58 research outputs found

    Methodologies for innovation and best practices in Industry 4.0 for SMEs

    Get PDF
    Today, cyber physical systems are transforming the way in which industries operate, we call this Industry 4.0 or the fourth industrial revolution. Industry 4.0 involves the use of technologies such as Cloud Computing, Edge Computing, Internet of Things, Robotics and most of all Big Data. Big Data are the very basis of the Industry 4.0 paradigm, because they can provide crucial information on all the processes that take place within manufacturing (which helps optimize processes and prevent downtime), as well as provide information about the employees (performance, individual needs, safety in the workplace) as well as clients/customers (their needs and wants, trends, opinions) which helps businesses become competitive and expand on the international market. Current processing capabilities thanks to technologies such as Internet of Things, Cloud Computing and Edge Computing, mean that data can be processed much faster and with greater security. The implementation of Artificial Intelligence techniques, such as Machine Learning, can enable technologies, can help machines take certain decisions autonomously, or help humans make decisions much faster. Furthermore, data can be used to feed predictive models which can help businesses and manufacturers anticipate future changes and needs, address problems before they cause tangible harm

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    Managing smart cities with deepint.net

    Get PDF
    In this keynote, the evolution of intelligent computer systems will be examined. The need for human capital will be emphasised, as well as the need to follow one’s “gut instinct” in problem-solving. We will look at the benefits of combining information and knowledge to solve complex problems and will examine how knowledge engineering facilitates the integration of different algorithms. Furthermore, we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems. It will be shown how tools like "Deep Intelligence" make it possible to create computer systems efficiently and effectively. "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI with IoT and with blockchain offers a world of possibilities and opportunities

    AIoT for Achieving Sustainable Development Goals

    Get PDF
    Artificial Intelligence of Things (AIoT) is a relatively new concept that involves the merging of Artificial Intelligence (AI) with the Internet of Things (IoT). It has emerged from the realization that Internet of Things networks could be further enhanced if they were also provided with Artificial Intelligence, enhancing the extraction of data and network operation. Prior to AIoT, the Internet of Things would consist of networks of sensors embedded in a physical environment, that collected data and sent them to a remote server. Upon reaching the server, a data analysis would be carried out which normally involved the application of a series of Artificial Intelligence techniques by experts. However, as Internet of Things networks expand in smart cities, this workflow makes optimal operation unfeasible. This is because the data that is captured by IoT is increasing in size continually. Sending such amounts of data to a remote server becomes costly, time-consuming and resource inefficient. Moreover, dependence on a central server means that a server failure, which would be imminent if overloaded with data, would lead to a halt in the operation of the smart service for which the IoT network had been deployed. Thus, decentralizing the operation becomes a crucial element of AIoT. This is done through the Edge Computing paradigm which takes the processing of data to the edge of the network. Artificial Intelligence is found at the edge of the network so that the data may be processed, filtered and analyzed there. It is even possible to equip the edge of the network with the ability to make decisions through the implementation of AI techniques such as Machine Learning. The speed of decision making at the edge of the network means that many social, environmental, industrial and administrative processes may be optimized, as crucial decisions may be taken faster. Deep Intelligence is a tool that employs disruptive Artificial Intelligence techniques for data analysis i.e., classification, clustering, forecasting, optimization, visualization. Its strength lies in its ability to extract data from virtually any source type. This is a very important feature given the heterogeneity of the data being produced in the world today. Another very important characteristic is its intuitiveness and ability to operate almost autonomously. The user is guided through the process which means that anyone can use it without any knowledge of the technical, technological and mathematical aspects of the processes performed by the platform. This means that the Deepint.net platform integrates functionalities that would normally take years to implement in any sector individually and that would normally require a group of experts in data analysis and related technologies [1-322]. The Deep Intelligence platform can be used to easily operate Edge Computing architectures and IoT networks. The joint characteristics of a well-designed Edge Computing platform (that is, one which brings computing resources to the edge of the network) and of the advanced Deepint.net platform deployed in a cloud environment, mean that high speed, real-time response, effective troubleshooting and management, as well as precise forecasting can be achieved. Moreover, the low cost of the solution, in combination with the availability of low-cost sensors, devices, Edge Computing hardware, means that deployment becomes a possibility for developing countries, where such solutions are needed most

    AIoT for Smart territories

    Get PDF
    Artificial Intelligence revived in the last decade. The need for progress, the growing processing capacity and the low cost of the Cloud have facilitated the development of new, powerful algorithms. The efficiency of these algorithms in Big Data processing, Deep Learning and Convolutional Networks is transforming the way we work and is opening new horizons. Thanks to them, we can now analyse data and obtain unimaginable solutions to today’s problems. Nevertheless, our success is not entirely based on algorithms, it also comes from our ability to follow our “gut” when choosing the best combination of algorithms for an intelligent artefact. It's about approaching engineering with a lot of knowledge and tact. This involves the use of both connectionist and symbolic systems, and of having a full understanding of the algorithms used. Moreover, to address today’s problems we must work with both historical and real-time data

    DeepTech – AI-IoT in smart cities

    Get PDF
    In this keynote, the evolution of intelligent computer systems will be examined. The need for human capital will be emphasised, as well as the need to follow one’s “gut instinct” in problem-solving. We will look at the benefits of combining information and knowledge to solve complex problems and will examine how knowledge engineering facilitates the integration of different algorithms. Furthermore, we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems. It will be shown how tools like "Deep Intelligence" make it possible to create computer systems efficiently and effectively. "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI with IoT and with blockchain offers a world of possibilities and opportunities

    DeepTech - AI Models in Engineering Solutions

    Get PDF
    Artificial Intelligence revived in the last decade. The need for progress, the growing processing capacity and the low cost of the Cloud have facilitated the development of new, powerful algorithms. The efficiency of these algorithms in Big Data processing, Deep Learning and Convolutional Networks is transforming the way we work and is opening new horizons. Thanks to them, we can now analyse data and obtain unimaginable solutions to today’s problems. Nevertheless, our success is not entirely based on algorithms, it also comes from our ability to follow our “gut” when choosing the best combination of algorithms for an intelligent artefact. It's about approaching engineering with a lot of knowledge and tact. This involves the use of both connectionist and symbolic systems, and of having a full understanding of the algorithms used. Moreover, to address today’s problems we must work with both historical and real-time data. We must fully comprehend the problem, its time evolution, as well as the relevance and implications of each piece of data, etc. It is also important to consider development time, costs and the ability to create systems that will interact with their environment, will connect with the objects that surround them and will manage the data they obtain in a reliable manner

    Learning AI with deepint.net

    Get PDF
    This keynote will examine the evolution of intelligent computer systems over the last years, underscoring the need for human capital in this field, so that further progress can be made. In this regard, learning about AI through experience is a big challenge, but it is possible thanks to tools such as deepint.net, which enable anyone to develop AI systems; knowledge of programming is no longer necessary

    IoT and Blockchain for Smart Cities

    Get PDF
    Blockchain is a Distributed Ledger Technology (DLT) that makes it possible to secure any type of transaction. This is because the information stored on the Blockchain is immutable, impeding any type of fraud or modification of the data. It was first created for Bitcoin transactions; however, the research community has realized its potential quickly, and started using it for purposes other than cryptocurrency transactions. Blockchain may even be used to secure and provide reliability to the data being transmitted between computational systems, ensuring their immutability. Given the amount of data produced within a smart city, the use of Blockchain is imperative in smart cities, as it protects them from cyberattacks and fraud. Moreover, the transparency of the information stored on Blockchain means that it helps create a more just and democratic society

    Efficient Digital Management in Smart Cities

    Get PDF
    The concept of smart cities puts the citizen at the center of all processes. It is the citizen who decides what kind of city they live in. Their opinions and attitudes towards technologies and the solutions they would like to see in their cities must be listened to. With Deep Intelligence, cities will be able to create more optimal citizen-centered services as, as the tool can collect data from multiple sources, such as databases and social networks, from which valuable information on citizens’ opinions and attitudes regarding technology, smart city services and urban problems, may be extracted
    • …
    corecore