6,497 research outputs found

    Cycle spectra of Hamiltonian graphs

    Get PDF
    AbstractWe prove that every Hamiltonian graph with n vertices and m edges has cycles with more than p−12lnp−1 different lengths, where p=m−n. For general m and n, there exist such graphs having at most 2⌈p+1⌉ different cycle lengths

    Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics

    Full text link
    Materials science and the study of the electronic properties of solids are a major field of interest in both physics and engineering. The starting point for all such calculations is single-electron, or non-interacting, band structure calculations, and in the limit of strong on-site confinement this can be reduced to graph-like tight-binding models. In this context, both mathematicians and physicists have developed largely independent methods for solving these models. In this paper we will combine and present results from both fields. In particular, we will discuss a class of lattices which can be realized as line graphs of other lattices, both in Euclidean and hyperbolic space. These lattices display highly unusual features including flat bands and localized eigenstates of compact support. We will use the methods of both fields to show how these properties arise and systems for classifying the phenomenology of these lattices, as well as criteria for maximizing the gaps. Furthermore, we will present a particular hardware implementation using superconducting coplanar waveguide resonators that can realize a wide variety of these lattices in both non-interacting and interacting form

    Which Digraphs with Ring Structure are Essentially Cyclic?

    Get PDF
    We say that a digraph is essentially cyclic if its Laplacian spectrum is not completely real. The essential cyclicity implies the presence of directed cycles, but not vice versa. The problem of characterizing essential cyclicity in terms of graph topology is difficult and yet unsolved. Its solution is important for some applications of graph theory, including that in decentralized control. In the present paper, this problem is solved with respect to the class of digraphs with ring structure, which models some typical communication networks. It is shown that the digraphs in this class are essentially cyclic, except for certain specified digraphs. The main technical tool we employ is the Chebyshev polynomials of the second kind. A by-product of this study is a theorem on the zeros of polynomials that differ by one from the products of Chebyshev polynomials of the second kind. We also consider the problem of essential cyclicity for weighted digraphs and enumerate the spanning trees in some digraphs with ring structure.Comment: 19 pages, 8 figures, Advances in Applied Mathematics: accepted for publication (2010) http://dx.doi.org/10.1016/j.aam.2010.01.00

    Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs

    Full text link
    The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for ``decorated'' quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a point spectrum, it is generated by compactly supported eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste blooper fixe

    Quantum statistics on graphs

    Full text link
    Quantum graphs are commonly used as models of complex quantum systems, for example molecules, networks of wires, and states of condensed matter. We consider quantum statistics for indistinguishable spinless particles on a graph, concentrating on the simplest case of abelian statistics for two particles. In spite of the fact that graphs are locally one-dimensional, anyon statistics emerge in a generalized form. A given graph may support a family of independent anyon phases associated with topologically inequivalent exchange processes. In addition, for sufficiently complex graphs, there appear new discrete-valued phases. Our analysis is simplified by considering combinatorial rather than metric graphs -- equivalently, a many-particle tight-binding model. The results demonstrate that graphs provide an arena in which to study new manifestations of quantum statistics. Possible applications include topological quantum computing, topological insulators, the fractional quantum Hall effect, superconductivity and molecular physics.Comment: 21 pages, 6 figure
    • …
    corecore