15,284 research outputs found

    START: A Bridge between Emotion Theory and Neurobiology through Dynamic System Modeling

    Full text link
    Lewis proposes "reconceptualization" (p. 1) of how to link the psychology and neurobiology of emotion and cognitive-emotional interactions. His main proposed themes have actually been actively and quantitatively developed in the neural modeling literature for over thirty years. This commentary summarizes some of these themes and points to areas of particularly active research in this area

    Anticipatory Semantic Processes

    Get PDF
    Why anticipatory processes correspond to cognitive abilities of living systems? To be adapted to an environment, behaviors need at least i) internal representations of events occurring in the external environment; and ii) internal anticipations of possible events to occur in the external environment. Interactions of these two opposite but complementary cognitive properties lead to various patterns of experimental data on semantic processing. How to investigate dynamic semantic processes? Experimental studies in cognitive psychology offer several interests such as: i) the control of the semantic environment such as words embedded in sentences; ii) the methodological tools allowing the observation of anticipations and adapted oculomotor behavior during reading; and iii) the analyze of different anticipatory processes within the theoretical framework of semantic processing. What are the different types of semantic anticipations? Experimental data show that semantic anticipatory processes involve i) the coding in memory of sequences of words occurring in textual environments; ii) the anticipation of possible future words from currently perceived words; and iii) the selection of anticipated words as a function of the sequences of perceived words, achieved by anticipatory activations and inhibitory selection processes. How to modelize anticipatory semantic processes? Localist or distributed neural networks models can account for some types of semantic processes, anticipatory or not. Attractor neural networks coding temporal sequences are presented as good candidate for modeling anticipatory semantic processes, according to specific properties of the human brain such as i) auto-associative memory; ii) learning and memorization of sequences of patterns; and iii) anticipation of memorized patterns from previously perceived patterns

    Adaptive Resonance Theory

    Full text link

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Dopaminergic Regulation of Neuronal Circuits in Prefrontal Cortex

    Get PDF
    Neuromodulators, like dopamine, have considerable influence on the\ud processing capabilities of neural networks. \ud This has for instance been shown in the working memory functions\ud of prefrontal cortex, which may be regulated by altering the\ud dopamine level. Experimental work provides evidence on the biochemical\ud and electrophysiological actions of dopamine receptors, but there are few \ud theories concerning their significance for computational properties \ud (ServanPrintzCohen90,Hasselmo94).\ud We point to experimental data on neuromodulatory regulation of \ud temporal properties of excitatory neurons and depolarization of inhibitory \ud neurons, and suggest computational models employing these effects.\ud Changes in membrane potential may be modelled by the firing threshold,\ud and temporal properties by a parameterization of neuronal responsiveness \ud according to the preceding spike interval.\ud We apply these concepts to two examples using spiking neural networks.\ud In the first case, there is a change in the input synchronization of\ud neuronal groups, which leads to\ud changes in the formation of synchronized neuronal ensembles.\ud In the second case, the threshold\ud of interneurons influences lateral inhibition, and the switch from a \ud winner-take-all network to a parallel feedforward mode of processing.\ud Both concepts are interesting for the modeling of cognitive functions and may\ud have explanatory power for behavioral changes associated with dopamine \ud regulation

    Obstacle Avoidance by Means of an Operant Conditioning Model

    Full text link
    This paper describes the application of a model of operant conditioning to the problem of obstacle avoidance with a wheeled mobile robot. The main characteristic of the applied model is that the robot learns to avoid obstacles through a learning-by-doing cycle without external supervision. A series of ultrasonic sensors act as Conditioned Stimuli (CS), while collisions act as an Unconditioned Stimulus (UCS). By experiencing a series of movements in a cluttered environment, the robot learns to avoid sensor activation patterns that predict collisions, thereby learning to avoid obstacles. Learning generalizes to arbitrary cluttered environments. In this work we describe our initial implementation using a computer simulation

    Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling

    Get PDF
    It is often assumed that similar domain-specific behavioural impairments found in cases of adult brain damage and developmental disorders correspond to similar underlying causes, and can serve as convergent evidence for the modular structure of the normal adult cognitive system. We argue that this correspondence is contingent on an unsupported assumption that atypical development can produce selective deficits while the rest of the system develops normally (Residual Normality), and that this assumption tends to bias data collection in the field. Based on a review of connectionist models of acquired and developmental disorders in the domains of reading and past tense, as well as on new simulations, we explore the computational viability of Residual Normality and the potential role of development in producing behavioural deficits. Simulations demonstrate that damage to a developmental model can produce very different effects depending on whether it occurs prior to or following the training process. Because developmental disorders typically involve damage prior to learning, we conclude that the developmental process is a key component of the explanation of endstate impairments in such disorders. Further simulations demonstrate that in simple connectionist learning systems, the assumption of Residual Normality is undermined by processes of compensation or alteration elsewhere in the system. We outline the precise computational conditions required for Residual Normality to hold in development, and suggest that in many cases it is an unlikely hypothesis. We conclude that in developmental disorders, inferences from behavioural deficits to underlying structure crucially depend on developmental conditions, and that the process of ontogenetic development cannot be ignored in constructing models of developmental disorders

    Dopamine and the development of executive dysfunction in autism spectrum disorders.

    Get PDF
    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life
    corecore