provided by Elsevier - Publisher Connector

Journal of Combinatorial Theory, Series B 102 (2012) 869-874

Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Cycle spectra of Hamiltonian graphs

Kevin G. Milans ^a, Florian Pfender ^b, Dieter Rautenbach ^{c,1}, Friedrich Regen ^{c,1}, Douglas B. West ^{d,2}

- ^a Mathematics Dept., University of South Carolina, USA
- ^b Institut für Mathematik, Universität Rostock, Rostock, Germany
- ^c Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany
- ^d Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

ARTICLE INFO

Article history: Received 16 August 2008 Available online 26 April 2012

Keywords: Cycle Cycle spectrum Hamiltonian graph Hamiltonian cycle

ABSTRACT

We prove that every Hamiltonian graph with n vertices and m edges has cycles with more than $\sqrt{p} - \frac{1}{2} \ln p - 1$ different lengths, where p = m - n. For general m and n, there exist such graphs having at most $2\lceil \sqrt{p+1} \rceil$ different cycle lengths.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The cycle spectrum of a graph G is the set of lengths of cycles in G. A cycle containing all vertices of a graph is a spanning or Hamiltonian cycle, and a graph having such a cycle is a Hamiltonian graph. An n-vertex graph is pancyclic if its cycle spectrum is $\{3, \ldots, n\}$. Our graphs have no loops or multiple edges. A graph is k-regular if every vertex has degree k (that is, k incident edges).

Interest in cycle spectra arose from Bondy's "Metaconjecture" (based on [3]) that sufficient conditions for the existence of Hamiltonian cycles usually also imply that a graph is pancyclic, with possibly a small family of exceptions. For example, Bondy [3] showed that the sufficient condition on n-vertex graphs due to Ore [15] (the degrees of any two nonadjacent vertices sum to at least n) implies also that G is pancyclic or is the complete bipartite graph $K_{\frac{n}{2},\frac{n}{2}}$. Schmeichel and Hakimi [12] showed that if a spanning cycle in an n-vertex graph G has consecutive vertices with degree-sum at least n, then G is pancyclic or bipartite or omits only n-1 from the cycle spectrum, the latter occurring only

E-mail addresses: milans@math.sc.edu (K.G. Milans), florian.pfender@uni-rostock.de (F. Pfender), dieter.rautenbach@uni-ulm.de (D. Rautenbach), friedrich.regen@uni-ulm.de (F. Regen), west@math.uiuc.edu (D.B. West).

¹ Supported in part by the Deutsche Forschungsgemeinschaft DFG within the project "Cycle Spectra of Graphs".

² Supported in part by the National Security Agency under Awards H98230-06-1-0065 and H98230-10-1-0065.

when the degree-sum is exactly n. Bauer and Schmeichel [1] used this to give unified proofs that the conditions for Hamiltonian cycles due to Bondy [4], Chvátal [5], and Fan [9] also imply that a graph is pancyclic, with small families of exceptions. Further results about the cycle spectrum under degree conditions on selected vertices in a spanning cycle appear in [10] and [13].

At the 1999 conference "Paul Erdős and His Mathematics", Jacobson and Lehel proposed the opposite question: When sufficient conditions for spanning cycles are relaxed, how small can the cycle spectrum be if the graph is required to be Hamiltonian? For example, consider regular graphs. Bondy's result [3] implies that $\lceil n/2 \rceil$ -regular graphs other than $K_{\frac{n}{2},\frac{n}{2}}$ are pancyclic. On the other hand, 2-regular Hamiltonian graphs have only one cycle length. For $3 \le k \le \lceil n/2 \rceil - 1$, Jacobson and Lehel asked for the minimum size of the cycle spectrum of a k-regular n-vertex Hamiltonian graph, particularly when k=3

Let s(G) denote the size of the cycle spectrum of a graph G. At the SIAM Meeting on Discrete Mathematics in 2002, Jacobson announced that he, Gould, and Pfender had proved $s(G) \geqslant c_k n^{1/2}$ for k-regular graphs with n vertices. Others later independently obtained similar bounds, without seeking to optimize c_k . For an upper bound, Jacobson and Lehel constructed the 3-regular example below with only n/6+3 distinct cycle lengths (when $n\equiv 0 \mod 6$ and n>6), and they generalized it to the upper bound $\frac{n}{2}\frac{k-2}{k}+k$ for k-regular graphs.

Example 1. When k = 3 and 6 divides n (with n > 6), take n/6 disjoint copies of $K_{3,3}$ in a cyclic order, with vertex sets $V_1, \ldots, V_{n/6}$. Remove one edge from each copy and replace it by an edge to the next copy to restore 3-regularity. A cycle of length different from 4 or 6 must visit each V_i , and in each V_i it uses 4 or 6 vertices. Hence the cycle lengths are 4, 6, and each even integer from 2n/3 through n. For the generalization, use $K_{k,k}$ instead of $K_{3,3}$. \square

A related problem is the conjecture of Erdős [7] that $s(G) \ge \Omega(d^{\lfloor (g-1)/2 \rfloor})$ when G has girth g and average degree d. Erdős, Faudree, Rousseau, and Schelp [8] proved the conjecture for g=5. Sudakov and Verstraëte [14] proved the full conjecture in a stronger form, obtaining $\frac{1}{8}(d^{\lfloor (g-1)/2 \rfloor})$ consecutive even integers in the cycle spectrum for graphs with fixed girth g and average degree 48(d+1). Gould, Haxell, and Scott [11] proved a similar result: for c>0, there is a constant k_c such that for sufficiently large n, the cycle spectrum of every n-vertex graph G having minimum degree at least cn and longest even cycle length 2l contains all even integers from 4 up to $2l-k_c$ (see also [2]).

Prior arguments for lower bounds on s(G) when G is regular and Hamiltonian used only the number of edges, not regularity. Suppose that G has n vertices and m edges. The coefficient c in a general lower bound of the form $s(G) \geqslant \sqrt{c(m-n)}$ cannot exceed 1, since $s(K_{\frac{n}{2},\frac{n}{2}}) = \sqrt{m-n+1}$. We give a construction for $m \leqslant n^2/4$ that is far from regular.

Example 2. For $t \le n/2$, form a graph G by replacing one edge of $K_{t,t}$ with a path having n-2t internal vertices; G has n vertices and m edges, where $m=t^2-2t+n \le n^2/4$. The cycle spectrum of G consists of the t-1 even numbers in $\{4,\ldots,2t\}$ and the t-1 numbers from n-2t+4 to n having the same parity as n. Thus $s(G) \le 2(t-1) = 2\sqrt{m-n+1}$. Equality holds when $t \le \lceil n/4 \rceil$, but when $\lceil n/4 \rceil < t \le n/2$ and n is even the two sets of t-1 numbers overlap. They overlap more as m increases, becoming the same set when $m=n^2/4$, and indeed $s(K_{\frac{n}{2},\frac{n}{2}}) = \sqrt{m-n+1}$.

Deleting edges cannot enlarge the cycle spectrum. Hence in general we can let $t = \lceil \sqrt{m-n+1} \rceil + 1$, apply the construction above for n and t, and discard edges to wind up with m edges and $s(G) \leq 2\lceil \sqrt{m-n+1} \rceil$. \square

Bondy [3] showed that every Hamiltonian graph with more than $n^2/4$ edges is pancyclic. Thus the lower bound on s(G) jumps to n-2 when m exceeds $n^2/4$. At $m=n^2/4$, the size of the spectrum of $K_{n/2,n/2}$ is only n/2-1. For n-vertex Hamiltonian bipartite graphs (with n>6), Entringer and Schmeichel [6] proved that $m>n^2/8$ suffices to make the graph *bipancyclic*, meaning that it has cycles of all n/2-1 even lengths.

In the construction of Example 2, the two segments overlap to yield bipancyclic graphs when m exceeds $n^2/16 + n/2$. The result of [6] implies that the construction is optimal among Hamiltonian

bipartite graphs when m exceeds $n^2/8$, but whether this also holds for Hamiltonian non-bipartite graphs is unknown. It is also unknown whether there are non-bipancyclic constructions (bipartite or not) when $n^2/16 + n/2 < m \le n^2/8$.

When $m < n^2/4$, the construction of Example 2 remains a candidate for a graph having the smallest cycle spectrum among Hamiltonian graphs with n vertices and m edges. We do know of one exception: when (n,m)=(14,21), the cycle spectrum of the Heawood graph (incidence graph of the projective plane of order 2) is smaller.

Our main result for the cycle spectra of n-vertex Hamiltonian graphs with m edges is that $s(G) > \sqrt{p} - \frac{1}{2} \ln p - 1$, where p = m - n.

2. The lower bound

A path with endpoints x and y is an x, y-path. A chord of a path (or cycle) P in a graph is an edge of the graph not in P whose endpoints are in P, and the *length* of the chord is the distance in P between its endpoints. In a path with vertices v_1, \ldots, v_n in order, two chords $v_a v_c$ and $v_b v_d$ overlap if a < b < c < d.

Lemma 3. If a graph G consists of an x, y-path P and h pairwise-overlapping chords of length l, then G contains x, y-paths having at least h-1 distinct lengths. Having only h-1 lengths requires l odd, $h \geqslant (l+3)/2$, and chords starting at h consecutive vertices along P.

Proof. The claim is trivial for h = 1; assume $h \ge 2$. Let n be the length of P. Let e_1, \ldots, e_h be the chords in order of appearance along P from x to y. Let d_i be the distance along P from the first endpoint of e_{i-1} to the first endpoint of e_i , for $2 \le i \le h$.

Let $P_{i,j}$ be the unique x, y-path using exactly two chords e_i and e_j , along with edges of P. Let p_j be the length of $P_{1,j}$, for $2 \le j \le h$. Note that $p_j = p_{j-1} - 2d_j$ for $3 \le j \le h$. The h-1 paths $P_{1,2}, \ldots, P_{1,h}$ have distinct lengths, which proves the first statement.

The length of $P_{1,2}$ is $n-2d_2+2$. Thus the full path P provides an additional length unless $d_2=1$. If $d_j>1$ for any larger j, then the length of $P_{2,j}$ is strictly between p_{j-1} and p_j . Hence an extra length arises unless the chords start at consecutive vertices along P.

In the remaining case, the h-1 lengths we have found are $n, n-2, \ldots, n-2h+4$. The length of any x, y-path that uses exactly one chord is n-l+1. To avoid generating a new length, it must be that l is odd and $2h-4 \geqslant l-1$. \square

Definition 4. Let G be a graph consisting of an n-cycle C plus q chords of length l, where l < n/2. Specify a forward direction along C. Let C[u, v] denote the subpath of C traversed by moving forward from u to v along C. When uv is a chord of length l and C[u, v] has length l, we say that u is its start, v is its end, and uv covers the edges and internal vertices of C[u, v]. For a chord e, let F(e) consist of e and all chords covering the end of e.

Select a chord e_1 so that $|F(e_1)| \ge |F(e)|$ for every chord e. For j > 1, let e_j be the first chord encountered moving forward from e_{j-1} that does not overlap e_{j-1} or e_1 ; if no such chord exists, then stop and set $\alpha = j-1$. Note that $F(e_i) \cap \{e_1, \dots, e_\alpha\} = \{e_i\}$ for each i and that the sets $F(e_1), \dots, F(e_\alpha)$ are pairwise disjoint. The selected edges $\{e_1, \dots, e_\alpha\}$ form a greedy chord system for G (see Fig. 1, which also includes notation used in Theorem 5). Given a greedy chord system beginning with e_1 , let v_1 be the start of e_1 , and let the vertices of C be v_1, \dots, v_n in forward order.

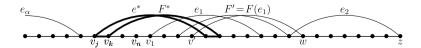


Fig. 1. A greedy chord system.

From a greedy chord system, we will build a large family of cycles with distinct lengths by using short cycles, long cycles, and cycles of intermediate lengths. The intermediate-length cycles are formed from the long cycles by replacing portions of *C* with chords.

Theorem 5. Let G be a graph consisting of an n-cycle C plus q chords of length l, where l < n/2. The size s(G) of the cycle spectrum of G is at least (q-1)/2 when l is even and at least $(q-1-\frac{q}{1})/2$ when l is odd.

Proof. Consider a greedy chord system e_1, \ldots, e_{α} . Let $F' = F(e_1)$. Let w be the end of the last chord in F' (see Fig. 1). Let F^* be the set of chords not in $\bigcup_{i=1}^{\alpha} F(e_i)$; since none of these chords overlaps e_{α} , each overlaps e_1 . If $F^* \neq \emptyset$, then let e^* be the first chord of F^* following e_{α} (see Fig. 1).

When $\alpha=1$, we have $|F'|+|F^*|=q$. If also $F^*=\emptyset$, then |F'|=q. Otherwise, $F^*\subseteq F(e^*)-\{e_1\}$, so $|F^*|\leqslant |F(e^*)|-1\leqslant |F'|-1$. Hence $|F'|-1\geqslant (q-1)/2$. Lemma 3 now yields v_1,w -paths of at least (q-1)/2 lengths that combine with $C[w,v_1]$ to form cycles of at least (q-1)/2 lengths. Hence we may assume $\alpha\geqslant 2$.

For $\alpha \geqslant 2$, we begin by using F^* to obtain at least $(|F^*|-1)/2$ short cycle lengths. We may assume $|F^*| \geqslant 2$. Define j by $e^* = v_j v_{j+l-n}$. Through each chord $v_k v_{k+l-n}$ in $F^* - \{e^*\}$, consider two cycles. One uses $v_k v_{k+l-n}$ and e^* and the two paths $C[v_j, v_k]$ and $C[v_{j+l-n}, v_{k+l-n}]$ that each have length k-j (see Fig. 1). The other uses $v_k v_{k+l-n}$ and e_1 and the two paths $C[v_k, v_1]$ and $C[v_{k+l-n}, v_{1+l}]$ that each have length n-k+1. The lengths of these cycles are 2(k-j+1) and 2(n-k+2); their minimum is at most n-j+3.

Taking the shorter for each k, we obtain $|F^*|-1$ cycles having length at most n-j+3, with each length occurring at most twice. This yields a set Q of $(|F^*|-1)/2$ values bounded by n-j+3. Since v_j is between the end of e_α and v_n , we have $j\geqslant 1+\alpha l$, and values in Q are bounded by $n-\alpha l+2$. Since $\alpha\geqslant 2$, these values are at most $n-\alpha(l-1)$.

With $\alpha \geqslant 2$, let z be the end of e_2 (see Fig. 1), and say that a cycle in G is *long* if it contains $C[z, v_1]$ and has length at least n - 2(l - 1) + 1. Let R be the set of lengths of long cycles, and let $\alpha = |R|$

From the long cycles in G, we construct shorter cycles. Since long cycles contain $C[z, v_1]$, they contain all edges of C covered by any of e_3, \ldots, e_α . These chords are pairwise non-overlapping and can replace parts of long cycles. Each such replacement yields ρ distinct lengths (within an interval of 2(l-1) values), shorter by l-1 than the previous set of lengths.

The set R and the $\alpha-2$ sets of size ρ produced by using e_3,\ldots,e_α successively to reduce lengths together form $\alpha-1$ sets of size ρ . Since each set lies in an interval of length 2(l-1), each value appears in at most two of the sets. Also, the top part of R (values exceeding n-(l-1)) and the bottom part of the last translation (values at most $n-(\alpha-1)(l-1)$) appear only once. Let R' be the union of those two sets. Since every value in R is above n-(l-1) or at most n-(l-1), we have $|R'|=\rho$. Including also R', we now have α sets of size ρ , with each value appearing in at most two of them.

Hence the union contains at least $\alpha \rho/2$ cycle lengths, all at least $n-\alpha(l-1)+1$ (which exceeds max Q). Thus $s(G) \geqslant (\alpha \rho + |F^*|-1)/2$. It remains to study this quantity.

The greedy choice of e_1 yields $|F'| \ge \lceil \frac{q - |F^*|}{\alpha} \rceil$. To obtain a lower bound on $\alpha \rho$, we compare ρ to |F'|. Let G' be the induced subgraph of G consisting of $C[v_1, w]$ and the chords in F'. Since these chords are pairwise overlapping, Lemma 3 yields v_1, w -paths in G' with |F'| - 1 distinct lengths. Furthermore, there are at least |F'| distinct lengths unless I is odd, $|F'| \ge (I+3)/2$, and the starts of the chords in F' are consecutive along C.

If |F'| = 1, then the greedy choice of e_1 implies that the chords are pairwise noncrossing and s(G) = q + 1. We may thus assume |F'| > 1 and $w \ne v_{l+1}$, so every v_1 , w-path in G' has length at least 2. Adding $C[w, v_1]$ to v_1 , w-paths of distinct lengths in G' creates cycles of distinct lengths in G. Since each such cycle contains $C[w, v_1]$, which has at least n - 2l + 1 edges, these cycles are long.

Thus when *l* is even, we have shown that $\rho \ge |F'|$. In this case

$$s(G) \geqslant \frac{\alpha \rho}{2} + \frac{|F^*| - 1}{2} \geqslant \frac{q - |F^*|}{2} + \frac{|F^*| - 1}{2} = \frac{q - 1}{2}.$$

If l is odd, then $\frac{\alpha\rho}{2}\geqslant\lceil\frac{q-|F^*|}{\alpha}\rceil$ still holds if $|F'|>\lceil\frac{q-|F^*|}{\alpha}\rceil$, since $\rho\geqslant|F'|-1$. Hence we may assume $|F'|\geqslant\lceil\frac{q-|F^*|}{\alpha}\rceil$. If $\rho\geqslant|F'|$ fails, then Lemma 3 implies that $|F'|\geqslant(l+3)/2$ and that the chords in F' are consecutive. Now R consists of the |F'|-1 values from n through n-2|F'|+4 whose difference from n is even. We consider two cases, depending on whether e_2 overlaps some chord in F'.

Case 1: e_2 overlaps no chord in F'. Here e_2 , like e_3, \ldots, e_{α} , can be used to reduce cycle lengths by l-1. Since $|F'|\geqslant (l+3)/2$, the long cycle lengths include $n,n-2,\ldots,n-(l-1)$; there are (l+1)/2 of them. After using each of e_2,\ldots,e_{α} to reduce the lengths by l-1, we obtain all values with the same parity as n down to $n-\alpha(l-1)$. The smallest may equal max Q. We keep $\frac{1}{2}\alpha(l-1)$ cycle lengths, each at least $n-\alpha(l-1)+2$.

If $\alpha \geqslant q/l$, then $\frac{1}{2}\alpha(l-1)\geqslant \frac{1}{2}q(1-\frac{1}{l})\geqslant \frac{1}{2}(q-|F^*|-\frac{q}{l})$. If $\alpha < q/l$, then we use $l\geqslant |F'|=\lceil \frac{q-|F^*|}{\alpha}\rceil$ to compute

$$\frac{1}{2}\alpha(l-1)\geqslant \frac{1}{2}\left(\left|F'\right|-1\right)\alpha\geqslant \frac{1}{2}\left(q-\left|F^*\right|-\alpha\right)>\frac{1}{2}\left(q-\left|F^*\right|-\frac{q}{l}\right).$$

Adding the $(|F^*| - 1)/2$ short lengths yields at least the desired number of lengths.

Case 2: e_2 overlaps some chord in F'. Since the chords in F' are consecutive, this case requires that e_2 starts just before the end of some chord e' in F'. Let v' be the start of e'. The cycle consisting of e_2 and e', the edge they both cover, and the path C[z,v'] (see Fig. 1) has length n-2(l-1)+2; hence it is a long cycle. We obtain $\rho \geqslant |F'|$ unless this length already appears among those generated from Lemma 3, which requires $2|F'|-4\geqslant 2(l-1)-2$, so $|F'|\geqslant l$. Since $|F'|\leqslant l$, equality holds.

As noted above, already $n, n-2, \ldots, n-2(l-2) \in R$. Lowering the bottom half of them by l-1 exactly $\alpha-2$ times yields $\frac{1}{2}\alpha(l-1)$ distinct cycle lengths. The least of them is $n-\alpha(l-1)+2$. This is exactly the situation we obtained in Case 1, so the same computation completes the proof. \Box

Theorem 6. If G is an n-vertex Hamiltonian graph with m edges, then $s(G) > \sqrt{p} - \frac{1}{2} \ln p - 1$, where p = m - n.

Proof. Let C be a spanning cycle in G. Let L be the set of lengths of chords of C in G, and let t = |L|. For each $l \in L$, we obtain two lengths of cycles in G; they are l+1 and n-l+1 if l < n/2 (using one chord of length l), and they are n/2+1 and n if l=n/2. Hence $s(G) \geqslant 2t$, which suffices if $t \geqslant \frac{1}{2}\sqrt{p}$. We may therefore assume that $2t < \sqrt{p}$.

For $l \in L$, let q_l be the number of chords of length l. By Theorem 5, when l < n/2 there are at least $\frac{l-1}{2l}q_l - \frac{1}{2}$ lengths of cycles using only edges of C and chords of length l. The lower bound also holds when l = n/2, since then the chords are pairwise overlapping and Lemma 3 applies, and always $q_l - 1 > \frac{l-1}{2l}q_l - \frac{1}{2}$.

We may assume that $\frac{l-1}{2l}q_l - \frac{1}{2} \leqslant \sqrt{p} - \frac{1}{2}\ln p - 1$ for odd $l \in L$, and $\frac{1}{2}q_l - \frac{1}{2} \leqslant \sqrt{p} - \frac{1}{2}\ln p - 1$ for even $l \in L$. Thus $q_l \leqslant (\sqrt{p} - \frac{1}{2}\ln p - \frac{1}{2})c_l$, where $c_l = 2$ when l is even and $c_l = 2 + \frac{2}{l-1}$ when l is odd. We obtain a contradiction by showing that these bounds on q_l sum to less than p. In light of the form of c_l , it suffices to prove this when all values in L are odd. The bound is now the worst when L consists of the first t positive odd numbers. We compute

$$\begin{split} p &= \sum_{l \in L} q_l \leqslant \sum_{l \in L} \left(\sqrt{p} - \frac{1}{2} \ln p - \frac{1}{2} \right) \left(2 + \frac{2}{l-1} \right) \leqslant \left(\sqrt{p} - \frac{1}{2} \ln p - \frac{1}{2} \right) \left[2t + \sum_{i=1}^t \frac{1}{i} \right] \\ &< \left(\sqrt{p} - \frac{1}{2} \ln p - \frac{1}{2} \right) \left[\sqrt{p} + (1 + \ln t) \right] \\ &< \left(\sqrt{p} - \frac{1}{2} \ln p - \frac{1}{2} \right) \left[\sqrt{p} + \frac{1}{2} \ln p + (1 - \ln 2) \right] \\ &= p - \frac{1}{4} (\ln p)^2 - \left(\ln 2 - \frac{1}{2} \right) \sqrt{p} - \frac{1}{4} (3 - \ln 4) \ln p - \frac{1}{2} (1 - \ln 2) < p. \end{split}$$

The contradiction completes the proof. \Box

References

- [1] D. Bauer, E.F. Schmeichel, Hamiltonian degree conditions which imply a graph is pancyclic, J. Combin. Theory Ser. B 48 (1990) 111–116.
- [2] B. Bollobás, A. Thomason, Weakly pancyclic graphs, J. Combin. Theory Ser. B 77 (1999) 121-137.
- [3] J.A. Bondy, Pancyclic graphs, J. Combin. Theory Ser. B 11 (1971) 80-84.
- [4] J.A. Bondy, Longest paths and cycles in graphs of high degree, Res. Rep. No. CORR 80-16, Univ. Waterloo, Waterloo, ON, 1980.
- [5] V. Chvátal, On Hamilton's ideals, J. Combin. Theory Ser. B 12 (1972) 163-168.
- [6] R.C. Entringer, E.F. Schmeichel, Edge conditions and cycle structure in bipartite graphs, Ars Combin. 26 (1988) 229-232.
- [7] P. Erdős, Some of my favourite problems in various branches of combinatorics, Matematiche (Catania) 47 (1992) 231-240.
- [8] P. Erdős, R. Faudree, C. Rousseau, R. Schelp, The number of cycle lengths in graphs of given minimum degree and girth, Discrete Math. 200 (1999) 55–60.
- [9] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221-227.
- [10] M. Ferrara, A. Harris, M. Jacobson, Cycle lengths in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215–223.
- [11] R. Gould, P. Haxell, A. Scott, A note on cycle lengths in graphs, Graphs Combin. 18 (2002) 491-498.
- [12] E.F. Schmeichel, S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99-107.
- [13] E.F. Schmeichel, J. Mitchem, Bipartite graphs with cycles of all even lengths, J. Graph Theory 6 (1982) 429-439.
- [14] B. Sudakov, J. Verstraëte, Cycle lengths in sparse graphs, Combinatorica 28 (2008) 357-372.
- [15] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.