327 research outputs found

    Uncertainty relation and non-dispersive states in Finite Quantum Mechanics

    Get PDF
    In this letter, we provide evidence for a classical sector of states in the Hilbert space of Finite Quantum Mechanics (FQM). We construct a subset of states whose the minimum bound of position -momentum uncertainty (equivalent to an effective â„Ź\hbar) vanishes. The classical regime, contrary to standard Quantum Mechanical Systems of particles and fields, but also of strings and branes appears in short distances of the order of the lattice spacing. {}For linear quantum maps of long periods, we observe that time evolution leads to fast decorrelation of the wave packets, phenomenon similar to the behavior of wave packets in t' Hooft and Susskind holographic picture. Moreoever, we construct explicitly a non - dispersive basis of states in accordance with t' Hooft's arguments about the deterministic behavior of FQM.Comment: Latex file, 16pages, 3 ps-figures, version to appear in Phys.Lett.

    Square-integrability of multivariate metaplectic wave-packet representations

    Get PDF
    This paper presents a systematic study for harmonic analysis of metaplectic wave-packet representations on the Hilbert function space L2(Rd). The abstract notions of symplectic wave-packet groups and metaplectic wave-packet representations will be introduced. We then present an admissibility condition on closed subgroups of the real symplectic group Sp(Rd), which guarantees the square-integrability of the associated metaplectic wave-packet representation on L2(Rd)

    Implementation of group-covariant POVMs by orthogonal measurements

    Full text link
    We consider group-covariant positive operator valued measures (POVMs) on a finite dimensional quantum system. Following Neumark's theorem a POVM can be implemented by an orthogonal measurement on a larger system. Accordingly, our goal is to find an implementation of a given group-covariant POVM by a quantum circuit using its symmetry. Based on representation theory of the symmetry group we develop a general approach for the implementation of group-covariant POVMs which consist of rank-one operators. The construction relies on a method to decompose matrices that intertwine two representations of a finite group. We give several examples for which the resulting quantum circuits are efficient. In particular, we obtain efficient quantum circuits for a class of POVMs generated by Weyl-Heisenberg groups. These circuits allow to implement an approximative simultaneous measurement of the position and crystal momentum of a particle moving on a cyclic chain.Comment: latex, 25 pages, 3 figure

    Phase-averaged transport for quasi-periodic Hamiltonians

    Full text link
    For a class of discrete quasi-periodic Schroedinger operators defined by covariant re- presentations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl-Heisenberg-Gabor lattices of coherent states is given
    • …
    corecore