49 research outputs found

    A look at cycles containing specified elements of a graph

    Get PDF
    AbstractThis article is intended as a brief survey of problems and results dealing with cycles containing specified elements of a graph. It is hoped that this will help researchers in the area to identify problems and areas of concentration

    On short cycles through prescribed vertices of a polyhedral graph

    Get PDF
    Guaranteed upper bounds on the length of a shortest cycle through k ≤ 5 prescribed vertices of a polyhedral graph or plane triangulation are proved

    Cycles containing all vertices of maximum degree

    Get PDF
    For a graph G and an integer k, denote by Vk the set {v ε V(G) | d(v) ≥ k}. Veldman proved that if G is a 2-connected graph of order n with n ≤ 3k - 2 and |Vk| ≤ k, then G has a cycle containing all vertices of Vk. It is shown that the upper bound k on |Vk| is close to best possible in general. For the special case k = δ(G), it is conjectured that the condition |Vk| ≤ k can be omitted. Using a variation of Woodall's Hopping Lemma, the conjecture is proved under the additional condition that n ≤ 2δ(G) + δ(G) + 1. This result is an almost-generalization of Jackson's Theorem that every 2-connected k-regular graph of order n with n ≤ 3k is hamiltonian. An alternative proof of an extension of Jackson's Theorem is also presented

    Hamilton cycles in almost distance-hereditary graphs

    Full text link
    Let GG be a graph on n3n\geq 3 vertices. A graph GG is almost distance-hereditary if each connected induced subgraph HH of GG has the property dH(x,y)dG(x,y)+1d_{H}(x,y)\leq d_{G}(x,y)+1 for any pair of vertices x,yV(H)x,y\in V(H). A graph GG is called 1-heavy (2-heavy) if at least one (two) of the end vertices of each induced subgraph of GG isomorphic to K1,3K_{1,3} (a claw) has (have) degree at least n/2n/2, and called claw-heavy if each claw of GG has a pair of end vertices with degree sum at least nn. Thus every 2-heavy graph is claw-heavy. In this paper we prove the following two results: (1) Every 2-connected, claw-heavy and almost distance-hereditary graph is Hamiltonian. (2) Every 3-connected, 1-heavy and almost distance-hereditary graph is Hamiltonian. In particular, the first result improves a previous theorem of Feng and Guo. Both results are sharp in some sense.Comment: 14 pages; 1 figure; a new theorem is adde
    corecore