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Abstract
This paper presents a systematic study for harmonic analysis of metaplectic 
wave-packet representations on the Hilbert function space ( )RL d2 . The
abstract notions of symplectic wave-packet groups and metaplectic wave-
packet representations will be introduced. We then present an admissibility 
condition on closed subgroups of the real symplectic group ( )RSp d , which
guarantees the square-integrability of the associated metaplectic wave-packet 
representation on ( )RL d2 .

Keywords: symplectic group, multivariate metaplectic wave-packet 
representations, symplectic wave-packet group, metaplectic wave-packet 
transform, square-integrable representations

1. Introduction

Many intresting applications of mathematical analysis in theoretical physics (e.g. par-
axial optic, quantum mechanics, etc) prompt particular forms of multivariate metaplectic  
(Shale-Weyl) representation [14–16, 25, 41] under various names; quadratic-phase transforms, 
linear canonical transforms [10, 36], Fresnel transforms, fractional Fourier transforms [54],  
Gaussian integral [51]. In the following article, we shall approache the topic from the classical 
theory of coherent state transforms [3].

The abstract theory of covariant/coherent state transforms is the mathematical basis of 
modern high frequency approximation techniques and time-frequency (resp. time-scale) anal-
ysis [37, 44, 48, 49]. Over the last decades, abstract and computational aspects of covariant/
coherent state transforms have achieved significant popularity in mathematical and theoretical 
physics, see [3, 5, 37, 47] and references therein. Coherent state transforms are classically 
obtained by a given coherent function systems. Then admissibility conditions on the coherent 
system imply analyzing of functions with respect to the system by the inner product evaluation 
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[22, 23, 35]. From harmonic and functional analysis aspects such coherent structures are clas-
sically originated from squar-integrable representations of locally compact groups, see [33, 46,  
50, 59] and references therein. Commonly used coherent states transforms in theoretical phys-
ics, computational science and engineering are wavelet transform [49], Gabor transform [37], 
wave-packet transform [27–30, 32].

The mathematical theory of Gabor analysis is based on the coherent state generated by 
modulations and translations of a given window function [4, 6, 31, 34]. Wavelet analysis is 
a time-scale analysis which is based on the continuous affine group as the group of dilations 
and translations [9]. Abstract harmonic analysis extensions of wavelet analysis are studied in 
[7, 49]. The theory of wave packet transform over the real line has been extended for higher 
dimensions by several authors, see [11]. The mathematical theory of classical wave-packet 
analysis on the real line is originated from classical dilations, translations, and modulations 
of a given window function. The mathematical theory of wave-packet analysis as a coherent 
state analysis has been recently abstracted in the setting of locally compact Abelian groups in 
[28]. In a nutshell, wave-packet analysis which is also well-known as Gabor-wavelet analysis 
is a shrewd extensions of the two most prominent coherent states analysis, namely Gabor and 
wavelet analysis.

The following paper consists of abstract aspects of nature of metaplectic wave-packet 
transforms over ( )RL d2 . This paper aims to introduce the notion of metaplectic wave-packet 
transform over the Hilbert function space ( )RL d2 . We shall address analytic aspects of meta-
plectic wave-packet transforms over ( )RL d2  using tools from representation theory of locally 
compact groups and abstract harmonic analysis.

This article contains 6 sections. Section  2 is devoted to fix notations and a summary 
of classical Fourier analysis on Rd and classical harmonic analysis on projective repre-
sentations and square-integrable representations over locally compact groups. In section 3 
we present a brief study of harmonic analysis over the real symplectic group ( )RSp d . We 
introduce the abstract notion of symplectic wave-packet groups associated to closed sub-
groups of ( )RSp d . We shall also show that the group structure of symplectic wave-packet 
groups canonically determines an irreducible projective (unitary) group representation of 
the group, which is called as metaplectic wave-packet representation. We then present an 
admissibility criterion on closed subgroups of ( )RSp d  to guarantee the square-integrability 
of the associated metaplectic wave-packet representation on ( )RL d2 . As an application of 
our results we study analytic aspects of metaplectic wave-packet transforms associated to 
closed subgroups of the real symplectic goup ( )RSp d . It is also shown that, if H is a compact 
subgroup of ( )RSp d , for all non-zero window functions we can continuously reconstruct any 
L2-function from metaplectic wave-packet coefficients. Finally, we will illustrate applica-
tion of these techniques in the case of well-known compact subgroups of the real symplectic 
group ( )RSp d .

2. Preliminaries and notations

Let G be a locally compact group and H be a Hilbert space. Let ( )U H  be the multiplicative 
group of all unitary operators on H. A projective group representation of G on H is a mapping 

→ ( )Γ U HG:  which satisfies

( ) ( ) ( ) ( )        Γ = Γ Γ ∈′ ′ ′ ′gg z g g g g g g G, for all ,
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where ( )′z g g,  are unimodular numbers. The projective group representation Γ is called irre-
ducible on H, if {0} and H are the only closed Γ-invariant subspaces of H.

A projective group representation ( )Γ H,  is called left square integrable if there exists a 
non-zero vector ζ∈H such that

⟨ ( ) ⟩ ( )∫ ζ ζ| Γ | <∞g m g, d ,
G

G
2

for some left Haar measure mG of G. Similarly, it is called right square integrable if there exists 
a non-zero vector ζ∈H such that

⟨ ( ) ⟩ ( )∫ ζ ζ| Γ | <∞g n g, d ,
G

G
2

for some right Haar measure nG of G.
Since Rd is an LCA (locally compact Abelian) group, according to the Schur’s lemma, all 

irreducible representations of Rd are one-dimensional. Thus any irreducible unitary repre-
sentation ( )π πH,  of Rd satisfies =π CH  and hence there exists a continuous homomorphism 
ω of Rd into the circle group T, such that for each ( )= ∈Rx x x, ..., d

d
1  and ∈Cz  we have 

( )( ) ( )π ω=x z x z. Such homomorphisms are called characters of Rd and the set of all such 

characters of Rd is denoted by R�d . If R�d  equipped with the topology of compact convergence 
on Rd which coincides with the w*-topology that R�d  inherits as a subset of ( )∞ RL d , then R�d  
with respect to the product of characters is an LCA group which is called the dual (character) 

group of Rd. The character group R�d , that is the multiplicative group of all continuous additive 
homomorphisms of Rd into the circle group T, can be parametrizes by Rd via the following 

duality notation R�d  with Rd via

( ) ⟨ ⟩ω ω= = π ω ⋅x x, e x2 i T

for each ω∈ R�d . The linear map ( ) → ( )R RR
�F CL: d d1

d  defined by ( ) =R� �Ff f fd  via

( )( ) ( ) ( ) ( ) ( )∫ω ω ω= =R
R

R
�F f f f s s m sd ,d

d
d (2.1)

is called the Fourier transform on Rd. It is a norm-decreasing ∗-homomorphism from ( )RL d1  

into ( )R�C d
0  with a uniformly dense range in ( )R�C d

0 . If a Haar measure Rm d on Rd is given 

and fixed then there is a Haar measure 
R�m d  on R�d , which is called the normalized Plancherel 

measure associated to Rm d, such that the Fourier transform (2.1) is an isometric transform on 
( ) ( )∩R RL Ld d1 2  and hence it can be extended uniquely to a unitary isomorphism from ( )RL d2  

onto ( )R�L d2 , see [24]. Then each ( )∈ Rf L d1  with ( )∈ R��f L d1  satisfies the following Fourier 
inversion formula

( ) ( ) ( ) ( )     ∫ ω ω ω= ∈R
R R
�
� �f s f s m sd for a.e. .d

d d (2.2)

For ∈Rx d and ( )∈ Rf L d2 , the translation of f by x is defined by Tx f ( y )  =  f(y  −  x) for ∈Ry d. 

The translation ( ) → ( )R RT L L:x
d d2 2  is a unitary operator. For ω∈ R�d  and ( )∈ Rf L d2 , the mod-

ulation of f by ω is defined by ω=ωM f y y f y( ) ( ) ( ) for ∈Rs d. The modulation operator 
( ) → ( )ω R RM L L: d d2 2  is unitary as well. The modulation and translation operators are con-

nected via the Fourier transform by

A Ghaani Farashahi J. Phys. A: Math. Theor. 50 (2017) 115202
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 = =ω ω− ̂̂ � �M f T f T f M f, ,k k (2.3)

for all ( )∈ Rf L d2 , ω∈ R�d , and ∈Rk d, see [24, 38, 52].
From now on and in this article, for a fixed Haar (Lebesgue) measure Rm d on 

Rd, by µR d2  or µ
×R R�d d  we mean the induced product measure on = ×R R R�d d d2 , that is 

( ) ( ) ( )µ ω ω=R R R�x m x md , d dd d d2 , where 
R�m d  is the normalized Plancherel measure associated 

to Rm d.

For ( )λ ω= ∈ = ×R R R�x, d d d2 , the time-frequency shift operator ( ) ( ) → ( )π λ R RL L: d d2 2  
is defined by ( )π λ = ωM Tx. Then, it is well-known as the Moyal’s formula, that

〈 ( ) 〉 ( ) ∥ ∥ ∥ ∥( ) ( ) ( )∫ π λ µ λ| | =
× ×� �R R

R R R R Rf g f g, d ,L L L
2 2 2

d d
d d d d d2 2 2 (2.4)

for all ( )∈ Rf g L, d2 , see [37] and classical references therein.

3. Harmonic analysis over symplectic groups

Throughout this section, we briefly present basics of classical harmonic analysis over the real 
symplectic group ( )RSp d , for a complete picture of this matrix group we referee the readers to 
[18–20, 44–46] and the comprehensive list of classical references therein.

For ⩾d 1, let ( ) → ( )Ω × ×C RM M: d d d d2 2  be the linear map given by

( )( )Ω + = −A B A B
B A

i : ,

for all ( )∈ × RA B M, d d .

A matrix ( )∈ × RS M d d2 2  is called symplectic if and only if = =S JS SJS JT T , with =J  

−
×

×

⎛
⎝
⎜

⎞
⎠
⎟I

I
0

0
d d

d d
, where ×Id d is ×d d identity matrix.. The group consists of all symplectic 

matrices is called the (real) symplectic group which is denoted by ( )RSp d . It is a simple non-
compact finite-dimensional real Lie group. In block-matrix notation, the symplectic group 

( )RSp d  consists of all real ×d d2 2  matrices in block form

( ) ( )= ∈ × RS A B
C D

A B C D M, , , , ,d d

such that =A C C AT T , =B D D BT T , and − = ×A D C B IT T
d d.

The real symplectic group ( )RSp d  satisfies the following decomposition, namely Iwasawa 
(Gram-Schmidt) decomposition, ( ) =R KANSp d  where [55, 56]

{ }( )( ) ( )= Ω + = − + ∈ CK A B A B
B A

A B d: i : i U , ,d (3.1)

{ ( ) }= >− −A h h h h h h: diag , ..., , , ..., : , ..., 0 ,d d d1 1
1 1

1 (3.2)

and

( )          = =−

⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎭

N
A B

A
A AB BA:

0
: is unit upper triangular, ,T

T T
1 (3.3)

A Ghaani Farashahi J. Phys. A: Math. Theor. 50 (2017) 115202
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If we regard elements of ( )RSp d  as linear transformations over the vector space (time- 

frequency phase space) = ×R R R�d d d2 , then the symplectic group ( )RSp d  is precisely the 

group of all linear automorphisms of ×R R�d d  which preserve the canonical (symplectic) 
form. Also, it is easy to check that, if µ

×R R�d d  is the Lebesgue measure on ×R R�d d , then

( ) ( )µ λ µ λ⋅ =
× ×R R R R� �Sd d ,d d d d (3.4)

for all ( )∈ RS Sp d .
A metaplectic operator on ( )RL d2  is a unitary operator ( ) → ( )R RU L L: d d2 2  which satisfies 

the following intertwining identity

( ) ( ) ( ) ( )π λ α λ π λ λ= ⋅ ∈ ×− R R�U U S , d d1 (3.5)

for some ( )∈ RS Sp d  and a second degree character →α ×R R T�: d d .
In coordinate terms, a metaplectic operator on ( )RL d2  is a unitary operator ( ) → ( )R RU L L: d d2 2  

which satisfies the following intertwining identity

( ) (( ) )α ω ω= ∈ ×ω ω ω
−

⋅ + ⋅ ⋅ + ⋅ R R�UM T U x M T x, , ,x C x D A x B
d d1

for some ( )∈ RS Sp d  and a second degree character →α ×R R T�: d d . In this case, the operator 
U is called as the metaplectic operator on ( )RL d2  associated to the symplectic matrix S.

For ( )∈ RH dGL , , the dilation operator ( ) → ( )R RD L L:H
d d2 2  is given by

= | | ⋅− −D f t H f H t: det ,H
1 2 1( ) ( )/

for all ( )∈ Rf L d2  and ∈Rt d.
For ( )∈ × RC Md d  with C  =  CT, the chrip multiplication operator ( ) → ( )R RE L L:C

d d2 2  is 
defined by

( ) ( ) ( )π= ⋅E f t t Ct f t: exp i ,C
T

for all ( )∈ Rf L d2  and ∈Rt d.
The following proposition [43] shows that the Fourier transform, dilations, and chrip mul-

tiplications can be considered as metaplectic operators.

Proposition 3.1. Let ( )∈ RH dGL ,  and ( )∈ × RC Md d  with CT  =  C. Then

 (1) The Fourier transform ( ) → ( )R RRF L L: d d2 2
d  is a metaplectic operator on ( )RL d2   

associated to the symplectic matrix 
−

⎜ ⎟
⎛
⎝

⎞
⎠

0 1
1 0

 and satisfies the following intertwining identity

( ) ( )π ω π ω= −π ω− ⋅
R R
F Fx x, e ,x1 2 i

d d

T

 (2) The dilation operator ( ) → ( )R RD L L:H
d d2 2  is a metaplectic operator on ( )RL d2   

associated to the symplectic matrix 
( )−

⎛
⎝
⎜

⎞
⎠
⎟H

H
0

0 T 1  and satisfies the following intertwining 

identity

( ) ( ( ) )π ω π ω= ⋅ ⋅− −D x D H x H, ,H H
T1 1

 (3) The chrip multiplication operator ( ) → ( )R RE L L:C
d d2 2  is a metaplectic operator on 

( )RL d2  associated to the symplectic matrix ⎜ ⎟
⎛
⎝

⎞
⎠C

1 0
1

 and satisfies the following intertwining  

identity

A Ghaani Farashahi J. Phys. A: Math. Theor. 50 (2017) 115202
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( ) ( )π ω π ω= ⋅ +π− − ⋅ ⋅E x E x C x, e ,C C
x C x1 i T

Then the following [43] result gives us a unified and also explicit construction of meta-
plectic operators on ( )RL d2  by splitting them into simple operators given in proposition 3.1.

Theorem 3.2. Let ( ) ( )= ∈ RS A B
C D

Sp d  be given. Let ⊆I NA d be such that the columns 

of A indexed by IA form a basis for ( )R A  and ( )Λ∈ × ZMd d  be the diagonal matrix whose  

diagonal is 0 at IA and 1 at the complementary set \N Id A. Let = + ΛH A B:  and = + ΛQ C D: . 
Then ( )∈ RH dGL ,  and the unitary operator

= −
− −Λ− −

R RF FU E D E E:S QH H H B
1
d d1 1 (3.6)

is the metaplectic operator associated to the symplectic matrix S.

4. Multivariate metaplectic wave packet representations

In this section we present the abstract structure of multivariate symplectic wave-packet groups 
associated to closed subgroups of the real symplectice group ( )RSp d . Then we introduce the 
associated multivariate metaplectic wave-packet representation. We shall also study classical 
properties of these representations.

For a closed subgroup H of the real symplectic group ( )RSp d , the underlying manifold

( ) = × × = × ×G H H R R H R R�d, : ,d d d d

equipped with operations given by

( ) ( ) ( )′λ λ λ λ= ⋅ +′ ′ ′ ′−�S S SS S, , : , ,1 (4.1)

λ λ= − ⋅− −S S S, : , ,1 1( ) ( ) (4.2)

is a group with the identity element ( )1, 0, 0 .
We call this group as symplectic wave-packet group associated to the subgroup H over Rd. 

For simplicity, we may use ( )G H  instead of ( )G Hd, , at times. The groups H and ×R R�d d  can 
be considered as closed subgroups of ( )G H .

Then we present the following theorem concerning basic properties of the symplectic 
wave-packet group ( )G H  in the framework of harmonic analysis.

Theorem 4.1. Let H be a closed subgroup of the symplectic group ( )RSp d  with the modu-
lar function ∆H and Hm  (resp. Hn ) be a left (resp. right) Haar measure of H. Then, ( )G H  is a  

locally compact group with a left Haar measure given by ( ) ( ) ( )( ) λ µ λ=
×G H H R R�m S m Sd , : d d d d , 

and a right Haar measure given by ( ) ( ) ( )( ) λ µ λ=
×G H H R R�n S n Sd , : d d d d .

Proof. It can readily be checked that the mapping →τ × × ×H R R R R� �: d d d d  given by 
( ) →λ λ⋅S S,  is continuous. This automatically implies that the symplectic wave-packet group 

( )G H  is a locally compact group. Let ( ( ))∈ G HCF c  and ( ) ( )λ= ∈G HSg , . Since the Lebesgue 
measure µ

×R R�d d  is translation invariant and also Hm  is a left Haar measure on H, we have

A Ghaani Farashahi J. Phys. A: Math. Theor. 50 (2017) 115202
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( ) ( ) (( ) ( )) ( ) ( )

(( )) ( ) ( )

(( )) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

′

′

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ µ λ

λ µ λ

λ µ λ

λ µ λ

⋅ =

= ⋅ +

= ⋅ +

=

=

=

= =

′ ′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′ ′ ′

× ×

×

−
×

×

−
×

× ×

× ×

× ×

× ×

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�
� �

� �

� �

� �

� �

� �

� �

G H
G H

H R R
H R R

H R R
H R R

H R R R R H

H R R R R H

R R H
H R R

R R H
H R R

H R R
H R R G H

G H

F m F S S m S

F SS S m S

F SS S m S

F SS m S

F SS m S

F S m S

F S m S F m

g g g

g g

d , , d d

, d d

, d d

, d d

, d d

, d d

, d d d ,

1

1

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

which implies that ( ) ( ) ( )( ) λ µ λ=
×G H H R R�m S m Sd , : d d d d  is a left Haar measure for ( )G H . Simi-

larly, using (3.4), Fubini’s theorem and also since the Lebesgue measure µ
×R R�d d  is translation 

invariant, we get

( ) ( ) (( ) ( )) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ µ λ

λ µ λ

λ µ λ

λ µ λ

⋅ =

= ⋅ +

= ⋅ +

= + ⋅

= +

=

=

=

= =

′ ′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′ ′ ′

× ×

×

−
×

×

−
×

× ×

× ×

× ×

× ×

× ×

× ×

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�
� �

� �

� �

� �

� �

� �

� �

� �

� �

G H
G H

H R R
H R R

H R R
H R R

H R R R R H

H R R R R H

H R R R R H

H R R R R H

R R H
H R R

R R H
H R R

H R R
H R R G H

G H

F n F S S n S

F S S S n S

F S S S n S

F S S S n S

F S S n S

F S S n S

F S S n S

F S n S

F S n S F n

g g g

g g

d , , d d

, d d

, d d

, d d

, d d

, d d

, d d

, d d

, d d d ,

1

1

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

implying that ( ) ( ) ( )( ) λ µ λ=G H H Rn S n Sd , : d d d2  is a right Haar measure for ( )G H . □
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Next we deduce the following consequences.

Corollary 4.2. Let H be a closed subgroup of the symplectic group ( )RSp d  with the modular 
function ∆H and Hm  (resp. Hn ) be a left (resp. right) Haar measure of H. Then

 (1) The modular function ( ) → ( )( )∆ ∞G HG H : 0,  is given by ( ) ( )( ) λ∆ = ∆G H HS S, : . In par-
ticular, the symplectic wave-packet group ( )G H  is unimodular if and only if H is uni-
modular.

 (2) The closed subgroup H is normal in ( )G H  if and only if { }=H I .

 (3) The closed subgroup ×R R�d d  is a normal Abelian subgroup of ( )G H .

Proof. 

 (1) Let ( ( ))∈ G HCF c  be a non-zero and positive function. Also, let ( ) ( )λ ∈G HS, . Then we 
can write

( ) ( ) ( ) (( ) ( )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )
( )

( )

( )
( )

∫ ∫

∫ ∫
∫ ∫
∫ ∫
∫ ∫
∫ ∫

∫ ∫

∫ ∫

∫

λ λ λ λ λ λ

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ λ µ λ

λ µ λ

λ µ λ

λ µ λ

λ λ

∆ ⋅ =

=

= ⋅ +

= + ⋅

= +

=

=

= ∆ ⋅

= ∆ ⋅

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

−

× ×

×

−
×

× ×

× ×

× ×

× ×

−

× ×

−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

�� �

� �

� �

� �

� �

� �

� �

G H
G H

G H
G H

G H

H R R
H R R

H R R
H R R

H R R
H R R

H R R
H R R

H R R
H R R

R R H
H R R

H
R R H

H R R

H
G H

G H

S F S m S F S S m S

F S S m S

F S S S m S

F S S m S S

F S S m S

F S S m S

F S S m S

S F S m S

S F S m S

, , d , , , d ,

, , d d

, d d

, d d

, d d

, d d

, d d

, d d

, d , ,

1

1

1

1

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

  implying that ( ) ( )( ) λ∆ = ∆G H HS S,  for all ( ) ( )λ ∈G HS, .
  (2) and (3) are straightforward from structure of the symplectic wave-packet group ( )G H .

 □

Remark 4.3. From now on, once the left (resp. right) Haar measure Hm  (resp. Hn ) over H 
is fixed, we call the associated left (resp. right) Haar measure on the symplectic wave-packet 
group ( )G H , which is constructed via theorem 4.1, as left (resp. right) Haar measure induced 
by Hm  (resp. Hn ).

For ( ) ( ) ( )λ ω= = ∈G HS A xg , , , , define the linear operator ( ) ( ) → ( )Γ R RH L Lg : d d2 2  by

( ) ( )π λΓ = = ωH U U T Mg : .S S x (4.3)
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The following theorem shows that ( )ΓH�g g  given by (4.3), defines an irreducible projec-
tive group representation of the symplectic wave-packet group ( )G H  on the Hilbert function 
space ( )RL d2 .

Theorem 4.4. Let H be a closed subgroup of the symplectic group ( )RSp d  and ( )G H  be the 
associated symplectic wave-packet group. Then ( ) → ( ( ))Γ G H RH U L: d2  given by ( )ΓH�g g  
is an irreducible projective group representation of the locally compact group ( )G H  on the 
Hilbert function space ( )RL d2 .

Proof. Plainly, we have ( ) ( )Γ =H RI1, 0, 0 L d2 , where ( ) → ( )R RI L L: d d2 2  is the identity op-
erator. Let ( ) ( ) ( )λ λ ∈′ ′ G HS S, , , . Invoking definition of ( )λΓH S, , it is evident to check that 

( )λΓH S,  is a unitary operator, because it is the composition of two unitary operators, namely 

US and ( )π λ . Let →β ×R R T�: d d  be a second degree character such that the intertwining 
identity (3.5) holds for ′S . Hence, we get

( ) ( ) ( ( ))
( ) ( )

π λ β λ π λ
β λ π λ

⋅ = ⋅ ⋅ ⋅
= ⋅

′ ′ ′ ′

′

− − −

−
′ ′

′

U S S S S U

S U .
S S

S

1 1 1

1

Also, the operator ′U US S  is a metaplectic operator associated to ′SS . Thus, there exists a com-
plex number ( )∈′ Tz S S,  such that ( )= ′′ ′U z S S U U,SS S S . Then we can write

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

π λ λ π λ λ
π λ π λ β λ π λ π λ

⋅ + = ⋅ +
= ⋅ = ⋅

′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

− −

− −
′ ′

′ ′

U S z S S U U S

z S S U U S z S S S U U

,

, , .
SS S S

S S S S

1 1

1 1

Therefore, we get

(( ) ( )) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

λ λ λ λ
π λ λ

β λ π λ π λ β λ

λ λ

Γ = Γ ⋅ +
= ⋅ +

= ⋅ = ⋅

Γ Γ

′ ′ ′ ′ ′

′ ′

′ ′ ′ ′ ′

′ ′

−

−

− −

′

′

H H

H H

�S S SS S

U S

z S S S U U z S S S

S S

, , ,

, ,

, , ,

SS

S S

1

1

1 1

which implies that ( ) → ( ( ))Γ G H RH U L: d2  is a projective group representation of the locally 
compact group ( )G H  on the Hilbert function space ( )RL d2 . Since restriction of ΓH to the closed 

subgroup ×R R�d d  is equivalent with the projective Shrödinger representation of the subgroup 
×R R�d d  on ( )RL d2 , we deduce that ΓH is irreducible on ( )RL d2  as well. □

Remark 4.5. 

 (i) The restriction of the metaplectic wave-packet representation to the closed subgroup 

×R R�d d  is unitarily equivalent to the projective Schrödinger representation of ×R R�d d  
on ( )RL d2 , see [37] and references therein.

 (ii) Let H be a closed subgroup of the symplectic group ( )RSp d  which contains ( )RdGL , . 
Then the restriction of the metaplectic wave-packet representation to the closed subgroup 

( )× ×R R R�dGL , d d  is unitarily equivalent to the classic wave-packet representation 
associated to the action of the multiplicative matrix group ( )RdGL ,  on the time-frequency 

plan ×R R�d d , see [28, 42, 57, 58] and the comprehensive list of references therein.
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5. Square-integrability of multivariate metaplectic wave-packet 
representations

Throughout this section, we study the square-integrability of multivariate metaplectic wave-
packet representations. We still assume that H is a closed subgroup of the symplectic group 

( )RSp d .
It should be mentioned that in the framework of classical voice/coherent state transforms 

[59], the problem of admissibility conditions for subgroups of the symplectic group studied 
from an algebraic perspective in [1, 2, 12, 13, 17, 21].

Let ( )ψ∈ RL d2  be a window function. The metaplectic wave-packet transform of ( )∈ Rf L d2  
with respect to the window function ψ is given by the voice transform associated to the meta-
plectic wave-packet representation, that is

ω ω ψ ψ= Γ =ψ ωV H R Rf S x f S x f U T M, , : , , , , ,L S x Ld d2 2( ) 〈 ( ) 〉 〈 〉( ) ( ) (5.1)

for ( )ω ∈ × ×H R R�S x, , d d .

Remark 5.1. 

 (i) The restriction of the metaplectic wave-packet transform to the closed subgroup ×R R�d d  
is the continuous Gabor (short-time Fourier) transform over ( )RL d2 , see [37] and refer-
ences therein.

 (ii) Let H be a closed subgroup of ( )RSp d  which contains ( )RdGL , . Then the restriction of 

the metaplectic wave-packet transform to the closed subgroup ( )× ×R R R�dGL , d d  is the 
classic wave-packet transform induced by the action of the multiplicative matrix group 

( )RdGL ,  on the time-frequency plan ×R R�d d , see [28] and the comprehensive list of 
references therein.

The following theorem can be considered as a constructive topological criterion on the 
closed subgroup H, which guarantees the square-integrability of the associated metaplectic 
wave-packet representation ΓH on the Hilbert function space ( )RL d2 .

Theorem 5.2. Let H be a closed subgroup of the real symplectic group ( )RSp d  and 
( )G H  be the associated symplectic wave-packet group. Then, the metaplectic wave-packet  

representation ( ) → ( ( ))Γ G H RH U L: d2  is left (resp. right) square-integrable over the symplec-
tic wave-packet group ( )G H  if and only if H is compact. In this case, all non-zero functions in 
the Hilbert function space ( )RL d2  are square-integrable over ( )G H  with respect to ΓH.

Proof. Let Hm  be a left Haar measure for H. Then by theorem 4.1, the positive Radon meas-

ure ( )G Hm  given by ( ) ( ) ( )( ) λ µ λ=
×G H H R R�m S m Sd , d d d d  is a left Haar measure for the symplec-

tic wave-packet group ( )G H . Now, suppose that the metaplectic wave-packet representation 
ΓH be left square-integrable over ( )G H . Then, there exists a non-zero function ( )ψ∈ RL d2  such 
that

⟨ ( ) ⟩ ( )
( )

( ) ( )∫ ψ ψ| Γ | <∞
G H

H R G Hmg g, d .L
2

d2

Then, using Fubini’s theorem and also the Moyal’s formula (2.4), we get
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⟨ ( ) ⟩ ( ) ⟨ ( ) ⟩ ( ) ( )

⟨ ( ) ⟩ ( )

( )

⟨ ( ) ⟩ ( ) ( )

⟨ ( ) ⟩ ( ) ( )

(∥ ∥ ∥ ∥ ) ( )

∥ ∥ ∥ ∥ ( )

( )
( ) ( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫

∫

ψ ψ ψ λ ψ µ λ

ψ λ ψ µ λ

ψ π λ ψ µ λ

ψ π λ ψ µ λ

ψ ψ

ψ ψ

| Γ | = | Γ |

= | Γ |

= | |

= | |

=

=

× ×

× ×

× ×

×

∗
×

∗

∗

G H
H R G H

H R R
H R H R R

H R R H R R R

H

H R R
R R R H

H R R
R R R H

H R R H

R H R H

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

� �

� �

� �

� �

m S m S

S

m S

U m S

U m S

U m S

U m S

g g, d , , d d

, , d

d

, d d

, d d

d

d .

L L

L

S L

S L

S L L

L S L

2 2

2

2

2

2 2

2 2

d
d d

d d d

d d d d d

d d
d d d

d d
d d d

d d

d d

2 2

2

2

2

2 2

2 2

Since metaplectice operators are unitary on ( )RL d2 , we deduce that

∫ ∫
∫

∫

ψ ψ ψ

ψ ψ

ψ ψ

=

=

= | Γ | <∞

∗

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

R H
H R H R H

R H R H

G H H R G H

m m S

U m S

mg g

d d

d

, d .

L L L

L S L

L

4 2 2

2 2

2

d d d

d d

d

2 2 2

2 2

2

∥ ∥ ∥ ∥ ∥ ∥ ( )

∥ ∥ ∥ ∥ ( )

〈 ( ) 〉 ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

Thus ( )<∞HHm  and hence H is compact. Conversely, let H be a compact subgroup of 
( )RSp d  with the probability Haar measure σH, that is the unique positive Radon measure σH 

which is both left and right Haar measure of H with ( )σ =HH 1. Then, each non-zero function 
( )ψ∈ RL d2  satisfies

〈 ( ) 〉 ( ) ( ) ∥ ∥
( )

( ) ( )∫ ψ λ ψ σ µ λ ψ| Γ | =
×�G H

H R H R R RS S, , d d ,L L
2 4

d d d d2 2 (5.2)

which implies the square-integrability of the metaplectic wave-packet representation ΓH over 
the symplectic wave-packet group ( )G H . □

As a consequence of theorem 5.2, we deduce the following orthogonality relation concern-
ing the metaplectic wave-packet transforms.

Corollary 5.3. Let H be a compact subgroup of the real symplectic group ( )RSp d  with the 
probability Haar measure σH and ( )G H  be the associated metaplectic wave-packet group with 
the induced Haar measure ( )G Hm  by σH. Also, let ( )ψ ϕ∈ RL, d2  be non-zero window functions 
and ( )∈ Rf g L, d2 . Then, we have

ϕ ψ=ψ ϕV V G H R RG H
f g f g, , , .L m L L, d d2 2 2〈 〉 〈 〉 〈 〉( ( ) ) ( ) ( )( ) (5.3)

Proof. The same argument used in theorem 5.2 implies that

ψ=ψV G H R RG Hf f .L m L L,
2 2 2

d d2 2 2∥ ∥ ∥ ∥ ∥ ∥( ( ) ) ( ) ( )( ) (5.4)
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Then (5.4) and also twice applying the Polarization identity guarantees (5.3). □

Next result is an inversion (reconstruction) formula for the metaplectic wave-packet trans-
form defined by (5.1).

Theorem 5.4. Let H be a compact subgroup of the real symplectic group ( )RSp d  with the 
probability Haar measure σH and ( )G H  be the associated symplectic wave-packet group with 
the induced Haar measure ( )G Hm  by σH. Also, let ( )ψ∈ RL d2  be a non-zero window function. 
Then, each function ( )∈ Rf L d2  can be recovered continuously in the weak sense of the Hil-
bert function space ( )RL d2 , from metaplectic wave-packet coefficients generated by ψ, via the  
following resolution of the identity formula;

∥ ∥ ( ) ( )   ( ) ( )( ) ∫ ∫ψ λ λ ψ σ µ λ= ⋅ Γψ
−

× ×
V
� �R H R R

H H R R
f f S S S, , d d .

L
2

d
d d d d2 (5.5)

Proof. Let ( )ψ∈ RL d2  be a non-zero window function. For ( )∈ Rf L d2 , define

( ) ( )   ( ) ( )( ) ∫ ∫ ∫ λ λ ψ σ µ λ= Γψ ψ ×
V
� �H R R

H H R R
f f S S S: , , d d ,

d d d d

in the weak sense of the Hilbert function space ( )RL d2 . Using (5.3), for all ( )∈ Rg L d2 , we have

〈 〉 ( )〈 ( ) 〉   ( ) ( )

( )〈 ( ) 〉   ( ) ( )

( ) ( )  ( ) ( )

〈 〉 ∥ ∥ 〈 〉

( ) ( ) ( )

( )

( ( ) ) ( ) ( )( )

∫ ∫
∫ ∫
∫ ∫

λ λ ψ σ µ λ

λ λ ψ σ µ λ

λ λ σ µ λ

ψ

= Γ

= Γ

=

= =

ψ ψ

ψ

ψ ψ

ψ ψ

× ×

× ×

× ×

V

V

V V

V V

� �

� �

� �

R
H R R

H R H R R

H R R
H R H R R

H R R
H R R

G H R RG H

f g f S S g S

f S g S S

f S g S S

f g f g

, , , , d d

, , , d d

, , d d

, , .

L L

L

L m L L,
2

d
d d

d d d

d d
d d d

d d d d

d d

2 2

2

2 2 2

Then ( )( ) ∈ψ Rf L d2  and ∥ ∥( ) ( )ψ=ψ Rf f
L
2

d2  in ( )RL d2 , which equivalently implies the reconstruc-
tion formula (5.5) in the weak sens of the Hilbert function space ( )RL d2 . □

Then we can present the following reproducing property for the metaplectic wave-packet 
representations.

Corollary 5.5. Let H be a compact subgroup of the real symplectic group ( )RSp d  with the 
probability Haar measure σH and ( )G H  be the associated symplectic wave-packet group with 
the induced Haar measure ( )G Hm  by σH. Let ( )ψ∈ RL d2  be a non-zero window function and 

ψH  be range of the metaplectic wave-packet transform ( ) → ( ( ) )( )ψ R G H G HV L L m: ,d2 2 . Then

 (1) ψH  is a closed subspace of ( ( ) )( )G H G HL m,2 .
 (2) ψH  is the unique reproducing kernel Hilbert space (RKHS) over ( )G H  associated to the 

positive definite kernel ( ) ( ) →×ψ G H G H CK :  given by

[( ) ( )] ⟨ ( ) ( ) ⟩ ( )λ λ π λ ψ π λ ψ=′ ′ ′ψ ′ RK S S U U, , , : , ,S S L d2

  for all ( ) ( ) ( )λ λ ∈′ ′ G HS S, , , .

Next corollary summarizes our recent results in terms of continuous frame theory [8, 53].

Corollary 5.6. Let H be a compact subgroup of the real symplectic group ( )RSp d  and 
( )ψ∈ RL d2  be a non-zero window function. Then the multivariate wave-packet system
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( ) { ( ) ( ) ( )}ψ λ ψ λ= Γ ∈A H G HH S S, : , : , ,

is a continuous tight frame for the Hilbert space ( )RL d2 .

6. Analysis of multivariate metaplectic wave-packet representations over  
compact subgroups of the real symplectic group Sp dR( )

Throughout this section, we study analytic aspects of compact subgroups of the real symplec-
tic group ( )RSp d  in the framework of coherent state metaplectic wave-packet analysis.

As it is proved in theorem 5.2, just compact subgroups of the real symplectic group ( )RSp d  
are interesting from the L2-theory and reproducing property of metaplectic wave-packet rep-
resentations. Roughly speaking, only compact subgroups of ( )RSp d  are highly important in 
the framework of coherent state metaplectic wave-packet analysis over the Hilbert function 
space ( )RL d2 , since they guarantee that the associated metaplectic wave-packet transforms 
over ( )RL d2  satisfy resolution of the identity formulas which are valid in the weak sense of the 
Hilbert function space ( )RL d2 .

6.1. The case d  =  1

In this case [26], the real symplectic group ( )RSp  is precisely the special linear group ( )RSL 2, , 
that is the the multiplicative matrix group, consists of all real ×2 2 matrices with determinant 
one. That is,

( ) = = ∈ − =R R⎜ ⎟
⎧⎨
⎩

⎛
⎝

⎞
⎠

⎫⎬
⎭S a b

c d
a b c d ad bcSL 2, : : , , , and 1 .

It is a simple real 3-dimensional Lie group. The special linear group ( )RSL 2,  satisfies the fol-
lowing decomposition, namely Iwasawa (Gram-Schmidt) decomposition, ( ) =R KANSL 2,  
where ( )=K SO 2  is the special orthogonal group consists of all ×2 2-orthogonal matrices 
with real entries and the subgroups A N,  are given by

{ }( )( )   ( )  = = > = = ∈− R⎜ ⎟
⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

A Nh
h

h
h x x xD N:

0
0

0 , : 1
0 1

.1

The group ( )RSL 2,  is non-compact but unimodular. A Haar measure of ( )RSL 2,  is given by

∫ ∫ ∫φ φ θ θ
θ θ

θ
−

π

−∞

∞ ∞
−⎜ ⎟

⎛

⎝
⎜⎜
⎛

⎝
⎜

⎞

⎠
⎟⎛
⎝

⎞
⎠
⎞

⎠
⎟⎟�

y x y

y
y y x

0 1
cos sin
sin cos

d d d ,
0 0

2
2

/
/

for all ( ( ))φ∈ RC SL 2,c .

6.1.1. Continuous compact subgroups of SL 2,R( ). The subgroup ( )=H SO 2  is the most 
significant compact subgroup of ( )RSL 2, . The compact subgroup ( )SO 2  is the multiplica-
tive matrix group consists of all ×2 2-orthogonal matrices with unit determinant. That is, 

( ) { ( ) ⩽ }θ θ π= <HSO 2 : 0 2 , where

θ θ θ
θ θ

=
−

⎜ ⎟
⎛
⎝

⎞
⎠H : cos sin

sin cos
.( )
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The subgroup ( )SO 2  is isomorphic, as a real Lie group, to the circle group, also known as 
( )=T U 1 , via the canonical Lie group isomorphism which sends the complex number θei  of 

absolute value 1, to the special orthogonal matrix ( )θH . From now on, we may call ( )SO 2  as 
the circle group, at times. It can be readily checked that, any closed subgroup of ( )RSL 2,  con-
jugated to ( )SO 2  is also compact in ( )RSL 2, . In addition, the circle group ( )SO 2  is a maximal 
compact subgroup of the multiplicative matrix Lie group ( )RSL 2, , which means that ( )SO 2  is 
a compact subgroup and it is maximal among such subgroups as well. Thus, any continuous 
(non-discrete) and compact subgroup is one-dimensional. Then by proposition 3.2 of [45], it 
is conjugated to the compact subgroup ( )SO 2 .

(i) The circle group. By the above argument and theoretical motivation, first we shall 
focus on analytic and constructive analysis of metaplectic wave-packet representations over 
the compact subgroup ( )SO 2 .

The normalized Haar measure ( )σSO 2  of the circle group ( )SO 2  is given by

( ) ( ) ( ) ( ( ))
( )

( )∫ ∫φ σ π φ θ θ=
π

−S S Hd 2 d ,
SO 2

SO 2
1

0

2

 (6.1)

for all ( ( ))φ∈ C SO 2 .
The following theorem characterizes analytic aspects of the metaplectic wave-packet rep-

resentation associated to the compact subgroup ( )SO 2 .

Theorem 6.1. Let ⩽θ π<0 2  and ( )=θ θU U: H  be the associated metaplectic operator to 
( )θH .

 (1) For / /θ π π≠ 2, 3 2, we have =θ θ θ θ−
−
R RF FU E D Etan cos

1
tan .

 (2) For /θ π= 2, we have / =π −
−
− −R RF FU E E E2 1

1
1 1.

 (3) For /θ π= 3 2, we have / =π − −
−
− −R RF FU E D E E3 2 1 1

1
1 1.

Proof. 

 (1) Let ⩽θ π<0 2  with / /θ π π≠ 2, 3 2. Then θ= ≠a : cos 0. Hence, using theorem 3.2 with 
a  =  d and θ= = −b c: sin , we get

= =θ θ θ θ
−
− −

−
− −R R R RF F F FU E D E E D E .ca a a b

1
tan cos

1
tan1 1

 (2) and (3) are straightforward from theorem 3.2. □

Also, we can deduce the following result.

Proposition 6.2. ( ( ))G SO 2  is a non-Abelian, non-compact, and unimodular group with a 
Haar measure given by

( ) ( ) ( ) ( ( ) ) ( )
( ( ))

( ( ))∫ ∫ ∫λ λ π θ λ θ µ λ=
π

−

× ×G
G

R R R R� �F S m S F H, d , 2 , d d ,
SO 2

SO 2
1

0

2

for all ( ( ( )))∈ GCF SO 2c .
Let ( )ψ∈ RL2  be a non-zero window function. The metaplectic wave-packet transform can 

be regarded as ( ) → (( ] )π × ×ψ R R R�V L L: 0, 22 2  given by ψV�f f , where

( ) ⟨ ⟩ ( )θ ω ψ=ψ θ ω RV f x f U M T, , : , ,x L2 (6.2)

for all ( ) ( ]θ ω π∈ × ×R R�x, , 0, 2 .
The Plancherel formula for (6.2) reads as follows;
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〈 〉 ( ) ( ) ∥ ∥ ∥ ∥( ) ( ) ( )∫ ∫ ψ θ µ ω π ψ| | = ⋅ ⋅
π

θ ω
×

×�
�

R R
R R R R Rf U M T x f, d d , 2 .x L L L

0

2
2 2 2

2 2 2

 

(6.3)

Then (6.3) guarantees the following reconstruction formula;

∫ ∫π ψ θ ω ψ θ µ ω= ⋅ ⋅
π

ψ θ ω
− −

×
×V

�
�R

R R R Rf f x U M T x2 , , d d , .L x
1 2

0

2
2( ) ∥ ∥ ( )   ( )( ) (6.4)

6.1.2. Finite subgroups of SL 2,R( ). Since every subgroup of the circle group is either dense 
or finite, we deduce that any closed proper subgroup of the circle group is finite.

Let ∈NN  be a positive integer and { }= ∈ =T Tz z: : 1N
N . Then TN is a finite subgroup of 

T of order N. One can also check that, ( ) { ( / )   }π= = −k N k NHSO 2 : 2 : 0, ..., 1N , is a finite 
subgroup of ( )SO 2  of order N. Also, it is easy to check that any finite subgroup of ( )RSL 2,  of 
order N, is conjugated to ( )SO 2N .

(i) Finite circle groups Let ∈NN  be a positive integer. The normalized Haar measure of 
( )SO 2N  is given by

( ) ( ) ( ( / ))
( )

( )∫ ∑φ σ φ π=
=

−

S S
N

k NHd :
1

2 ,
k

N

SO 2
SO 2

0

1

N
N

for all ( ) →φ C: SO 2N .

Proposition 6.3. Let ∈NN  be a positive integer. Then ( ( ))G SO 2N  is a non-Abelian,  
non-compact, and unimodular group with a Haar measure given by

( ) ( ) ( ( / ) ) ( )
( ( ))

( ( ))∫ ∫∑λ λ π λ µ λ=
=

−

× ×G
G

R R R R� �F S m S
N

F k NH, d ,
1

2 , d ,
k

N

SO 2
SO 2

0

1

N

for all ( ( ( )))∈ GCF SO 2c N .
Let ( )ψ∈ RL2  be a non-zero window function. The metaplectic wave-packet transform can 

be regarded as ( ) → ( )× ×ψ R Z R R�V L L: N
2 2  given by ψV�f f , where

ω ψ=ψ π ωV Rf k x f U M T, , : , ,k N x L2 2( ) 〈 〉/ ( ) (6.5)

for all ( )ω ∈ × ×Z R R�k x, , N .
The Plancherel formula for (6.5) reads as follows;

∫∑ ψ µ ω ψ| | = ⋅ ⋅π ω
=

−

×
×�
�

R R
R R R R Rf U M T x N f, d , .

k

N

k N x L L L
0

1

2
2 2 2

2 2 2〈 〉 ( ) ∥ ∥ ∥ ∥/ ( ) ( ) ( ) (6.6)

Then (6.6) guarantees the following reconstruction formula;

∫∑ψ ω ψ µ ω= ⋅ ⋅ ψ π ω
− −

=

−

×
×V

�
�R

R R R Rf N f k x U M T x, , d , .L
k

N

k N x
1 2

0

1

22∥ ∥ ( )   ( )( ) / (6.7)

6.2. The case d  >  1

It is well-known that Kd is the maximal compact subgroup of the real symplectic group ( )RSp d , 
see [18–20, 45] and the classical list of references therein. Also, it can readily be check that
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( ) ( )= ∩R RK dSp O 2 , .d
d

The following theorem presents an explicit construction for metaplectic operators associ-
ated to the maximal compact subgroup Kd.

Theorem 6.4. Let ( )= − ∈KS A B
B A d be given. Let ⊆I NA d be such that the columns of A 

indexed by IA form a basis for ( )R A  and ( )Λ∈ × ZMd d  be the diagonal matrix whose diagonal 
is 0 at IA and 1 at the complementary set \N Id A. Let = − ΛH A B:  and = + ΛQ B A: . Then 

( )∈ RH dGL ,  and the unitary operator

= −
− −Λ− −

R RF FU E D E E:S QH H H B
1
d d1 1 (6.8)

is the metaplectic operator associated to the symplectic matrix S.

Next we can also present the following characterizations.

Corollary 6.5. Let d  >  1 and ( )= − ∈KS A B
B A d.

 (1) If ( )∈ RA dGL ,  we have = −− −
R RF FU E D ES BA A A B

1
d d1 1 .

 (2) If A  =  0, then ( )∈ RB dO ,  and we have = −
− −R RF FU E D E ES I B I I

1
d d .

 (3) If B  =  0, then ( )∈ RA dO ,  and we have =U DS A.

Proof. Let d  >  1 and ( )= − ∈KS A B
B A d.

 (1) Let ( )∈ RA dGL , . Then, Λ = 0 and hence H  =  A and Q  =  B. Thus, using theorem 6.4, we 
deduce that

= =−
− −Λ

−− − − −
R R R RF F F FU E D E E E D E .S QH H H B BA A A B

1 1
d d d d1 1 1 1

 (2) Let A  =  0. Then Λ = I. Also, since + =AA BB IT T  and + =A A B B IT T , we get 
= =B B BB IT T . Hence, ( )∈ RB dO ,  and  −H  =  Q  =  B. Thus, using theorem 6.4, we 

deduce that

= =−
− −Λ − −

−
−− −

R R R RF F F FU E D E E E D E E .S QH H H B I B I I
1 1
d d d d1 1

 (3) Let B  =  0. Since + =AA BB IT T  and + =A A B B IT T , we get = =A A AA IT T . Therefore, 
( )∈ RA dO ,  and hence Λ = 0. Then, H  =  A and Q  =  0. Thus, using theorem 6.4, we 

deduce that

= =−
− −Λ− −

R RF FU E D E E D .S QH H H B A
1
d d1 1

 □

6.2.1. The maximal compact subgroup dK . Let =H Kd be the maximal compact subgroup of 
the real symplectic group ( )RSp d  and σKd be the probability measure over the compact group 
Kd. In this case, the associated multivariate symplectic wave-packet group ( )G H  is the under-

lying manifold × ×R R�Kd
d d , equipped with the following group law

( ) ( ) ( )λ λ λ λ= +′ ′ ′ ′ ′−�S S SS S, , , ,1

for all ( ) ( ) ( )λ λ ∈′ ′ G HS S, , , . Then ( ) ( ) ( )( ) ( )λ σ µ λ=
×G H R R�m S Sd , d ddO d d  is a Haar measure for 

the symplectice wave-packet group ( )G H . The multivariate symplectic wave-packet represen-
tation ( ) → ( ( ))Γ G H RH U L: d2  is given by ( ) ( )λ π λΓ =H S U, S  for all ( ) ( )λ ∈G HS, .
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The multivariate metaplectic wave-packet transform of ( )∈ Rf L d2  with respect to the win-
dow function ψ, is given by

( ) 〈 ( ) 〉 〈 ( ) 〉( ) ( )λ λ ψ π λ ψ= Γ =ψV H R Rf S f S f U, , , , ,L S Ld d2 2

for all ( ) ( )λ ∈G HS, . Then, corollary 5.3 guarantees the following Plancherel formula

∫ ∫ ∫ λ ψ σ µ λ ψ| Γ | = ⋅
×K

K� �R R
H R R R R Rf S S f, , d d ,L L L

2 2 2

d
d d

n d d d d d2 2 2〈 ( ) 〉 ( ) ( ) ∥ ∥ ∥ ∥( ) ( ) ( )

which is equivalent to the following reconstruction formula in the sense of the Hilbert space 
( )RL d2 ;

∫ ∫ ∫ψ λ λ ψ σ µ λ= ⋅ Γψ
−

×
V

K
K� �R R R

H R R
f f S S S, , d d .

L
2

d

d
d d d d d2∥ ∥ ( ) ( )   ( ) ( )( )

6.2.2. Compact subgroups of dK  generated by compact subgroups of dGL ,R( ). Let K be a 
compact subgroup of the general linear group ( )RdGL , . Then

( )
= = ∈
∼

−H K
⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎭

H
H

H
H: :

0
0

: ,T 1

is a compact subgroup of the real symplectic group ( )RSp d . Also, it is easy to check that 
=∼U DH H for all ∈KH , see [27].

The subgroup ( )=K RdO ,  is the most significant compact subgroup of ( )RdGL , . The 
compact subgroup ( )RdO , , or simply just ( )dO , is the multiplicative matrix group consists of 
all ×d d-orthogonal matrices. That is,

( ) { ( ) }= ∈ =× ×R Rd A M A A IO , : : .d d
T

d d

The compact group ( )dO  is a ( )−d d 1

2
 - dimensional real Lie group and it is non-connected. 

The probability (normalized Haar) measure over ( )dO  is given by

( ) ( ) ( ) ( )
( )

( )∫ ∫φ σ φ ν= −
−S
�H H y yd d ,

d
d d

O
O 1

d 1

where ν −d 1 is the normalized surface measure on −Sd 1, that is the standard unit sphere in Rd, 
and the function →φ −S C� : d 1  is given by ( ) ( )φ φ=� Hx H:  for all ( )∈A dO  and a fixed point 
∈ −Sx d 1.

Let K be a compact subgroup of ( )RdGL ,  with the probability Haar measure σK. Then 
⟨ ⟩ →×R R RK., . : d d  given by

( ) ⟨ ⟩ ⟨ ⟩ ( )∫ σ=K
K

K�x y x y Hx Hy H, , : , d ,

for all ∈Rx y, d, is a positive and symmetric bilinear from on Rd. Also, it is a K-invariant form, 
that is

⟨ ⟩ ⟨ ⟩=K KHx Hy x y, , ,

for all ∈Rx y, d and ∈KH . Thus, there exists a positive definite matrix ( )∈ × RMD d d  such that

⟨ ⟩ ⟨ ⟩  = ∀ ∈RKx y x y x yD, , , , .d
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Let = B BD T  be the Cholesky factorization of D with B invertible. Then we deduce that 
( )⊂−KB B dO1 , or equivalently ( )⊂ −K B d BO1 . This implies that, up to conjugation, ( )dO  is 

the maximal compact subgroup of ( )RdGL , .

(i) The orthogonal group. By the above argument and theoretical motivation, first we shall 
focus on analytic and constructive analysis of multivariate metaplectic wave-packet represen-
tations over the block diagonal compact subgroups of Kd generated by ( )=K dO .

In this case, the associated multivariate symplectic wave-packet group ( )G H  is isomorphic 

with the underlying manifold ( ) ( )× × = × ×R R R R�d dO O ,d d d d  equipped with the follow-
ing group law

( ) ( ) ( )ω ω ω ω= + +′ ′ ′ ′ ′ ′ ′ ′−�H x H x HH H x x H, , , , , , ,1

for all ( ) ( ) ( ) ( )ω ω ∈ ×′ ′ ′ R R�H x H x d, , , , , O d d . Then ( ) ( ) ( )( ) ( )λ σ µ λ=
∼

×G H R R�m H Hd , d ddO d d  

is a Haar measure for the symplectice wave-packet group ( )G H . The multivariate symplectic 
wave-packet representation ( ) → ( ( ))Γ G H RH U L: d2  is given by ( )ωΓ =

∼
ωH H x D T M, , H x  for all 

( ) ( )ω ∈∼ G HH x, , .
The multivariate metaplectic wave-packet transform of ( )∈ Rf L d2  with respect to the win-

dow function ψ, is given by

( ) ⟨ ( ) ⟩ ⟨ ⟩( ) ( )ω ω ψ ψ= Γ =
∼ ∼

ψ ωH R RV f H x f H x f D T M, , , , , , ,L H x Ld d2 2

for all ( ) ( )ω ∈∼ G HH x, , .
Then, corollary 5.3 guarantees the following Plancherel formula

∫ ∫ ∫ λ ψ σ µ λ ψ| Γ | =
∼

×� �R R
H R R R R Rf H H f, , d d ,

d
L d L LO

2
O

2 2
d d

n d d d d2 2 2〈 ( ) 〉 ( ) ( ) ∥ ∥ ∥ ∥
( )

( ) ( ) ( ) ( )

which is equivalent to the following reconstruction formula in the sense of the Hilbert space 
( )RL d2 ;

∥ ∥ ( ) ( )   ( ) ( )( ) ( )
( )∫ ∫ ∫ψ λ λ ψ σ µ λ= Γ

∼ ∼
ψ

−
×

V
� �R R R

H R R
f f H H H, , d d .

L d
d

2

O
Od

d d d d2

(ii) The special orthogonal group. For d  >  2, the special orthogonal ( )=K Rd: SO ,  or 
just ( )dSO  is given by

( ) { ( ) }= ∈ =d A d ASO : O : det 1 .

It is a connected and compact real Lie group.
In this case, the associated multivariate symplectic wave-packet group ( )G H  is isomorphic 

with the underlying manifold ( ) ( )× × = × ×R R R R�d dSO SO ,d d d d  which is equipped with 
the following group law

( ) ( ) ( )ω ω ω ω= + +′ ′ ′ ′ ′ ′ ′ ′−�H x H x HH H x x H, , , , , , ,1

for all ( ) ( ) ( ) ( )ω ω ∈ ×′ ′ ′ R R�H x H x d, , , , , SO d d . Then ( ) ( ) ( )( ) ( )λ σ µ λ=
∼

×G H R R�m H Hd , d ddSO d d  

is a Haar measure for the multivariate symplectic wave-packet group ( )G H . The metaplectic 
wave-packet representation ( ) → ( ( ))Γ G H RH U L: d2  is given by ( )ωΓ =

∼
ωH H x D T M, , H x  for all 

( ) ( )ω ∈G HH x, , .
The multivariate metaplectic wave-packet transform of ( )∈ Rf L d2  with respect to the win-

dow function ψ, is given by
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ω ω ψ ψ= Γ =
∼ ∼

ψ ωV H R Rf H x f H x f D T M, , , , , , ,L H x Ld d2 2( ) 〈 ( ) 〉 〈 〉( ) ( )

for all ( ) ( )ω ∈∼ G HH x, , .
Then, corollary 5.3 guarantees the following Plancherel formula

∫ ∫ ∫ λ ψ σ µ λ ψ| Γ | =
∼

×� �R R
H R R R R Rf H H f, , d d ,

d
L d L LSO

2
SO

2 2
d d

n d d d d2 2 2〈 ( ) 〉 ( ) ( ) ∥ ∥ ∥ ∥
( )

( ) ( ) ( ) ( )

which is equivalent to the following reconstruction formula in the sense of the Hilbert space 
( )RL d2 ;

∥ ∥ ( ) ( )   ( ) ( )( ) ( )
( )∫ ∫ ∫ψ λ λ ψ σ µ λ= Γ

∼ ∼
ψ

−
×

V
� �R R R

H R R
f f H H H, , d d .

L d
d

2

SO
SOd

d d d d2

(iii) The maximal tori. A circle group is a linear (matrix) group isomorphic to S1. A torus 
(tori) is a direct sum of circle groups. Thus any torus is a compact connected Abelian Lie 
group. A maximal torus (tori) is a torus in a linear (matrix) group which is not contained in any 

other torus. The rank of a maximal tori T is the number r such that = ⊕ = ST j
r

1
1.

The following proposition [39, 40] characterizes structure of a maximal tori of the special 
orthogonal group ( )dSO .

Proposition 6.6. Let d  >  2 and T be a maximal tori of ( )dSO . Then,

 (1) if d  =  2r with ∈Nr , then ( )= ⊕ =T SO 2j
r

1 .
 (2) if d  =  2r  +  1 with ∈Nr , then ( ( )) { }= ⊕ ⊕=T SO 2 1j

r
1 .

In this case, the associated multivariate symplectic wave-packet group ( )G T  is isomorphic 

with the underlying manifold × × = × ×R R R R�T T ,d d d d  which is equipped with the fol-
lowing group law

( ) ( ) ( )ω ω ω ω= + +′ ′ ′ ′ ′ ′ ′ ′−�H x H x HH H x x H, , , , , , ,1

for all ( ) ( ) ( )ω ω ∈ ×′ ′ ′ R R�H x H x, , , , , T d d . Then ( ) ( ) ( )( ) λ σ µ λ=
∼

×G H R R�m H Hd , d dT d d  is a 

Haar measure for the multivariate symplectic wave-packet group ( )G H . The multivariate meta-
plectic wave-packet representation ( ) → ( ( ))Γ G H RH U L: d2  is given by ( )ωΓ =

∼
ωH H x D T M, , H x  

for all ( ) ( )ω ∈∼ GH x, , T .
The multivariate metaplectic wave-packet transform of ( )∈ Rf L d2  with respect to the win-

dow function ψ, is given by

( ) 〈 ( ) 〉 〈 〉( ) ( )ω ω ψ ψ= Γ =
∼ ∼

ψ ωV R Rf H x f H x f D T M, , , , , , ,L H x LT d d2 2

for all ( ) ( )ω ∈∼ GH x, , T .
Then, corollary 5.3 guarantees the following Plancherel formula

∫ ∫ ∫ λ ψ σ µ λ ψ| Γ | =
∼

×� �R R
H R R R R Rf H H f, , d d ,L L LT

2
T

2 2
d d

n d d d d2 2 2〈 ( ) 〉 ( ) ( ) ∥ ∥ ∥ ∥( ) ( ) ( )

which is equivalent to the following reconstruction formula in the sense of the Hilbert space 
( )RL d2 ;

∥ ∥ ( ) ( )   ( ) ( )( ) ∫ ∫ ∫ψ λ λ ψ σ µ λ= Γ
∼ ∼

ψ
−

×
V
� �R R R

H R R
f f H H H, , d d .

L
2

T
Td

d d d d2
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Concluding Remarks. The main purpose of this article was dedicated to presenting a 
constructive admissibility criterion on closed subgroups of the real symplectic group ( )RSp d  
which guarantees square integrability of the associated multivariate metaplectic wave-packet 
representations and hence a valid resolution of the identity operator in the sense of the Hilbert 
function space ( )RL d2 .

Invoking topological and geometric structure of the real Lie group ( )RSp d , there is a high 
degree of freedom in selecting an admissible subgroup H of ( )RSp d . Among all closed sub-
groups of ( )RSp d , just compact ones are admissible and hence they guarantee a square- 
integrable multivariate metaplectic wave-packet representation and valid reconstruction formula.
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