3 research outputs found

    Perfect Matching and Circuit Cover of Graphs

    Get PDF
    The research of my dissertation is motivated by the Circuit Double Cover Conjecture due to Szekeres and independently Seymour, that every bridgeless graph G has a family of circuits which covers every edge of G twice. By Fleischner\u27s Splitting Lemma, it suffices to verify the circuit double cover conjecture for bridgeless cubic graphs.;It is well known that every edge-3-colorable cubic graph has a circuit double cover. The structures of edge-3-colorable cubic graphs have strong connections with the circuit double cover conjecture. In chapter two, we consider the structure properties of a special class of edge-3-colorable cubic graphs, which has an edge contained by a unique perfect matching. In chapter three, we prove that if a cubic graph G containing a subdivision of a special class of edge-3-colorable cubic graphs, semi-Kotzig graphs, then G has a circuit double cover.;Circuit extension is an approach posted by Seymour to attack the circuit double cover conjecture. But Fleischer and Kochol found counterexamples to this approach. In chapter four, we post a modified approach, called circuit extension sequence. If a cubic graph G has a circuit extension sequence, then G has a circuit double cover. We verify that all Fleischner\u27s examples and Kochol\u27s examples have a circuit extension sequence, and hence not counterexamples to our approach. Further, we prove that a circuit C of a bridgeless cubic G is extendable if the attachments of all odd Tutte-bridges appear on C consequently.;In the last chapter, we consider the properties of minimum counterexamples to the strong circuit double cover. Applying these properties, we show that if a cubic graph G has a long circuit with at least | V(G)| - 7 vertices, then G has a circuit double cover

    Cycle Double Covers and Integer Flows

    Get PDF
    My research focuses on two famous problems in graph theory, namely the cycle double cover conjecture and the integer flows conjectures. This kind of problem is undoubtedly one of the major catalysts in the tremendous development of graph theory. It was observed by Tutte that the Four color problem can be formulated in terms of integer flows, as well as cycle covers. Since then, the topics of integer flows and cycle covers have always been in the main line of graph theory research. This dissertation provides several partial results on these two classes of problems
    corecore