52,175 research outputs found

    Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin

    Get PDF
    We measured prokaryotic production and respiration in the major water masses of the North Atlantic down to a depth of,4,000 m by following the progression of the two branches of North Atlantic Deep Water (NADW) in the oceanic conveyor belt. Prokaryotic abundance decreased exponentially with depth from 3 to 0.4 3 105 cells mL21 in the eastern basin and from 3.6 to 0.3 3 105 cells mL21 in the western basin. Prokaryotic production measured via 3H-leucine incorporation showed a similar pattern to that of prokaryotic abundance and decreased with depth from 9.2 to 1.1 mmol C m23 d21 in the eastern and from 20.6 to 1.2 mmol C m23 d21 in the western basin. Prokaryotic respiration, measured via oxygen consumption, ranged from about 300 to 60 mmol C m23 d21 from,100 m depth to the NADW. Prokaryotic growth efficiencies of,2 % in the deep waters (depth range 1,200–4,000 m) indicate that the prokaryotic carbon demand exceeds dissolved organic matter input and surface primary production by 2 orders of magnitude. Cell-specific prokaryotic production was rather constant throughout the water column, ranging from 15 to 32 3 1023 fmol C cell21 d21 in the eastern and from 35 to 58

    Computational studies on linear, second and third-order nonlinear optical properties of novel styrylquinolinium dyes

    Get PDF
    The electric dipole moments (μ), static dipole polarizabilities (α) and first hyperpolarizabilities (β) of styrylquinolinium dyes, D8 and D21, have been computed by density functional theory (DFT). The one-photon absorption (OPA) characterizations have been investigated using UV–vis spectroscopy and further interpreted using computational chemistry. The time-dependent Hartree–Fock (TDHF) method has been used to describe the dynamic dipole polarizabilities, dynamic second-order and also static and dynamic third-order nonlinear optical (NLO) properties. D8–D21 have rather high β and second hyperpolarizabilities (γ). The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO–LUMO band gaps for D8–D21 have been evaluated by DFT

    Oxygen photolysis in the Mauritanian upwelling: Implications for net community production

    Get PDF
    We carried out 16 photochemical experiments of filtered surface water in a custom-built solar simulator and concomitant measurements of in vitro gross primary production (GPP) and respiration (R) in the Mauritanian upwelling during a Lagrangian study following three sulfur hexafluoride–labeled patches of upwelled water (P1 to P3). Oxygen photolysis rates were correlated with the absorbance of chromophoric dissolved organic matter (CDOM) at 300 nm, suggesting first-order kinetics with respect to CDOM. An exponential fit was used to calculate the apparent quantum yield (AQY) for oxygen photolysis, giving an average AQY of 0.00053 mmol O2 (mole photons m22 s21)21 at 280 nm and slope of 0.0012 nm21. Modeled photochemical oxygen demand (POD) at the surface (3–16 mmol m23 d21) occasionally exceeded R and was dominated by ultraviolet radiation (71– 79%). Euphotic-layer integrated GPP decreased with time during both P-1 and P-3, whereas R remained relatively constant and POD increased during P-1 and decreased during P-3. On Day 4 of P-3, GPP and POD maxima coincided with high CDOM absorbance, suggesting ‘‘new’’ CDOM production. Omitting POD may lead to an underestimation of net community production (NCP), both through in vitro and geochemical methods (here by 2–22%). We propose that oxygen-based NCP estimates should be revised upward. For the Mauritanian upwelling, the POD-corrected NCP was strongly correlated with standard NCP with a slope of 1.0066 6 0.0244 and intercept of 46.51 6 13.15 mmol m22 d21
    • …
    corecore