936 research outputs found

    Vertex-disjoint cycles in bipartite tournaments

    Get PDF
    Let k=2 be an integer. Bermond and Thomassen conjectured that every digraph with minimum out-degree at least 2k-1 contains k vertex-disjoint cycles. Recently Bai, Li and Li proved this conjecture for bipartite digraphs. In this paper we prove that every bipartite tournament with minimum out-degree at least 2k-2, minimum in-degree at least 1 and partite sets of cardinality at least 2k contains k vertex-disjoint 4-cycles whenever k=3. Finally, we show that every bipartite tournament with minimum degree d=min(d+,d-) at least 1.5k-1 contains at least k vertex-disjoint 4-cycles.Peer ReviewedPostprint (author's final draft

    Hamilton decompositions of regular bipartite tournaments

    Full text link
    A regular bipartite tournament is an orientation of a complete balanced bipartite graph K2n,2nK_{2n,2n} where every vertex has its in- and outdegree both equal to nn. In 1981, Jackson conjectured that any regular bipartite tournament can be decomposed into Hamilton cycles. We prove this conjecture for all sufficiently large bipartite tournaments. Along the way, we also prove several further results, including a conjecture of Liebenau and Pehova on Hamilton decompositions of dense bipartite digraphs.Comment: 119 pages, 4 figure

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM
    • …
    corecore