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We say that a digraph is essentially cyclic if its Laplacian spectrum
is not completely real. The essential cyclicity implies the presence
of directed cycles, but not vice versa. The problem of characterizing
essential cyclicity in terms of graph topology is difficult and yet
unsolved. Its solution is important for some applications of graph
theory, including that in decentralized control. In the present
paper, this problem is solved with respect to the class of digraphs
with ring structure, which models some typical communication
networks. It is shown that the digraphs in this class are essentially
cyclic, except for certain specified digraphs. The main technical tool
we employ is the Chebyshev polynomials of the second kind. A by-
product of this study is a theorem on the zeros of polynomials that
differ by one from the products of Chebyshev polynomials of the
second kind. We also consider the problem of essential cyclicity
for weighted digraphs and enumerate the spanning trees in some
digraphs with ring structure.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

As distinct from the Laplacian eigenvalues of ordinary graphs, those of digraphs need not be real.
The problem of characterizing all digraphs that have completely real Laplacian spectra is difficult and
yet unsolved. Obviously, two classes of such digraphs are: the acyclic digraphs, whose Laplacian ma-
trices have a triangular form, and symmetric digraphs, whose Laplacian matrices are symmetric and
positive semidefinite. It can also be observed that the spectrum of a Laplacian matrix L is completely
real whenever for some ε > 0, I − εL is the transition matrix of a reversible Markov chain.

The previous results [3] suggest that non-real eigenvalues with noticeable imaginary parts char-
acterize digraphs that have directed cycles not “extinguished” by counter-directional cycles. On the
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other hand, there are digraphs that have “undamped” cycles and completely real spectra. In general,
it is not an easy problem to distinguish, in terms of graph topology, digraphs with real Laplacian
spectra from those having some non-real Laplacian eigenvalues. The digraphs of the second type are
guaranteed to have cycles, and we call them essentially cyclic. Some preliminary results on essentially
cyclic weighted digraphs were presented in [7,9].

The aforementioned problem of distinguishing, in terms of graph topology, digraphs with real and
partially non-real spectra is important for applications. In particular, in the decentralized control of
multi-agent systems [10,19,21,23], the absence of non-real Laplacian eigenvalues of the communica-
tion digraph implies that the simplest consensus algorithms are devoid of oscillations.

A rational approach to attacking the difficult problem of characterizing essentially cyclic directed
graphs is studying various classes of cyclic digraphs. In this paper, we investigate the digraphs with
ring structure. By such a digraph we mean a digraph whose arc set only contains a collection of arcs
forming a Hamiltonian cycle and an arbitrary number of arcs that belong to the inverse Hamiltonian
cycle. Digraphs of this type model a class of typical asymmetric communication networks. We obtain
a necessary and sufficient condition of essential cyclicity for the digraphs with ring structure. Ac-
cording to this condition, such digraphs are essentially cyclic, except for the digraphs whose inverse
Hamiltonian cycle lacks two most distant arcs or one arc or no arc. This study involves the Chebyshev
polynomials of the second kind. As a by-product we obtain a theorem on the zeros of polynomials
that differ by one from the products of Chebyshev polynomials of the second kind.

We also consider weighted digraphs and find that in this case, some conditions of essential cyclic-
ity involve the triangle inequality for the square roots of weight differences. Finally, we enumerate
the converging trees in some digraphs with ring structure.

The paper is organized as follows. After the necessary notation and preliminary results (Section 2),
in Section 3 we present three auxiliary lemmas needed to prove the main results. In Section 4, we
obtain a necessary and sufficient condition of essential cyclicity for the digraphs with ring structure,
i.e., for the digraphs consisting of two opposite Hamiltonian cycles from one of which some arcs can
be removed. In Section 5, we investigate the essential cyclicity of the simplest weighted digraphs. Fi-
nally, in Section 6, we present explicit formulas for the number of converging trees (in-arborescences)
in certain digraphs with ring structure and a direct computation, by means of Chebyshev polynomials,
of the Laplacian spectrum of the undirected cycle, which is usually proved rather than derived.

2. Notation and basic results

The Laplacian matrix of a digraph Γ with vertex set V (Γ ) = {1, . . . ,n} and arc set E(Γ ) is the
matrix L = (�i j) ∈ R

n×n in which, for j �= i, �i j = −1 whenever (i, j) ∈ E(Γ ), otherwise �i j = 0;
�ii = −∑

j �=i �i j , i, j ∈ V (Γ ). If a digraph Γ is weighted, i.e., each arc (i, j) ∈ E(Γ ) has a strictly
positive weight wij , then in the Laplacian matrix L = L(Γ ) = (�i j), for j �= i, �i j = −wij whenever
(i, j) ∈ E(Γ ), otherwise �i j = 0; �ii = −∑

j �=i �i j , i, j ∈ V (Γ ). Among the papers concerned with the
Laplacian matrices of digraphs, we mention [1–3,6,8,11,12,16,24] and [13], where the Laplacian matrix
is defined differently.

We say that a (weighted) digraph Γ is essentially cyclic if its Laplacian spectrum contains non-
real eigenvalues. Evidently, every essentially cyclic digraph has at least one directed cycle. Indeed,
otherwise there exists a numbering of vertices such that the Laplacian matrix has a triangular form,
so the Laplacian spectrum consists of the real diagonal entries of this form.

The Chebyshev polynomial of the second kind, Pn(x), scaled on ]−2,2[ is the polynomial of degree n
defined by

Pn(x) = sin((n + 1)arccos x
2 )√

1 − x2

4

, where x ∈ ]−2,2[. (1)

Using the auxiliary variable ϕ ∈ ]0,π [ such that x = 2 cosϕ (i.e., ϕ = arccos x
2 ) one can rewrite (1) in

the form
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Pn(x) = sin((n + 1)ϕ)

sinϕ
. (2)

The explicit form of the polynomials Pn(x) is (see, e.g., Theorem 1.12 in [20])

Pn(x) =
[n/2]∑
i=0

(−1)i
(

n − i

i

)
xn−2i (3)

and they satisfy the recurrence

Pn(x) = xPn−1(x) − Pn−2(x) (4)

with the initial conditions P0(x) ≡ 1 and P1(x) ≡ x. By (2), the roots of Pn(x) are:

xk = 2 cos
πk

n + 1
, k = 1, . . . ,n. (5)

In particular, if n = 2m − 1 and m > 0 is integer, then

Pn(x) =
2m−1∏
k=1

(
x − 2 cos

πk

2m

)
= x

m−1∏
k=1

(
x − 2 cos

πk

2m

)(
x + 2 cos

πk

2m

)

= x
m−1∏
k=1

(
x2 − 4 cos2 πk

2m

)
. (6)

Consider the tridiagonal matrix Mn ∈ R
n×n :

Mn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0
−1 2 −1

. . .
. . .

. . .
. . .

. . .
. . .

−1 2 −1
0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

In particular, M1 = (1). Let Zn(x) be the characteristic polynomial of Mn: Zn(x) = det(xI − Mn). The
expansion along the first row of xI − Mn for every n � 2 provides

Zn(x) = (x − 2)Zn−1(x) − Zn−2(x), (8)

with the initial conditions Z0(x) ≡ 1 and Z1(x) ≡ x − 1. The polynomials Zn(x) play a central role in
the subsequent considerations.

3. Auxiliary lemmas

It will be shown in Section 4 that the Laplacian characteristic polynomials of the digraphs with
ring structure differ by one from the products of the polynomials Zn(x). In this section, we prove
three lemmas. Lemma 1 connects Zn(x) with the Chebyshev polynomials Pn(x) of the second kind,
Lemma 2 provides the explicit form of Zn(x), and Lemma 3 specifies the roots of the polynomials
Zn(x) ± 1.
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Lemma 1. For n = 0,1,2, . . . , Zn(x2) ≡ P2n(x).

Proof. The proof proceeds by induction. For n = 0, by definition, Z0(x2) ≡ P0(x) ≡ 1 holds. For n = 1
we have Z1(x2) = x2 − 1 = P2(x). Assume that the required statement holds for n = m − 1 and n = m
and show that it is true for n = m+1. Indeed, by (4) and (8), Zm+1(x2) = (x2 −2)Zm(x2)− Zm−1(x2) =
(x2 −2)P2m(x)− P2m−2(x) = x(xP2m(x)− P2m−1(x))+(xP2m−1(x)− P2m−2(x))−2P2m(x) = xP2m+1(x)+
P2m(x) − 2P2m(x) = P2m+2(x). �
Lemma 2.

1. The explicit form of the polynomial Zn(x) is

Zn(x) =
n∑

i=0

(−1)i
(

2n − i

i

)
xn−i . (9)

2. The set of roots of Zn(x) is {4 cos2 πk
2n+1 | k = 1, . . . ,n} and they all belong to [0,4[.

Proof. Due to Lemma 1, to verify item 1, it suffices to compare (9) with (3); item 2 follows
from (5). �

Since for x � 0 P2n(
√

x ) = Zn(x), (1) provides the following trigonometric representation of Zn(x):

Zn(x) = sin((2n + 1)ϕ)

sinϕ
, where x = 4 cos2 ϕ, ϕ ∈

]
0,

π

2

]
, x ∈ [0,4[. (10)

Lemma 3. The set of the roots of the equation

Zn(x) + (−1)p = 0, p ∈ {0,1} (11)

is {4 cos2 πk
2n+1+(−1)k+p | k = 1, . . . ,n} and they all belong to [0,4[.

Proof. By (10) the roots xi of Eq. (11) are connected with the roots ϕi of the equation

sin((2n + 1)ϕ)

sinϕ
+ (−1)p = 0 (12)

by xi = 4 cos2 ϕi . We first solve Eq. (12) and then return to (11). Observe that if

(2n + 1)ϕ = πk − (−1)k+pϕ, (13)

where k is integer, then the equality sin((2n + 1)ϕ) = (−1)p+1 sinϕ to which Eq. (12) reduces when
ϕ ∈ ]0, π

2 ] is satisfied. By (13),

ϕ = πk

2n + 1 + (−1)k+p
. (14)

Taking (14) with k = 1, . . . ,n provides n distinct roots of Eq. (12); all of them belong to ]0, π
2 ].

Due to (10), the set of the corresponding distinct roots of Eq. (11) in [0,4[ is {4 cos2 πk
2n+1+(−1)k+p |

k = 1, . . . ,n}. Since the degree of (11) is n, this equation has no other roots. �
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Fig. 1. The digraphs: (a) Γ 1
n ; (b) Γ 2

n ; (c) Γ ′
n .

4. Essentially cyclic digraphs with ring structure

By a digraph with ring structure we mean a digraph that contains a Hamiltonian cycle and whose
remaining arcs belong to the inverse Hamiltonian cycle.

More specifically, let Γ 1
n = (Vn, E1

n) and Γ 2
n = (Vn, E2

n) be the digraphs with Vn = {1, . . . ,n},
E1

n = {(1,n), (n,n − 1), . . . , (2,1)}, and E2
n = E1

n ∪ {(1,2), (2,3), . . . , (n − 1,n), (n,1)}. We say that
Γn = (Vn, E) is a digraph with ring structure if it is isomorphic to some Γ̃n = (Vn, Ẽ) with E1

n ⊆ Ẽ ⊆ E2
n .

Digraphs Γ 1
n and Γ 2

n are shown in Fig. 1(a) and 1(b), respectively.
In this section, we answer the question in the title of the paper and find the Laplacian spectra of

some digraphs with ring structure. Certain weighted digraphs with ring structure are considered in
Section 5.

4.1. The digraphs Γ 1
n with n arcs and Γ 2

n with 2n arcs

Theorem 1.

1. Γ 1
n is essentially cyclic; its Laplacian spectrum is {2 sin2 πk

n + i sin 2πk
n | k = 1, . . . ,n}.

2. Γ 2
n is not essentially cyclic; its Laplacian spectrum is {4 sin2 πk

2n | k = 1, . . . ,n}.

Proof. 1. The Laplacian matrix of Γ 1
n is L1

n = I − Q , where Q = (qij) ∈ R
n×n is the circulant permuta-

tion matrix with the entries qij = 1 whenever i− j ∈ {1,1−n} and qij = 0 otherwise. The characteristic
polynomial of Q is �Q (λ) = λn − 1 and its spectrum is {e−2πki/n | k = 1, . . . ,n}. Therefore the eigen-
values of L1

n = I − Q are

λk = 1 − e−2πki/n = 1 − cos
2πk

n
+ i sin

2πk

n
= 2 sin2 πk

n
+ i sin

2πk

n
, k = 1, . . . ,n

(cf. §2.1 in [14], Section 4.8.3 in [18], and Section 4 in [3]).
2. The Laplacian matrix of Γ 2

n is symmetric and coincides with that of the undirected n-cycle.
The spectrum of this matrix was found in [15] and [4] and coincides with the expression given in
Theorem 1. On the derivation of this expression, see Section 6. �

The following representation of the spectrum of Γ 1
n is a consequence of Theorem 1.

Corollary of Theorem 1. The Laplacian spectrum of Γ 1
n is {2 sin πk

n eπ i( 1
2 − k

n ) | k = 1, . . . ,n}.

4.2. The digraphs Γ ′
n with 2n − 1 arcs

Consider the digraph that differs from Γ 2
n by one arc. Let Γ ′

n = (Vn, E ′
n), where E ′

n = E2
n \ {(n,1)},

see Fig. 1(c). The Laplacian matrix of Γ ′
n ,
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L′
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 0

. . .
. . .

. . .
...

. . .
. . .

. . . 0
−1 2 −1

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

differs from the tridiagonal matrix Mn (see (7)) by the non-zero (1,n) entry. Theorem 2 below states
that the Laplacian characteristic polynomial of Γ ′

n can be expressed via the polynomial Zn introduced
in Section 1 and that Γ ′

n , as well as Γ 2
n , is not essentially cyclic.

Theorem 2. Let L′
n be the Laplacian matrix of digraph Γ ′

n whose arcs constitute the Hamiltonian cycle
(1,n), (n,n − 1), . . . , (2,1) and the path (1,2), (2,3), . . . , (n − 1,n), and there are no other arcs. Then:

1. The characteristic polynomial of L′
n is �L′

n
(λ) = Zn(λ) − (−1)n.

2. Γ ′
n is not essentially cyclic and its Laplacian spectrum is {4 cos2 πk

2n+1−(−1)k+n , k = 1, . . . ,n}.

Proof. 1. Expanding det(λI − L′
n) along the first row and making use of (8) provide

�L′
n
(λ) = det

(
λI − L′

n

) = (λ − 2)Zn−1(λ) − Zn−2(λ) − (−1)n = Zn(λ) − (−1)n.

2. By Lemma 3, the roots of �L′
n
(λ) are 4 cos2 πk

2n+1−(−1)k+n , k = 1, . . . ,n, so Γ ′
n is not essentially

cyclic. �
4.3. The digraphs Γ ′′

n with 2n − 2 arcs

Now consider the digraphs with ring structure consisting of a Hamiltonian cycle supplemented
by the inverse Hamiltonian cycle in which two arbitrary arcs are lacking. A digraph Γ ′′

n of this kind
results from Γ ′

n by removing some (i, i + 1) arc, 1 � i < n. Therefore the Laplacian matrix L′′
n of Γ ′′

n is
obtained from L′

n by changing two elements in the ith row:

L′′
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · · · · · · · · · · 0 −1
−1 2 −1 0

. . .
. . .

. . .
...

. . .
. . .

. . .
...

−1 1 0
...

. . .
. . .

. . .
...

. . .
. . .

. . . 0
−1 2 −1

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
...
...

i
...
...

n − 1
n

. (15)

It turns out that answering the question of whether Γ ′′
n is essentially cyclic reduces to studying the

products of Chebyshev polynomials of the second kind. To do this, we need the following notation.
Let

x(m)
1 = 4 cos2 πm

2m + 1
and x(m)

2 = 4 cos2 π(m − 1)

2m + 1
(provided that m > 1) (16)

be the smallest and the second smallest roots of Zm(x), respectively (see Lemma 2);
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Fig. 2. The shapes of the polynomials Zi(x), Z j(x), and Zi(x)Z j(x) when i and j are odd and 0 < i < j − 1.

u(m)
1 = 4 cos2 πm

2(m + 1)
and u(m)

2 = 4 cos2 π(m − 1)

2m
(provided that m > 1) (17)

are the smallest and the second smallest roots of Zm(x) + (−1)m , respectively (see Lemma 3).
The following lemma establishes several inequalities involving the roots (16)–(17) of Zm(x) and

Zm(x)+ (−1)m as well as the polynomials that have the product form Zi(x)Z j(x). The shapes of Zi(x),
Z j(x), and Zi(x)Z j(x) when i and j are odd are exemplified in Fig. 2.

Lemma 4. Let 0 < i < j − 1.

1. If u(i)
1 < x( j)

2 , then i
j−1 > 2

3 .

2. u(i)
1 > u( j)

2 .
3. The inequality

∣∣Zi(x)Z j(x)
∣∣ < 1 (18)

holds for all x ∈ ]0,max(x(i)
1 , u( j)

2 )].
4. If u(i)

1 < x( j)
2 , then (18) is satisfied for all x ∈ [u(i)

1 , x( j)
2 ].

Lemma 4 is the main technical tool employed in the proofs of the subsequent theorems of this
section.

Proof. 1. Since cos2 t strictly decreases on [0, π
2 ], u(i)

1 < x( j)
2 implies that i

2(i+1)
>

j−1
2 j+1 . As a conse-

quence, one has item 1 of Lemma 4.
Item 2 follows from the definitions of u(i)

1 and u( j)
2 and the inequality 0 < i < j − 1.

3. Let x(i)
1 � u( j)

2 . Let us show that (18) holds for all x ∈ ]0, x(i)
1 ]. If x ∈ ]0, x(i)

1 [, then ϕ ∈ ] π i
2i+1 , π

2 [,
where ϕ = arccos x

2 . Let ϕ = π(i+δ)
2i+1 for 0 < δ < 1/2. We get

∣∣Zi(x)Z j(x)
∣∣ �

∣∣∣∣ sin(2i + 1)ϕ

sin2 ϕ

∣∣∣∣ =
∣∣∣∣ sinπδ

sin2 π(i+δ)
2i+1

∣∣∣∣. (19)

Consider the derivative of sin δπ/ sin2 π(i+δ)
2i+1 :
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(
sinπδ

sin2 π(i+δ)
2i+1

)′

δ

= π cos(πδ) sin π(i+δ)
2i+1 − 2π

2i+1 sin(πδ) cos π(i+δ)
2i+1

sin3 π(i+δ)
2i+1

= (
π(2i−1)

2i+1 + 2π
2i+1 ) cos(δπ) sin π(i+δ)

2i+1 − 2π
2i+1 sin(δπ) cos π(i+δ)

2i+1

sin3 π(i+δ)
2i+1

=
π(2i−1)

2i+1 cos(πδ) sin π(i+δ)
2i+1 + 2π

2i+1 sin π i(1−2δ)
2i+1

sin3 π(i+δ)
2i+1

. (20)

Since for 0 � δ < 1/2 the trigonometric functions in (20) are positive, so is the left-hand side,
therefore sinπδ/sin2 π(i+δ)

2i+1 increases in δ. For δ = 0 and δ = 1/2, sinπδ/sin2 π(i+δ)
2i+1 equals 0 and 1,

respectively. Hence sinπδ/sin2 π(i+δ)
2i+1 < 1 holds for all δ ∈ [0, 1

2 [ and, by (19), |Zi(x)Z j(x)| < 1 is sat-

isfied for all x ∈ ]0, x(i)
1 ].

Let us show that u( j)
2 > x(i)

1 implies |Zi(x)Z j(x)| < 1 as well. Consider the parametrization ϕ =
ϕ(δ) = π

2
j−δ

j , from which x = x(δ) = 4 cos2 π
2

j−δ
j . Then we obtain x(0) = 0, x( j

j+1 ) = u( j)
1 , and x(1) =

u( j)
2 . For x ∈ ]0, u( j)

2 ] (i.e., for δ ∈ ]0,1]) we have

Zi(x)Z j(x) = sin(π
2 (2i + 1)

j−δ
j ) sin(π

2 (2 j + 1)
j−δ

j )

sin2(π
2

j−δ
j )

,

consequently,

∣∣Zi(x)Z j(x)
∣∣ �

| sin(π
2 (2i + 1)(1 − δ

j ))|
sin2(π

2 (1 − δ
j ))

= | cos( δπ
2

2i+1
j )|

cos2( δπ
2

1
j )

.

If cos( δπ
2

2i+1
j ) > 0, then δπ

2
2i+1

j < π
2 , so

∣∣Zi(x)Z j(x)
∣∣ �

cos( δπ
2

2i+1
j )

cos2( δπ
2

1
j )

<
cos( δπ

2
2i
j )

cos2( δπ
2

1
j )

= cos2( δπ
2

i
j ) − sin2( δπ

2
i
j )

cos2( δπ
2

1
j )

< 1.

If cos( δπ
2

2i+1
j ) � 0, then π

2 � δπ
2

2i+1
j < π , and since i + 1 < j, we have π

2 � π
2

2i+1
j < π . Therefore

| cos( δπ
2

2i+1
j )|

cos2( δπ
2

1
j )

�
| cos(π

2
2i+1

j )|
cos2(π

2
1
j )

= cos(π − π
2

2i+1
j )

cos2(π
2

1
j )

= cos(π
2

2( j−i)−1
j )

cos2(π
2

1
j )

�
cos(π

2
2
j )

cos2(π
2

1
j )

= cos2(π
2

1
j ) − sin2(π

2
1
j )

cos2(π
2

1
j )

< 1.

4. By item 1 of Lemma 4, if u(i)
1 < x( j)

2 , then i >
2 j−2

3 . On the other hand, i + 1 < j, and due to
these two inequalities,

i + j � 8 (21)
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holds. The segment [π( j−1)
2 j+1 , π i

2(i+1)
] on the ϕ-axis corresponds to x ∈ [u(i)

1 , x( j)
2 ]. Let ϕ(ξ) = π( j−1+ξ)

2 j+1 ,

where 0 � ξ � 3i−2 j+2
2i+2 . Then ϕ(0) = π( j−1)

2 j+1 and ϕ(
3i−2 j+2

2i+2 ) = π i
2(i+1)

.

For all x ∈ [u(i)
1 , x( j)

2 ], the following inequality holds:

∣∣Zi(x)Z j(x)
∣∣ � | sin((2 j + 1)ϕ(ξ))|

sin2 ϕ(ξ)
= | sin((2 j + 1)

π( j−1+ξ)
2 j+1 )|

sin2 π( j−1+ξ)
2 j+1

= | sin(π( j − 1 + ξ))|
sin2(π

2 − π( 3
2 −ξ)

2 j+1 )

= | sin(πξ)|
cos2 π( 3

2 −ξ)

2 j+1

. (22)

Since i < j−1, we get ξ � 3i−2 j+2
2i+2 = 1

2 (
5i+5−2(i+ j)−3

2i+2 ) = 1
2 (5− 2(i+ j)+3

i+1 ) � 1
2 (5− 2(i+ j)+3

i+ j
2

) = i+ j−6
2(i+ j) < 1

2

and (22) results in

∣∣Zi(x)Z j(x)
∣∣ � | sin(πξ)|

cos2 π( 3
2 −ξ)

2 j+1

�
| sin(π i+ j−6

2(i+ j) )|
cos2

3
2 π

i+ j

<
| cos( 3π

i+ j )|
cos2 3π

2(i+ j)

= | cos2 3π
2(i+ j) − sin2 3π

2(i+ j) |
cos2 3π

2(i+ j)

< 1.

The last inequality follows from (21). The lemma is proved. �
In all subsequent statements, the copies of multiple roots of a polynomial are considered as distinct

roots so that each polynomial of degree n has n distinct roots.

Lemma 5. Let 0 < i < j −1. Let x1, x2 , and x3 be the three smallest roots of the polynomial f (x) = Zi(x)Z j(x)
and x1 < x2 � x3 . Then | f (x)| < 1 for all x ∈ ]0, x3].

Proof. Consider four cases. (a) x(i)
1 < u( j)

2 and u(i)
1 < x( j)

2 . This case is illustrated by Fig. 2. By item 3

of Lemma 4, | f (x)| < 1 holds for all x ∈ ]0, u( j)
2 ]; by item 4, this inequality is also true on [u(i)

1 , x( j)
2 ].

By item 2, u( j)
2 < u(i)

1 . On ]u( j)
2 , u(i)

1 [, we also have | f (x)| < 1, because on this interval |Zi(x)| < 1 and

|Z j(x)| < 1. Thus, | f (x)| < 1 on ]0, x( j)
2 ]. Since x( j)

2 = x3, the desired statement follows.

(b) x(i)
1 < u( j)

2 and u(i)
1 � x( j)

2 . In this case, using item 3 of Lemma 4, we similarly obtain | f (x)| < 1

on ]0, u(i)
1 ]. Since 0 < x3 = x( j)

2 � u(i)
1 , | f (x)| < 1 is true on ]0, x3].

(c) x(i)
1 � u( j)

2 and u(i)
1 < x( j)

2 . By items 3 and 4 of Lemma 4, | f (x)| < 1 holds on ]0, x(i)
1 ] and

[u(i)
1 , x( j)

2 ]. In addition, | f (x)| < 1 on ]x(i)
1 , u(i)

1 [, because on this interval, |Zi(x)| < 1 and |Z j(x)| < 1.

Hence | f (x)| < 1 on ]0, x( j)
2 ], where x( j)

2 = x3.

(d) x(i)
1 � u( j)

2 and u(i)
1 � x( j)

2 . In this case, | f (x)| < 1 is guaranteed on ]0, x(i)
1 ]. If x(i)

1 � x( j)
2 , then

x3 = x(i)
1 and the desired statement follows. In the opposite case, x3 = x( j)

2 and | f (x)| < 1 holds on

]x(i)
1 , x( j)

2 ], because on this interval |Zi(x)| < 1 and |Z j(x)| < 1. Therefore | f (x)| < 1 on ]0, x3], as
needed. �

The next lemma provides a means of using Lemma 5 in the subsequent proofs.

Lemma 6. Suppose that g(x) is a polynomial with real coefficients and x1 � x2 � x3 are some of its distinct
real roots. Suppose that |g(x)| < 1 for all x such that x1 � x � x3 . Then each of the polynomials g(x) − 1 and
g(x) + 1 has at least a pair of non-real roots.

Proof. Under the assumptions of Lemma 6, neither g(x)+1 nor g(x)−1 has any real root x′ such that
x1 � x′ � x3. On the other hand, the segment (possibly, degenerating into a point) [x1, x3] contains at
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Fig. 3. Digraphs Γ ′′
n that are not essentially cyclic: (a) n is even; i = n/2; (b) n is odd; either i = (n − 1)/2 or i = (n + 1)/2, i.e.,

exactly one of the two dotted vectors is an arc.

Fig. 4. (a) The shape of Z 2
i (λ); (b) the shape of Zi(λ)Zi+1(λ).

least two roots of the derivative g′(x). Consequently, each of the polynomials g(x)+1 and g(x)−1 has
no root non-strictly between two roots of its derivative. Hence it has at least two non-real roots. �

The following theorem determines which digraphs of type Γ ′′
n are essentially cyclic. Its proof is

based on Lemmas 5 and 6 and the subsequent Lemma 7.

Theorem 3. Let L′′
n be the Laplacian matrix of the digraph Γ ′′

n whose arcs form the Hamiltonian cycle
(1,n), (n,n − 1), . . . , (2,1), the path (1,2), (2,3), . . . , (i − 1, i), and the path (i + 1, i + 2), . . . , (n − 1,n),
where 1 � i < n. Then:

1. The characteristic polynomial of L′′
n is �L′′

n
(λ) = Zi(λ)Zn−i(λ) − (−1)n.

2. If n is even, then Γ ′′
n is essentially cyclic for all i ∈ {1, . . . ,n − 1} except for i = n

2 ; in the latter case the

eigenvalues of L′′
n are 4 cos2 πk

n and 4 cos2 πk
n+2 , k = 1, . . . , n

2 .

3. If n is odd, then Γ ′′
n is essentially cyclic for all i ∈ {1, . . . ,n − 1} except for i = n−1

2 and i = n+1
2 ; in the

latter cases the eigenvalues of L′′
n are 4 cos2 πk

n+1 , k = 1, . . . ,n.

The only digraphs of type Γ ′′
n that are not essentially cyclic have their two vertices of indegree 1

(as well as the two vertices of outdegree 1) at a maximum possible distance. In other words, they can
be obtained from Γ 2

n by the removal of two most distant arcs from the same Hamiltonian cycle. These
digraphs are shown in Fig. 3. In Fig. 3(b), exactly one of the two dotted vectors must be an arc; the
two resulting digraphs are obviously isomorphic.

Fig. 4 shows the shape of the polynomials Z 2
i (λ) and Zi(λ)Zi+1(λ), which differ by 1 from the

characteristic polynomials �L′′
n
(λ) of the digraphs Γ ′′

n that are not essentially cyclic due to Theorem 3.

Proof of Theorem 3. 1. Expanding �L′′
n
(λ) = det(λI − L′′

n) along the first row and using identity (8)

and the fact that for any square matrices P and S , det
( P | 0

R | S

) = det P det S , one obtains

�L′′
n
(λ) = (λ − 2)Zi−1(λ)Zn−i(λ) − Zi−2(λ)Zn−i(λ) − (−1)n = Zi(λ)Zn−i(λ) − (−1)n,

which proves item 1 of Theorem 3. To prove items 2 and 3, we need the following lemma.
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Lemma 7.

1. If i + j is even, then the equation Zi(x)Z j(x) − 1 = 0 has only real roots if and only if i = j. In the latter

case, the roots are 4 cos2 πk
2 j , 4 cos2 πk

2 j+2 , k = 1, . . . , j.
2. If i + j is odd and i < j, then the equation Zi(x)Z j(x) + 1 = 0 has only real roots if and only if i = j − 1.

In the latter case,

Zi(x)Z j(x) + 1 = P 2
i+ j(

√
x ) for all x � 0 (23)

holds and the roots are 4 cos2 πk
2 j , k = 1, . . . , i + j.

Proof. We first prove that under the requirements of Lemma 7, all the roots are real. After that we
show that otherwise there are at least two non-real roots.

1. If i = j, then Zi(x)Z j(x) − 1 = (Zi(x) − 1)(Zi(x) + 1), thus, Lemma 3 implies that all the roots
are real, belong to [0,4[, and can be expressed as 4 cos2 πk

2 j , 4 cos2 πk
2 j+2 , k = 1, . . . , j. This can also be

obtained using Lemma 1, Eq. (5), and Catalan’s identity for Chebyshev polynomials (see [22, Eq. (1.1′)])
(Pn(x) − 1)(Pn(x) + 1) = Pn−1(x)Pn+1(x).

2. Let j = i + 1. Then for x ∈ [0,4[ and ϕ = arccos
√

x
2 , using (10), (2), and (6), we have

Zi(x)Z j(x) + 1 = sin((2i + 1)ϕ) sin((2i + 3)ϕ)

sin2 ϕ
+ 1 = cos(2ϕ) − cos((4i + 4)ϕ)

2 sin2 ϕ
+ 1

= sin2((2i + 2)ϕ)

sin2 ϕ
= P 2

i+ j(
√

x ) = x
j−1∏
k=1

(
x − 4 cos2 πk

2 j

)2

=
i+ j∏
k=1

(
x − 4 cos2 πk

2 j

)
.

This can also be obtained using the identity mentioned in the proof of item 1. Thus, the roots of
Zi(x)Z j(x) + 1 are 4 cos2 πk

2 j , k = 1, . . . , i + j; they are real and belong to [0,4[.
Let us prove that in the remaining cases, each of the equations under consideration has at least a

pair of non-real roots.
Let 0 < i < j −1. By Lemma 5, |Zi(x)Z j(x)| < 1 for all x ∈ ]0, x3], where x1, x2, and x3 (x1 < x2 � x3)

are the three smallest roots of Zi(x)Z j(x). Hence by Lemma 6 each of the polynomials Zi(x)Z j(x) + 1
and Zi(x)Z j(x) − 1 has at least a pair of non-real roots. The lemma is proved. �

In view of item 1 of Theorem 3, items 2 and 3 follow from items 1 and 2 of Lemma 7, respec-
tively. �
4.4. The digraphs Γn with m (n < m < 2n − 2) arcs

Let us summarize the above results. According to Theorems 1 to 3: Γ 1
n is essentially cyclic; the

digraphs Γ ′′
n are essentially cyclic except for the cases specified in Theorem 3; Γ ′

n and Γ 2
n are not

essentially cyclic. The following theorem answers the question of essential cyclicity for the remain-
ing digraphs with ring structure, in which the Hamiltonian counter-cycle lacks more than two arcs.
According to this theorem, all such digraphs are essentially cyclic.

Theorem 4. Let Γn be a digraph on n > 3 vertices constituted by the Hamiltonian cycle {(1,n), (n,n − 1),

. . . , (2,1)} and the opposite cycle {(1,2), (2,3), . . . , (n − 1,n), (n,1)} in which i (2 < i < n) arbitrary arcs
are missing. Then:

1. The characteristic polynomial of the Laplacian matrix Ln of Γn is
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�Ln (λ) =
K∏

k=1

Zik (λ) − (−1)n, (24)

where i1, . . . , iK are the path lengths in the decomposition of the cycle {(1,n), (n,n − 1), . . . , (2,1)} into
the paths linking the consecutive vertices of indegree 1 in Γn.

2. Γn is essentially cyclic.

Proof. 1. The proof is quite similar to that of item 1 of Theorem 3.
2. We need the following lemma, which extends Lemma 5.

Lemma 8. Let f (x) = ∏K
k=1 Zik (x), where K > 2 and ik > 0, k = 1, . . . , K .

1. Let x1, x2 , and x3 be the smallest1 roots of f (x) and x1 � x2 � x3 . Then | f (x)| < 1 for all x ∈ ]0, x3].
2. Each of the polynomials f (x) − 1 and f (x) + 1 has at least a pair of non-real roots.

Proof. 1. The proof proceeds by induction on K . We first consider the step of induction and then
come back to its base. Assume that the required statement is true for all K < K0. Let us prove that
it is also true for K = K0. Consider any product of the form f (x) = ∏K0

k=1 Zik (x). Without loss of
generality, assume that

iK0 = min(i1, . . . , iK0). (25)

Then

f (x) = ZiK0
(x) f0(x), (26)

where f0(x) = ∏K0−1
k=1 Zik (x). Let x0

1, x0
2, and x0

3 be the three smallest roots of f0(x) and x0
1 � x0

2 � x0
3.

By the assumption,2

∣∣ f0(x)
∣∣ � 1 on

]
0, x0

3

]
. (27)

By (16), the smallest root of Zi(x) decreases with the increase of i. Therefore (25) implies that x1 = x0
1,

x2 = x0
2, and x3 = min(x0

3, x(K0)), where x(K0) is the smallest root of ZiK0
(x). Having in mind (27) and

that |ZiK0
(x)| < 1 on ]0, x(K0)] (which follows from Lemma 1 and (2)), we have that | f0(x)| � 1 and

|ZiK0
(x)| < 1 on ]0, x3]. Hence, by (26), | f (x)| < 1 on ]0, x3], thus, the induction step is complete.

We now turn to the base of induction. Let K = 3 and f (x) = ∏3
k=1 Zik (x). Without loss of gener-

ality, assume that i3 � i2 � i1. Then f (x) = Zi3 (x) f0(x), where f0(x) = Zi2 (x) Zi1 (x). Let x0
1, x0

2, and x0
3

be the three smallest roots of f0(x) ordered as follows: x0
1 � x0

2 � x0
3. Consider three cases.

(a) i2 < i1 − 1. Then, by Lemma 5, | f0(x)| < 1 for all x ∈ ]0, x0
3]. Now, applying the above induction

step, one has | f (x)| < 1 for all x ∈ ]0, x3], as needed.
(b) i2 = i1 − 1. In this case, by (23), f0(x) = Zi2 (x)Zi1 (x) = P 2

i2+i1
(
√

x ) − 1 (see also Fig. 4(b)) and

we only have | f0(x)| � 1 on ]0, x0
3]. However, the case of the weak inequality | f0(x)| � 1 is covered

by the above induction step (see (27)), thereby, this step provides | f (x)| < 1 on ]0, x3].

1 Here, as earlier, we distinguish the copies of every multiple root of a polynomial.
2 The inequality | f0(x)| < 1 is given here in a weakened form for the subsequent use of the induction step in the case where

the strict inequality is not satisfied.
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(c) i2 = i1. In this case, by Lemma 1, f0(x) = Z 2
i2
(x) = P 2

2i2
(
√

x ), and | f0(x)| > 1 is possible for

some x ∈ ]0, x0
3] (cf. Fig. 4(a)). Let x(i3) be the smallest root of Zi3 (x). Then by (1) for every integer

k > 0 and x ∈ ]0,1] we have

P 2
2k(

√
x ) = sin2((2k + 1)arccos

√
x

2 )

1 − x
4

� 1

1 − x
4

= 1 + x

4 − x
� 1 + x

3
. (28)

Moreover, since x(i3) � 1,∣∣Zi3(x)
∣∣ �

∣∣Z1(x)
∣∣ = 1 − x for all x ∈ ]

0, x(i3)
]
. (29)

Indeed, |Zi3 (0)| = |Z1(0)| = 1; by (9), |Zi3 (x)|′x=0 = −n(n+1)
2 � −1 = |Z1(x)|′x=0. Now the assumption

that |Zi3 (x)| > |Z1(x)| at some x ∈ ]0, x(i3)] implies that |Zi3 (x)| has an inflection on ]0, x(i3)[, which
is impossible because Zi3 (x) has i3 real roots and x(i3) is the smallest one.

Using (28) and (29) for every x ∈ ]0, x(i3)] we have∣∣ f (x)
∣∣ = ∣∣Zi3(x)P 2

2i2
(
√

x )
∣∣ < (1 − x)(1 + x) < 1.

Finally, i3 � i2 = i1 implies that x3 = x(i3) , thereby | f (x)| < 1 for all x ∈ ]0, x3].
2. Item 2 follows from item 1 and Lemma 6. Lemma 8 is proved. �
Now item 2 of Theorem 4 follows from (24) and item 2 of Lemma 8. �

Corollary of Theorem 4. If for two digraphs of the type described in Theorem 4, the path lengths i1, . . . , iK in
the decomposition of {(1,n), (n,n −1), . . . , (2,1)} into the paths linking the consecutive vertices of indegree 1
differ only by the order of the corresponding paths in the decomposition, then these digraphs have the same
Laplacian spectrum.

Thus, the answer to the question in the title of this paper is as follows. The digraphs Γn with
ring structure, which consist of two opposite Hamiltonian cycles from one of which some arcs can be
removed, are essentially cyclic, except for (up to isomorphism) three digraphs:

• Γ 2
n , where no arcs are removed (Fig. 1(b));

• Γ ′
n , where one arc is removed (Fig. 1(c));

• Γ ′′
n with two most distant3 arcs removed (Fig. 3).

A by-product of this work is the following theorem on the Chebyshev polynomials of the second
kind.

Theorem 5. Let h(x) = ∏K
k=1 P2ik (x) + (−1)p , where p ∈ {0,1}, P2ik (x) are the Chebyshev polynomials of

the second kind scaled on ]−2,2[ (see (1)), K � 1, and ik > 0, k = 1, . . . , K . Then h(x) has only real roots if
and only if

(a) K = 1; the roots are {±2 cos πk
2 j+1+(−1)k+p | k = 1, . . . , j}, where j = i1 or

(b) K = 2, i1 = i2 , and p = 1; the roots are {±2 cos πk
2 j ; ±2 cos πk

2 j+2 | k = 1, . . . , j}, where j = i1 or

(c) K = 2, |i1 − i2| = 1, and p = 0; the roots are4 {±2 cos πk
2 j | k = 1, . . . ,2 j − 1}, where j = max(i1, i2).

3 For the exact meaning of “most distant,” see Theorem 3.
4 In this expression, each element appears twice, which corresponds to multiplicity 2 of every root of h(x) in the case (c).
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Fig. 5. Weighted digraphs on three vertices: (a) a weighted cycle C3; (b) a complete digraph K3.

Proof. By Lemma 1, h(x) = ∏K
k=1 Zik (x2) + (−1)p . In the case (a), h(x) has only real roots by virtue of

Lemma 3.
Suppose that K = 2.
If |i1 − i2| > 1, then Lemmas 5 and 6 imply that h(x) has at least a pair of non-real roots.
If i1 = i2 and p = 1 (the case (b)), then by item 1 of Lemma 7, h(x) has only real roots.
If i1 = i2 and p = 0, then h(x) = Z 2

i1
(x2) + 1 has no real roots.

If |i1 − i2| = 1 and p = 0 (the case (c)), then by item 2 of Lemma 7, h(x) has only real roots.
If |i1 − i2| = 1 and p = 1, then using the notation i = min(i1, i2), by item 2 of Lemma 7 we have

h(x) = Zi(x2)Zi+1(x2)−1 = P 2
2i+1(x)−2. Since P 2

2i+1(x) has a maximum on ]0,1[ and on this interval,

P 2
2i+1(x) = sin2((2i + 2)arccos x

2 )

1 − x2

4

<
1

1 − 1
4

= 4

3
,

h(x) has a negative maximum, consequently, it has at least a pair of non-real roots.
Finally, if K > 2, then by item 2 of Lemma 8, h(x) has at least two non-real roots.
The expression for the roots in the case (a) is provided by Lemma 3; in the cases (b) and (c) they

are easily obtained using the identity Pn−1(x)Pn+1(x)+1 = P 2
n(x) (see [22, Eq. (1.1′)]) or Lemma 7. �

5. On the essential cyclicity of weighted digraphs

In this section, we study the essential cyclicity of simple weighted digraphs with ring structure.
Recall that the Laplacian matrix of a weighted digraph Γ with strictly positive arc weights is the

matrix L = L(Γ ) = (�i j) in which, for j �= i, �i j equals minus the weight of arc (i, j) in Γ and �i j = 0
if Γ has no (i, j) arc, the diagonal entries of L(Γ ) being such that the row sums are zero. Some
spectral properties of the Laplacian matrices of weighted digraphs were studied in [1–3,6,8], papers
cited therein, and, with a different definition of the Laplacian matrix, in [13].

First, consider an arbitrary weighted directed cycle C3 on three vertices, see Fig. 5(a). Recall that
by Theorem 1 the unweighted directed cycle is essentially cyclic.

Proposition 1. The weighted 3-cycle C3 is essentially cyclic if and only if the square roots
√

a,
√

b, and
√

c of
its arc weights satisfy the strict triangle inequality, namely:

√
a <

√
b + √

c,
√

b <
√

a + √
c, and

√
c <

√
a + √

b.

Proposition 1 follows from Theorem 6 below. It can be interpreted as follows: in an essentially
cyclic digraph C3, the weight of any arc is not large enough to “overpower” the remaining part of the
cycle. Or, in more precise terms, C3 is essentially cyclic whenever the square roots of its arc weights
are the lengths of the sides of a non-degenerate triangle.

Now consider the complete weighted digraph (without loops) on three vertices, K3 (Fig. 5(b)).
The Laplacian characteristic equation of this digraph,
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det

(
λ − b − γ b γ

α λ − c − α c
a β λ − a − β

)
= 0,

reduces to

λ
(
λ2 − (a + b + c + α + β + γ )λ + (ab + bc + ca + αβ + βγ + γ α + aα + bβ + cγ )

) = 0.

The digraph is essentially cyclic if and only if D < 0, where

D = (a + b + c + α + β + γ )2 − 4(ab + bc + ca + αβ + βγ + γ α + aα + bβ + cγ ).

Equivalently,

D = (a − α)2 − 2(a − α)(b + c − β − γ ) + (b − c − β + γ )2.

This quadratic trinomial in a −α is negative iff its roots are real and a −α lies strictly between them.
The roots

(a − α)1,2 = (b + c − β − γ ) ±
√

(b + c − β − γ )2 − (b − c − β + γ )2

= (b − β) + (c − γ ) ± 2
√

(b − β)(c − γ ) (30)

are real and unequal iff

(b − β)(c − γ ) > 0. (31)

Assuming that (31) is satisfied, first consider the case of b > β and c > γ . In this case, (30) reduces
to the entirely real expression

(a − α)1,2 = (
√

b − β ± √
c − γ )2.

Then the inequality D < 0, i.e. the essential cyclicity of K3, amounts to

|√b − β − √
c − γ | < √

a − α <
√

b − β + √
c − γ ,

which is the strict triangle inequality for
√

a − α,
√

b − β , and
√

c − γ .
The case of b < β and c < γ is considered similarly; as a result we obtain the following theorem.

Theorem 6. Let the matrix of arc weights of a weighted digraph Γ be W =
( 0 b γ

α 0 c
a β 0

)
. Then Γ is essentially

cyclic if and only if either

(i)
√

a − α,
√

b − β , and
√

c − γ are real and satisfy the strict triangle inequality or
(ii)

√
α − a,

√
β − b, and

√
γ − c are real and satisfy the strict triangle inequality.
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Fig. 6. Two cospectral weighted digraphs with ring structure on four vertices.

This criterion corresponds to a certain intuitive sense of essential cyclicity.
According to Theorem 6, for a complete weighted digraph on three vertices, K3, to be essentially

cyclic, it is necessary that it obeys the strict triangle inequality applied to certain values rather at-
tached to the vertices than to the pairs of them. Indeed, such a value is the square root of the weight
difference for the two arcs converging to the same vertex.

The problem of characterizing the essentially cyclic weighted digraphs becomes much more dif-
ficult with the increase of the number of vertices. However, some of the corresponding conditions
involve the triangle inequality for the roots of the arc weights as well.

Consider the first weighted digraph in Fig. 6. Note that the corresponding unweighted digraph is
essentially cyclic by Theorem 4. The Laplacian characteristic equation for the weighted digraph,

det

⎛⎜⎝
λ − p − 1 1 0 p

0 λ − y y 0
0 0 λ − 1 1
1 0 0 λ − 1

⎞⎟⎠ = 0,

as well as that for the second weighted digraph shown in Fig. 6, reduces to the form

λ
(
λ3 − (y + q)λ2 + (qy + q)λ − (qy + 1)

) = 0, where q = p + 3.

The digraph is essentially cyclic whenever D < 0, where

D = 4(b2 − 3c)3 − (2b3 − 9bc + 27d)

27
, (32)

b = −(y + q), c = qy + q, and d = −(qy + 1).

Substituting these expressions for b, c, and d in (32) we obtain

D = q(q − 4)y4 − (
2q3 − 8q2 + 4

)
y3 + q

(
q3 − 2q2 − 8q + 6

)
y2 − 2q(q + 2)(q − 3)2 y

+ (q + 1)(q − 3)3. (33)

To solve the inequality D < 0 w.r.t. y, one can find the real roots of the polynomial (33) treating q
as a parameter. However, the expressions of these roots as functions in q are rather cumbersome, as
well as the inverse representations of q via y.

For example, when p = 3, the roots of the equation D = 0 are:

y1,2 = (37 − Q ± √
290 − 36z − 504/z + 3454/Q )/12,

where

Q = √
36z + 145 + 504/z, z = 0.5

3
√

671 + 65
√

65.
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Fig. 7. A cycle on four vertices with two variable arc weights, a and x.

Therefore it does not seem to be easy to formulate a simple criterion (such as Theorem 6) of essential
cyclicity for the digraphs of this kind. Solving the problem numerically, we obtain that for p = 3,
the digraph is essentially cyclic, i.e. D < 0, when 0.266 < y < 2.441 (approximately). So the essential
cyclicity can be suppressed by either increase or decrease of the arc weight y.

Finally, consider a weighted cycle on four vertices with two variable weights (Fig. 7).
The corresponding Laplacian characteristic polynomial is

f (λ) = λ
(
λ3 − (13 + x + a)λ2 + (36 + 13x + 13a + ax)λ − 36x − 36a − 13ax

)
.

The boundary of the domain on the (a, x) plane corresponding to the essentially cyclic digraphs is
specified by the equation

−a2x2(x − a)2 + 26(x + a)
(
ax(x − a)2 + 25

(
x2 + a2) + 58ax + 900

)
+ 870a2x2 − 241

(
x2 + a2)(2ax + 25) − 25

(
x4 + a4) − 3934ax − 32 400 = 0.

The polynomial on the left-hand side is not the product of polynomials with rational coefficients and
smaller degrees. The solutions (a, x) of the above equation in the non-negative quadrant are plotted
in Fig. 8 with the “rooted” scales

√
a and

√
x.

The domain corresponding to the essentially cyclic digraphs is filled. The subdomain filled in dark
grey is the locus of points (

√
a,

√
x ) for which the square roots of the three smallest arc weights

satisfy the triangle inequality. The locus of points (
√

a,
√

x ) that correspond to the essentially cyclic
digraphs is wider: it also contains the four subdomains filled in light grey.

Thus, for this cyclic digraph, the triangle inequality for the square roots of the three smaller arc
weights is a sufficient, but not necessary condition of essential cyclicity. In other words, the required
criterion of essential cyclicity is a kind of relaxed triangle inequality. This relaxed inequality turns
into the triangle inequality as the fourth (largest) arc weight tends to infinity or the smallest weight
tends to zero; the relaxation is maximal when the largest weight becomes equal to the second largest
weight. It can be conjectured that the triangle inequality for the square roots of the three smallest
arc weighs is a sufficient condition of essential cyclicity for the whole class of weighted 4-cycles.

As one can see, even for the weighted digraphs on four vertices, the problem of characterizing
essential cyclicity in terms of graph topology is non-trivial.

6. Concluding remarks

We conclude with two side remarks.
1. According to the matrix tree theorem (see, e.g., Theorem 16.9 in [17]), for every digraph Γ , the

cofactor of each entry in the ith row of the Laplacian matrix is equal to the number of spanning con-
verging trees (also called in-arborescences) rooted at vertex i. The total number of in-arborescences
is equal to the sum of the cofactors in any column of L.

Thus, the matrix tree theorem provides a general approach to computing the number of in-
arborescences in a digraph and the number of spanning trees in a graph. For certain classes of graphs,
this approach leads to explicit formulas which can be obtained using the Chebyshev polynomials of
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Fig. 8. For the weighted digraph shown in Fig. 7, the domain where the square roots of the three smaller arc weights satisfy the
triangle inequality is filled in dark grey; the domain corresponding to the essentially cyclic digraphs is the union of the above
“triangle inequality domain” and the four fringing domains filled in light grey.

the second kind. In [5], this method was applied to the wheels, fans, Möbius ladders, etc. In [25],
the Chebyshev polynomials were used for finding the number of spanning trees for certain classes of
graphs including circulant graphs with fixed and non-fixed jumps. The results of the present paper
can be used to obtain representations for the number of converging trees in the digraphs with ring
structure.

Suppose that tn
i is the number of spanning converging trees in the digraph whose Laplacian matrix

is L′′
n (Eq. (15)). Then summing up the cofactors of the last column of L′′

n and having in mind that
(i) det Mn = (−1)n Zn(0) = (−1)n P2n(0) = 1, (ii) Pn(x) = det(xI − Cn), where

Cn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 1

. . .
. . .

. . .
. . .

. . .
. . .

1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

0 1 0
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(see, e.g., [20, Theorem 1.11]), and (iii) Pk(2) = k + 1 (which equals the limit from the left at x = 2 of
the expression (2)) we obtain the following representation for tn

i :

tn
i =

i−1∑
k=0

Pk(2) +
n−i−1∑

k=0

Pk(2) = 1

2

(
i2 + n + (n − i)2). (34)

Since tn
i is the product of the eigenvalues of L′′

n , except for a zero eigenvalue, for the non-trivial
digraphs with ring structure that have completely real spectra, Eq. (34) and Theorem 3 provide the
following expressions for tn

i and simultaneously trigonometric identities:

tn
n/2 =

( n/2−1∏
k=1

2 cos
πk

n

n/2∏
k=1

2 cos
πk

n + 2

)2

= n(n + 2)

4
, if n is even;

tn
(n−1)/2 = tn

n+1/2 =
(

(n−1)/2∏
k=1

2 cos
πk

n + 1

)4

= (n + 1)2

4
, if n is odd.

2. Let Lc
n be the Laplacian matrix of the undirected cycle on n vertices. By suitable indexing of the

vertices, Lc
n can be presented as a matrix different from Mn (7) in the (1,1) entry, which in Lc

n is 1.
Expanding det(λI − Lc

n) along the first row and using (8), Lemma 1, and (6), for all λ ∈ ]0,4] one
has:

�Lc
n
(λ) = (λ − 1)Zn−1(λ)Zn−2(λ) = Zn(λ) + Zn−1(λ) = P2n(

√
λ) + P2(n−1)(

√
λ )

= √
λ P2n−1(

√
λ ) = λ

n−1∏
k=1

(
λ − 4 cos2 πk

2n

)
=

n∏
k=1

(
λ − 4 cos2 πk

2n

)
.

Thus, the roots of �Lc
n

are (4 cos2 πk
2n , k = 1, . . . ,n). Obviously, (4 sin2 πk

2n , k = 0, . . . ,n − 1) is a
different representation of the same spectrum. The latter representation was taken as “ready-made”
and then proved in [15] and [4]. The above reduction to Chebyshev polynomials provides a derivation
of this result. Another derivation can be obtained using item 1 of Theorem 1 and the representation
C = 
C ∪ 
Cn−1, where 
C is the directed cycle and 
Cn−1 its (n − 1)st power. On connections of the
adjacency characteristic polynomials with Chebyshev polynomials, see [14, §2.6].
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