner. This chapter summarises all the research findings and contributions of
this thesis and gives recommendations for future work.

7.1 Contributions

The contributions of this thesis are summarised on a chapter-to-chapter basis as follows.

• Chapter 3: In this chapter, a set of requirements for an effective, efficient and scal-
able botcloud detection solution are specified. In addition, a set of design measures
are specified. To support the identified requirements and realise the specified measures,
design of a novel BotCloud Detection Framework (bVMD) is proposed. The bVMD
comprises of a two-stage novel architecture, with the first stage aiming to identify a set
of suspected malicious VMs and the second stage aiming to further analyse the set of
identified VMs to ensure that they are certainly malicious (botVMs). The first stage
uses a novel network-based intrusion detection method and the second stage uses an
improved host-based intrusion detection method. Both these methods are outlined in
this chapter.
This chapter also describes the evaluation methodologies used in evaluating the bVMD
Framework including a set of 18 scenarios (with different percentages of botVMs, tar-
getVMs, stdVMs and peerVMs) with their respective settings. These scenarios are used
for evaluating the performance of bVMD Framework.

• Chapter 4: In this chapter, the novel network-based IDS method for identifying sus-
pected malicious VMs has been proposed.

161
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The network-based IDS is built on a trust-based mutual monitoring approach which is
implemented by using two components, namely VMWatcher and S-VMD. The aim of
this approach is to reduce the number of VMs to be further analysed in Stage-2. To
achieve this, all the VMs in the network are analysed using a peerVM watch method and
credibility of each VM is calculated. VMs with low credibility are suspected as malicious
VMs and sent for further analysis in Stage-2. The detailed design of both the Stage-1
components is proposed in this chapter.
Experimental evaluation has been carried out on Omnet++ using 18 different scenarios.
With this evaluation, the effectiveness in terms of detection accuracy (MCC curve) is
measured. The results demonstrate that it is highly effective in case 6 and 9, with an
average MCC value of 0.99 (calculated for 13 sets of VMs over a duration of 19 minutes).
Whereas it is not effective in case 18, with an average MCC value of -0.04. In addition,
it is not effective in cases 4 and 7, with zero average MCC value. In all the other cases,
the average MCC value ranges from 0.05 to 0.95.
Also, the attacks that can be mounted on these design components have been studied.
The possible attacks are: i) badmouthing ii) ballot stuffing and iii) combination. To
measure the effectiveness of the bVMD Framework under these attacks, the 18 scenarios
are evaluated in each attack type. The results are as follows.

1 In a badmouthing attack, results demonstrate that Stage-1 is effective in case 3 and
6, with an average MCC value of 0.95 with maximum average value of 0.99 The
maximum average value is for set of 15 number of VMs calculated over a duration
of 19 minutes. Stage-1 is least effective in cases 10 and 11, with maximum average
MCC value of -0.04. In addition, it is not effective in cases 4, 7, 14-17, with zero
MCC value. In rest of the cases, the maximum average MCC value ranges from
0.01 to 0.89.

2 In a ballot stuffing attack, results demonstrate that Stage-1 is not effective. Case
14, 15 and 16 have an average MCC value of -0.04 each and cases 10-13 have an
average MCC value of zero.

3 In a combined attack, results demonstrate that Stage-1 is not effective. Case 16
and 17 have an average MCC value of -0.03 and -0.03 respectively. The remaining
cases, i.e. 10-14 have an average MCC value of zero.

• Chapter 5: In this chapter, an improved, host-based IDS for in-depth analysis of
suspected-malicious VMs is proposed.
The host-based IDS is built on two components, namely, botVMD and FVM. They use
VMI technique for analysing the memory of the identified VMs. This is facilitated by
the use of Forensic VMs (FVMs). These FVMs can be classified into Symptom-Specific
FVMs (S-SF) and VM-Specific FVMs (V-SF). With a change in the number of VMs
and/or the symptoms, the overheads incurred in both these types of FVMs differ. To
minimise the overheads, an algorithm for determining the number and types of FVMs
with change in number of VMs and/or symptoms is proposed. In addition, the design of
botVMD component is proposed in this chapter.
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Experimental evaluation has been carried out using LibVMI introspection tool to mea-
sure the overheads used by the proposed algorithm. These are compared with methods
using S-SF and V-SF. The results show that with an increase in number of S-VMs, the
total time taken by FVMs to analyse all the symptoms across all the VMs increases by
41% as compared to an average of 73% in V-SF and 8% in S-SF. On the other hand,
the total size of FVMs increases by 24% as compared to an average of 37% in V-SF and
S-SF.

• Chapter 6: In this chapter, the performance of the bVMD Framework is analysed and
discussed.
Firstly, the detection accuracy (MCC) of the bVMD is described. Also, the requirements
specified for an effective, efficient and scalable botcloud detection solution are analysed
against the results obtained from the bVMD Framework. These include functional, effec-
tiveness, efficiency and scalable requirements. The results show that bVMD completely
fulfils the functional and scalability requirements, whereas partially fulfils the effective-
ness and efficiency requirements.
Secondly, the detection accuracy of the bVMD Framework is discussed. The results show
that in a situation without attacks, an average of 92% sets can be accurately detected.
On the other hand (i) in a badmouthing attack, an average of 57% sets can be detected,
ii) in a ballotstuffing attack, an average of 50% sets can be detected and iii) in a combined
attack, an average of 27% sets can be detected. Thirdly, the performance (MCC) of the
bVMD Framework is compared with the most related works available in the literature.
The results show that the bVMD Framework has 0.99 (10% & 50% peerVMs) as the
best MCC value and 0.22 (100% peerVMs) as the lowest MCC value. Whereas, MCC
value in the most related solution ranges from 0.73 to 0.78. Therefore, we conclude that
bVMD is more effective when the number of peerVM is 10% or 50%.

7.2 Conclusions

From this research, we can draw the following conclusions.

• The results from the evaluation of the bVMD Stage-1 components demonstrate the
following.

– bVMD Stage-1 results are highly effective (0.99 MCC) in couple of cases. We can
also observe that the cases with either high number of botVMs or lesser number
of peerVMs cannot be detected effectively (i.e. zero MCC). This ensures that for
reducing the false detections there is a certain need of Stage-2 analysis.

– No attack scenarios: In cases with targetVMs more than the number of peerVMs,
the bVMD Framework is able to identify the set of botVMs correctly. However,
higher the number of peerVMs in a case, larger is the time duration in which the
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botVMs can be detected. Whereas in cases with high number of botVMs then
targetVMs, the bVMD Framework is either able to detect incorrectly or not able
to detect at all. This again depends on the number of peerVMs in a case.

– Badmouthing attack: The results show that the cases with either a low number
of peerVMs or a larger number of botVMs or a similar number of targetVM &
botVM with some stdVMs having a badmouthing attack cannot be detected by
bVMD Framework.

– Ballot stuffing attack: The results show that the cases with either a low number
of peerVMs or a larger number of botVMs having a ballot stuffing attack cannot
be detected by bVMD Framework.

– Combined attack: The results show that the case with less than 50% of peerVMs
with a combined attack cannot be detected by bVMD Framework.

• The results from the evaluation of the Hybrid FVM algorithm proposed in the Stage-2
of bVMD Framework shows that using this approach, the size of FVMs is less than the
total size required in V-SF and S-SF. However, along with these encouraging results,
we also recognise that this algorithm involves more time for analysing all the symptoms
across all the VMs as compared to V-SF and S-SF.

• The results from our evaluation of the bVMD Framework demonstrate the following.

– Functional Requirements: It fulfils all the functional requirements (FUN1 and
FUN2) in all the cases.

– Effectiveness Requirements: The EFS1, EFS2, EFS3 and EFS4 are partially ful-
filled by bVMD Framework. In detail, 50% and 39% cases have FPR (EFS1) and
TRP (EFS2) respectively less than 50%. 50% and 39% cases have FNR (EFS4)
cases have TNR (EFS3) and FNR (EFS4) more than 50%.

– Efficiency Requirements: EFY1 and EFY2 are fulfilled by bVMD Framework.
The communication overhead (EFY1) is minimized by using in-house analysis and
only transferring the results using V-to-V, V-to-S and S-to-B packets. These are
discussed in Section 6.2. Similarly, storage overhead (EFY2) is minimized by
storing the analysed data, instead of raw data. This is done using VMT-T, S-
VMT-T & bot-Cred-T and these are discussed in Section 6.2.

– Scalability Requirement: The scalability of BVMD Framework is analysed for a
maximum of 13 VMs and it shows that bVMD is scalable. However, there is a
scope to analyse the performance of bVMD Framework with a larger set of VMs.

– Detection Accuracy: The results show that bVMD Framework can correctly detect
botVMs in 92% sets out of the total 234 sets.

– Security Analysis: The performance of bVMD Framework was analysed under
three types of attacks. Under the badmouthing attack, bVMD Framework could
detect 57% cases, under ballot stuffing attack, it could detect 50% of the cases and
under a combined attack, it could detect 27% cases.
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– In addition, comparing the results of bVMD Framework to the related solutions, we
conclude that bVMD fulfils the functional requirements, whereas it fulfils efficiency,
effectiveness and scalability requirements in couple of cases.

From the results we conclude that the performance of bVMD depends on the mix of
number of botVMs, targetVMs, stdVMs and peerVMs in a scenario. The results show
that with a high number of botVMs, the performance of bVMD reduces. A high number
of targetVMs, the performance of bVMD improves. In addition, stdVMs also play a
major role in bVMD performance and the results show that cases with no stdVMs have
less detection accuracy as compared to other cases. Also, with an increase in the number
of peerVMs, initially the performance increases and then decreases.

• In all the experiments, we have clearly specified the parameters under which different
experiments have been carried out. The results obtained from these experiments should
only be interpreted based on the specified parameters. With a different specification of
the parameters, e.g. in the rate of attack, the time of calculating CredV, etc, differ-
ent results may be obtained. Therefore, the results reported in this thesis cannot be
generalised in the context of the diverse range of cases and parameters.

7.3 Future Work

We give following recommendations for future work.

• The bVMD can be extended to detect more type of attacks and the performance of
bVMD with these attacks can be evaluated.

• An important consideration with Stage-1 components is the exchange of VMT-T among
VMs at regular time-intervals. An algorithm could be placed to minimise the communi-
cation and storage overheads incurred from these communications.

• Another important consideration is the inter-host communication used in the bVMD.
In our experiments, we use one physical host with all the VMs placed on the same
host and an intra-host communication. In a practical deployment of bVMD, inter-host
communication could be considered. This could increase the communication time and
corresponding overheads.

• In bVMD, Stage-1 and Stage-2 components have been tested on different simulators. To
further study the total time taken for detection, they could be implemented on the same
environment.
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Topologies Used on Omnet++
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