research

Hamilton cycles in almost distance-hereditary graphs

Abstract

Let GG be a graph on nβ‰₯3n\geq 3 vertices. A graph GG is almost distance-hereditary if each connected induced subgraph HH of GG has the property dH(x,y)≀dG(x,y)+1d_{H}(x,y)\leq d_{G}(x,y)+1 for any pair of vertices x,y∈V(H)x,y\in V(H). A graph GG is called 1-heavy (2-heavy) if at least one (two) of the end vertices of each induced subgraph of GG isomorphic to K1,3K_{1,3} (a claw) has (have) degree at least n/2n/2, and called claw-heavy if each claw of GG has a pair of end vertices with degree sum at least nn. Thus every 2-heavy graph is claw-heavy. In this paper we prove the following two results: (1) Every 2-connected, claw-heavy and almost distance-hereditary graph is Hamiltonian. (2) Every 3-connected, 1-heavy and almost distance-hereditary graph is Hamiltonian. In particular, the first result improves a previous theorem of Feng and Guo. Both results are sharp in some sense.Comment: 14 pages; 1 figure; a new theorem is adde

    Similar works

    Full text

    thumbnail-image

    Available Versions